NiftyNet开源平台的使用 -- 配置文件
NiftyNet开源平台的使用
NiftyNet基础架构是使研究人员能够快速开发和分发用于分割、回归、图像生成和表示学习应用程序,或将平台扩展到新的应用程序的深度学习解决方案。
详细介绍请见: (https://www.cnblogs.com/zhhfan/p/9800473.html)
官网 (https://niftynet.readthedocs.io/en/latest/config_spec.html)
官网 (https://niftynet.readthedocs.io/en/latest/config_spec.html)
NiftyNet工作流可以由NiftyNet应用程序和配置文件完全指定。
运行工作流的命令是:
使用train指令表明想要使用提供的数据更新已存在的网络模型,使用inference将加载已存在的网络模型根据提供的数据生成响应。-c 后跟配置文件路径,-a 跟将要import的应用种类。
运行工作流的命令是:
python net_run.py [train|inference|evaluation] -c <path_to/config.ini> -a <application>
使用train指令表明想要使用提供的数据更新已存在的网络模型,使用inference将加载已存在的网络模型根据提供的数据生成响应。-c 后跟配置文件路径,-a 跟将要import的应用种类。
application参数
图像分割
图像回归
自动编码
生成对抗网络(GANs)
net_run命令也支持命令行参数,以`--<name> <value>`或`--<name>=<value>`的形式表示。输入的参数将取代系统默认的和配置文件中的参数。
图像分割
net_segment -c ...
图像回归
net_regress -c ...
自动编码
net_autoencoder -c ...
生成对抗网络(GANs)
net_gan -c ...
net_run命令也支持命令行参数,以`--<name> <value>`或`--<name>=<value>`的形式表示。输入的参数将取代系统默认的和配置文件中的参数。
配置文件
每个网络想要运行必须包含一个config.ini配置文件,用来设置训练/测试所用的全部参数,详细如下:
每个配置文件中必须包含三个sections:
* [SYSTEM]
* [NETWORK]
* [APPLICATION]
每个配置文件中必须包含三个sections:
* [SYSTEM]
* [NETWORK]
* [APPLICATION]
如果train行为被需要,则`[TRAINING]`section需要被定义,同样,如果inference行为被需要,则需要定义`[INFERENCE]`。
[APPLICATION]由自己定制,可以使用的有:
* `[GAN]` -- 生成对抗网络
* `[SEGMENTATION]` -- 分割网络
* `[REGRESSION]` -- 回归网络
* `[AUTOENCODER]` -- 自动编码网络
[APPLICATION]由自己定制,可以使用的有:
* `[GAN]` -- 生成对抗网络
* `[SEGMENTATION]` -- 分割网络
* `[REGRESSION]` -- 回归网络
* `[AUTOENCODER]` -- 自动编码网络
每个section的参数
[Input data source]
* csv_file: 输入图像路径
* path_to_search: 搜索图像的单个或多个文件,如果有多个用逗号分开
* filename_contains: 匹配文件名的关键词
* filename_not_contains: 排除文件名的关键词
* filename_removefromid: 从文件命中抽取主题id的正则表达式,被匹配的模式将从文件名中移除并生成主题id。
* interp_order: 插值法,当设定采样方法为resize时,需要该参数对图片进行上采样或下采样,0表示最近插值,1表示双线性插值,3表示三次样条插值,默认为3
* pixdim: 如果被指定,输入volum在被喂给网络之前将被重采样成voxel尺寸
* axcodes: 如果被指定,输入volum在被喂给网络之前将被调整为坐标码(axes code)
* spatial_window_size: 输入到网络中的图片尺寸,需指明三个维度,第一个和第二个分别表示图片的长和宽,第三个如果为1表示使用2d卷积,否则使用3d卷积
* loader: 图片读取器,默认值None将尝试所有可得到的读取器
读取器支持的类型有:
nibabel 支持.nii医学文件格式
simpleitk 支持.dcm和.mhd格式的医疗图像
opencv 支持.jpg等常见图像,读取后通道顺序为BGR
skimage 支持.jpg等常见图像
pillow 支持.jpg等常见图像,读取后通道顺序为RGB
* csv_file: 输入图像路径
* path_to_search: 搜索图像的单个或多个文件,如果有多个用逗号分开
* filename_contains: 匹配文件名的关键词
* filename_not_contains: 排除文件名的关键词
* filename_removefromid: 从文件命中抽取主题id的正则表达式,被匹配的模式将从文件名中移除并生成主题id。
* interp_order: 插值法,当设定采样方法为resize时,需要该参数对图片进行上采样或下采样,0表示最近插值,1表示双线性插值,3表示三次样条插值,默认为3
* pixdim: 如果被指定,输入volum在被喂给网络之前将被重采样成voxel尺寸
* axcodes: 如果被指定,输入volum在被喂给网络之前将被调整为坐标码(axes code)
