elasticsearch 基础

Elasticsearch

一个开源的分布式搜索和分析引擎。可以快速存储、搜索、分析数据。提供服务的http端口为 9200,集群间通信端口为 9300。kibana的http服务端口为 5601。

基本概念

  1. index 索引
    当动词时类似mysql的 insert,当名词类似mysql的 database。
  2. type 类型(被移除)
    类似mysql的 table
  3. filed 字段
  4. mapping 映射
  5. document 文档
    类似mysql中的一条记录,单es中存储的是数据
  6. cluster 集群
  7. node 节点
  8. shards&replicas 分片和复制

倒排索引

  • 正排索引:是以文档对象的唯一 ID 作为索引,以文档内容作为记录的结构。类似mysql通过id检索记录。
  • 倒排索引:Inverted index,指的是将文档内容中的单词作为索引,将包含该词的文档 ID 作为记录的结构。通过记录的内容检索id。

例如一张正排索引表

id 年龄 性别
1 18
2 18
3 20

倒排索引表

年龄倒排

年龄 用户id
18 [1, 2]
20 [3]

性别倒排

性别   用户id
[1, 3]
[2]

 

在使用es进行搜索的时候会先将目标分词,然后在倒排索引表中索引关键词获得记录id。例如检索 1) 红海特工行动 拆分为“红海”“特工”“行动”,通过检索得到12354都满足要求,但得分并不相同。

 

启动es前配置:

# jvm.options
-Xms128m
-Xmx128m


# elasticsearch.yml
network.host: 0.0.0.0
discovery.seed_hosts: ["127.0.0.1"]
cluster.initial_master_nodes: ["node-1"]

相关命令:

查询自身信息

GET http://127.0.0.1:9200/_cat  # 查询节点相关信息
GET /_cat/nodes  # 查询所有节点
GET /_cat/health # 查看es健康状态
GET /_cat/master # 查看主节点
GET /_cat/indices # 查看所有索引

保存

POST /customer/external/1  # 在customer索引下的external类型下保存唯一标识为1的数据
{"name": "xxx"}            

POST /<index>/<type> # post 方式可以不指定id
{"data": "json"}

### 返回结果

{ # 新增
    "_index": "index",
    "_type": "type",
    "_id": "HoZ-FYEBtZh189LgJVd1", # 自动生成的 id
    "_version": 1,
    "result": "created",
    "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
    },
    "_seq_no": 11,
    "_primary_term": 1
}

 修改

PUT /<index>/<type>/<id>  # 使用put方式必须指定id,否则报错
POST /<index>/<type>/<id> # 这两种方式内容不用带"doc",且不会检查数据是否变化直接更新数据

POST /<index>/<type>/<id>/_update # 带有_update时,内容的"doc"一定不能少。
{                                 # 此时如果更新内容与原内容相同,版本号序列号不会变。
	"doc": {
		"key": "value"
	}
}

### 返回结果
{ # 带下划线的都是元数据
	"_index": "index", # 索引名
	"_type": "type",   # 类型名
	"_id": "1",        # 唯一标志
	"_version": 2,     # 版本,初始为1,每次修改都加1
	"result": "updated", # 是 created 还是 updated
	"_shards": {       # 分片,集群中使用
		"total": 2,
		"successful": 1,
		"failed": 0
	},
	# 这两个用于进行乐观锁操作
	"_seq_no": 5,
	"_primary_term": 1
}

查询

GET /<index>/<type>/<id> # 通过id查询信息

{
    "_index": "index",
    "_type": "type",
    "_id": "1",
    "_version": 2,
    "_seq_no": 5,  # 并发控制,每次更新都会加1,用于乐观锁
    "_primary_term": 1, # 同上,主分片重新分配,如重启,就会发生变化
    "found": true,
    "_source": {
        "name": "jack"
    }
}

删除

DELETE /<index> # 删除索引
DELETE /<index>/<type>/<id> # 删除指定id的数据

{
    "_index": "index",
    "_type": "type",
    "_id": "1",
    "_version": 3,
    "result": "deleted",
    "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
    },
    "_seq_no": 12,
    "_primary_term": 1
}

批量导入数据

POST /<index>/<type>/_bulk # 在指定索引指定类型做批量操作
{"index": {"_id": "1"}} # 保存索引为1的数据
{"name": "John Doe"}    # 要保存的本条数据
{"index": {"_id": "2"}} # 保存索引为2的数据
{"name": "John Doe"}    # 要保存的本条数据
## 语法格式
{action: {metadata}}
{request body}

