darknet-yolov3 burn_in learning_rate policy
darknet-yolov3中的learning_rate是一个超参数,调参时可通过调节该参数使模型收敛到一个较好的状态。
在cfg配置中的呈现如下图:
我这里随便设了一个值。
接下来说一下burn_in和policy.
这两者在代码中的呈现如下所示:
float get_current_rate(network *net) { size_t batch_num = get_current_batch(net); int i; float rate; if (batch_num < net->burn_in) //当batch_num小于burn_in时,返回如下learning_rate return net->learning_rate * pow((float)batch_num / net->burn_in, net->power); switch (net->policy) {//当大于burn_in时,按如下方式,原配值中给的是STEPS case CONSTANT: return net->learning_rate; case STEP: return net->learning_rate * pow(net->scale, batch_num/net->step); case STEPS: rate = net->learning_rate; for(i = 0; i < net->num_steps; ++i){ if(net->steps[i] > batch_num) return rate; rate *= net->scales[i]; } return rate; case EXP: return net->learning_rate * pow(net->gamma, batch_num); case POLY: return net->learning_rate * pow(1 - (float)batch_num / net->max_batches, net->power); case RANDOM: return net->learning_rate * pow(rand_uniform(0,1), net->power); case SIG: return net->learning_rate * (1./(1.+exp(net->gamma*(batch_num - net->step)))); default: fprintf(stderr, "Policy is weird!\n"); return net->learning_rate; } }
这里我做了一些调整。
调整依据是:发现自己设置的学习率和burn_in结束时的学习率总是有很大差异,造成loss变化出现停滞,或者剧烈抖动。
调整办法:让steps的起始学习率=burn_in结束时的学习率。
实现如下:
float last_rate; float get_current_rate(network *net) { size_t batch_num = get_current_batch(net); int i; float rate; if (batch_num < net->burn_in) { /******************************************************/ last_rate = net->learning_rate * pow((float)batch_num / net->burn_in, net->power); /*****************************************************/ return net->learning_rate * pow((float)batch_num / net->burn_in, net->power); } switch (net->policy) { case CONSTANT: return net->learning_rate; case STEP: return net->learning_rate * pow(net->scale, batch_num/net->step); case STEPS: //rate = net->learning_rate; rate = last_rate; for(i = 0; i < net->num_steps; ++i){ if(net->steps[i] > batch_num) return rate; rate *= net->scales[i]; } return rate; case EXP: return net->learning_rate * pow(net->gamma, batch_num); case POLY: return net->learning_rate * pow(1 - (float)batch_num / net->max_batches, net->power); case RANDOM: return net->learning_rate * pow(rand_uniform(0,1), net->power); case SIG: return net->learning_rate * (1./(1.+exp(net->gamma*(batch_num - net->step)))); default: fprintf(stderr, "Policy is weird!\n"); return net->learning_rate; } }