* spatial_window_size: 输入到网络中的图片尺寸,需指明三个维度,第一个和第二个分别表示图片的长和宽,第三个如果为1表示使用2d卷积,否则使用3d卷积
* loader: 图片读取器,默认值None将尝试所有可得到的读取器
读取器支持的类型有:
nibabel 支持.nii医学文件格式
simpleitk 支持.dcm和.mhd格式的医疗图像
opencv 支持.jpg等常见图像,读取后通道顺序为BGR
skimage 支持.jpg等常见图像
pillow 支持.jpg等常见图像,读取后通道顺序为RGB
[System]
* cuda_devices: 设置tensorflow的CUDA_VISIBLE_DEVICES变量
* num_threads: 设置训练的预处理线程数
* num_gpus: 设置训练的GPU的数量
* model_dir: 训练模型的保存和加载路径
* dataset_split_file: 文件分配科目到子集
* event_handler: 事件处理器
* cuda_devices: 设置tensorflow的CUDA_VISIBLE_DEVICES变量
* num_threads: 设置训练的预处理线程数
* num_gpus: 设置训练的GPU的数量
* model_dir: 训练模型的保存和加载路径
* dataset_split_file: 文件分配科目到子集
* event_handler: 事件处理器
[NETWORK]
* name: niftynet/network中的网络类或用户自定义的模块
* activation_function: 网络的激活函数集合
* batch_size: 设置每次迭代图像窗口的数量
* smaller_final_batch_mode: 当batch_size的窗口采样器总数是不可见的时支持最后的batch使用不同的模式
可选类型有:
drop: 终止剩余的batch
pad: 用-1填补最后更小的batch
dynamic: 直接输出剩余的batch
* name: niftynet/network中的网络类或用户自定义的模块
* activation_function: 网络的激活函数集合
* batch_size: 设置每次迭代图像窗口的数量
* smaller_final_batch_mode: 当batch_size的窗口采样器总数是不可见的时支持最后的batch使用不同的模式
可选类型有:
drop: 终止剩余的batch
pad: 用-1填补最后更小的batch
dynamic: 直接输出剩余的batch
* reg_type: 可训练的正规化参数的类型
* decay: 正规化的强度,用于预防过拟合
* volume_padding_size: 图片的填补值
* window_sampling: 进入网络的图片的采样方法
uniform: 输出的图片保持原本大小
weighted: 对成比例的voxel的采样到累积直方图的似然
balanced: 每个标签都被采样的可能性同样
resize: 将进入网络的图片首先resize到spatial_window_size
* decay: 正规化的强度,用于预防过拟合
* volume_padding_size: 图片的填补值
* window_sampling: 进入网络的图片的采样方法
uniform: 输出的图片保持原本大小
weighted: 对成比例的voxel的采样到累积直方图的似然
balanced: 每个标签都被采样的可能性同样
resize: 将进入网络的图片首先resize到spatial_window_size
* queue_length: NiftyNet会设置两个队列,一个负责从数据集中读取数据并扰乱,另一个从前一个队列中读取batch_size张图片输入网络,这个参数是指第一个队列的长度,最小值为batch_size \* 2.5
* keep_prob: 如果失活被网络支持的话,每个元素存活的可能性
* keep_prob: 如果失活被网络支持的话,每个元素存活的可能性
[Volume-normalisation]
* normalisation: 指示直方图标准化是否应该被应用于数据
* whitening: 只是被加载的图片是否应该被增白,如果是,输入I,返回(I - mean(I)) / std(I)
* histogram_ref_file: 标准化参数的文件
* norm_file: 基于直方图的标准化的直方图landmark类型
* cutoff: 下级和上级的基于直方图的标准化的截断
* normalise_foreground_only: 指示一个mask是否需要被基于前景或多样前景进行计算,如设置True,所有的标准化步骤都将被应用于生成前景区
* foreground_type: 生成一个前景mask,并且它只用于前景
* mutimod_foreground_type: 结合前景mask和多模态的策略
可选类型:
or: 可得到的masks的合集
and: 可得到的mask的交集
all: mask从每个模态独立计算
* normalisation: 指示直方图标准化是否应该被应用于数据
* whitening: 只是被加载的图片是否应该被增白,如果是,输入I,返回(I - mean(I)) / std(I)
* histogram_ref_file: 标准化参数的文件
* norm_file: 基于直方图的标准化的直方图landmark类型
* cutoff: 下级和上级的基于直方图的标准化的截断
* normalise_foreground_only: 指示一个mask是否需要被基于前景或多样前景进行计算,如设置True,所有的标准化步骤都将被应用于生成前景区
* foreground_type: 生成一个前景mask,并且它只用于前景
* mutimod_foreground_type: 结合前景mask和多模态的策略
可选类型:
or: 可得到的masks的合集
and: 可得到的mask的交集
all: mask从每个模态独立计算
[TRAINING]
* optimiser: 计算图梯度优化器的类型,支持adagrade,adam,gradientdescent,momentum,rmsprop,nesterov
* sample_per_volume:每张图的采样次数
* lr: 学习率
* loss_type: loss函数的类型,支持segmentation,regression,autoencoder,gan
* starting_iter: 设置重新训练模型的迭代次数
* save_every_n: 保存当前模型的频率,0为不保存
* tensorboard_every_n: 计算图中的元素和写到tensorboard上的频率
* max_iter: 最大训练迭代次数
* optimiser: 计算图梯度优化器的类型,支持adagrade,adam,gradientdescent,momentum,rmsprop,nesterov
* sample_per_volume:每张图的采样次数
* lr: 学习率
* loss_type: loss函数的类型,支持segmentation,regression,autoencoder,gan
* starting_iter: 设置重新训练模型的迭代次数
* save_every_n: 保存当前模型的频率,0为不保存
* tensorboard_every_n: 计算图中的元素和写到tensorboard上的频率
* max_iter: 最大训练迭代次数
[Validation during training]
* validation_every_n: 每n次迭代运行一次验证迭代
* validation_max_iter: 验证迭代运行的次数
* exclude_fraction_for_validation: 用于验证的数据集的比例
* exclude_fraction_for_inference: 用于推断的数据集的比例
* validation_every_n: 每n次迭代运行一次验证迭代
* validation_max_iter: 验证迭代运行的次数
* exclude_fraction_for_validation: 用于验证的数据集的比例
* exclude_fraction_for_inference: 用于推断的数据集的比例
[Data augmentation during traning]
* rotation_angle: 指示输入的图片旋转一个随机的旋转
* scaling_percentage: 指示一个随机的缩放比例(-50,50)
* random_flipping_axes: 可以翻转增强数据的轴(???)
* rotation_angle: 指示输入的图片旋转一个随机的旋转
* scaling_percentage: 指示一个随机的缩放比例(-50,50)
* random_flipping_axes: 可以翻转增强数据的轴(???)
[INFERENCE]
* spatial_window_size: 指示输入窗口的大小(int array)
* border: 一个用于修剪输出窗口大小的边界值(int tuple),如设置(3,3,3),将把一个(64\*64\*64)的窗口修剪为(58\*58\*58)
* inference_iter: 指定已训练的模型用于推测(integer)
* save_seg_dir: 预测目录的名字
* output_postfix: 向每一个输出文件的名称后添加后缀
* output_interp_order: 网络输出的推断顺序
* dataset_to_infer: 字符串指定计算推理的数据集(‘training’, ‘validation’, ‘inference’)
* spatial_window_size: 指示输入窗口的大小(int array)
* border: 一个用于修剪输出窗口大小的边界值(int tuple),如设置(3,3,3),将把一个(64\*64\*64)的窗口修剪为(58\*58\*58)
* inference_iter: 指定已训练的模型用于推测(integer)
* save_seg_dir: 预测目录的名字
* output_postfix: 向每一个输出文件的名称后添加后缀
* output_interp_order: 网络输出的推断顺序
* dataset_to_infer: 字符串指定计算推理的数据集(‘training’, ‘validation’, ‘inference’)
[EVALUATION]
* save_csv_dir: 存储输出的csv文件的路径
* evaluations: 要计算的评价指标列表以逗号分隔的字符串表示,每个应用程序可能的评估指标列表可用于回归评估、分段评估和分类评估
* evaluation_units: 描述在分割的情况下应该如何进行评估
foreground: 只对一个标签
label: 对每一个标签度量
cc: 对每个连接组件度量
* save_csv_dir: 存储输出的csv文件的路径
* evaluations: 要计算的评价指标列表以逗号分隔的字符串表示,每个应用程序可能的评估指标列表可用于回归评估、分段评估和分类评估
* evaluation_units: 描述在分割的情况下应该如何进行评估
foreground: 只对一个标签
label: 对每一个标签度量
cc: 对每个连接组件度量