### 响应
{
  "took" : 109,
  "errors" : false,
  "items" : [ # 每条数据的操作分开统计,一个失败不会导致下一个失败
    {
      "index" : { # 第一条记录 index 操作
        "_index" : "index",
        "_type" : "type",
        "_id" : "1",
        "_version" : 1,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 13,
        "_primary_term" : 1,
        "status" : 201
      }
    },
    {
      "index" : { # 第二条记录 index 操作
        "_index" : "index",
        "_type" : "type",
        "_id" : "2",
        "_version" : 1,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 14,
        "_primary_term" : 1,
        "status" : 201
      }
    }
  ]
}

POST /_bulk # 不指定index type,而是在请求体中指定。下面是4个独立的操作
{"delete": {"_index": "website", "_type": "blog", "_id": "123"}}
{"create": {"_index": "website", "_type": "blog", "_id": "123"}}
{"title": "My first blog post"}
{"index": {"_index": "website", "_type": "blog"}}
{"title": "My second blog post"}
{"update": {"_index": "website", "_type": "blog", "_id": "123"}}
{"doc": {"title": "My update blog post"}}

 使用官方的测试数据

https://github.com/elastic/elasticsearch/blob/v6.8.18/docs/src/test/resources/accounts.json

POST /bank/account/_bulk
{'json': "官方数据"}

乐观锁操作

每条记录的 _seq_no 随着每次改变数据而变化,_primary_term 随着集群的变化而变化。保证这二者不变就是保证了数据没有被其他用户操作

# 只有当二者为预期值,即在上次请求后数据没有改变才进行更新
PUT /<index>/<type>/<id>?if_seq_no=5&if_primary_term=1 

 

进阶检索

GET /<index>/_seatch # 检索<index>下所有信息,包括type和docs

两种检索方式:

  1. 通过url的请求参数检索
  2. 使用 request body 发送请求

 

使用url参数

GET bank/_search?q=*&sort=account_number:asc

请求参数:

  1. q=* 查询关键字为所有
  2. sort=account_number:asc 按照account_number递增排序

返回结果:

查询结果
{
    "took": 5,  // 使用5毫秒
    "timed_out": false, // 没有超时
    "_shards": {        // 集群中分片操作
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {                 // 命中记录
        "total": {
            "value": 12,      // 命中多少
            "relation": "eq"
        },
        "max_score": 1.0,      // 最大得分
        "hits": [              // 记录,默认一次返回10条记录,类似mysql的分页查询
            {
                "_index": "index",
                "_type": "type",
                "_id": "FYZzFYEBtZh189LgVFew",
                "_score": 1.0,
                "_source": {
                    "name": "jack"
                }
            },
            {
                "_index": "index",
                "_type": "type",
                "_id": "FoZzFYEBtZh189LgsVde",
                "_score": 1.0,
                "_source": {
                    "name": "jack"
                }
            },
            {
                "_index": "index",
                "_type": "type",
                "_id": "F4Z0FYEBtZh189Lg3Veq",
                "_score": 1.0,
                "_source": {
                    "name": "jack"
                }
            }
        ]
    }
}

使用请求体

Query DSL https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

GET /<index>/_search
{
  "query": {   // 查询条件
      "match_all": {}
  },
  "sort": [    // 排序条件
      { "attr_name": "asc" }
  ],
  "from": 10,
  "size": 10, // 从10到19号数据
}

 DSL 格式

{
	"query": {
		"match_all": {},

		// 查文本使用 match
		"match": {
			// 查询非字符串时为精准匹配
			"<field_name>": 20,
			// 文本的精确匹配
			"<field_name>.keyword": "xxx",
			// 查询字符串时为全文检索,对检索条件分词匹配,根据匹配程度得分不尽相同
			"<field_name>": "text1 text2"
		},

		// 不会分词,把查询条件当作一个短语,短语匹配,包含这个字符串即可
		"match_phrase": {
			"<field_name>": "xxx yyy"
		},

		// state或address字段包含xxx,对条件进行了分词
		"multi_match": {
			"query": "xxx",
			"fields": ["state", "address"]
		},

		// 查数字等非文本使用 term
		// 与match类似,但推荐用于精确匹配,match用于全文检索
		"term": {"age": 18},

		// 构造复杂查询
		"bool": {
			"must": [
				{"match": {"address": "mill"}},
				{"range": 
					{"age": 
						{
							"gte": 18, 
							"lte": 30
						}
					}
				}
			],
			"must_not": [
				{"match": {"state": "ID"}}
			],
			"should": [
				{"match": {"field_name": "xxx"}}
			],
			// 过滤器,与 must must_not 类似,但是不会影响相关性得分
			"filter": {
				{"match": {"address": "mill"}},
				{"range": 
					{"age": 
						{
							"gte": 18, 
							"lte": 30
						}
					}
				}
			}
		}
	},
	"from": 0,
	"size": 5,
	"sort": [
		{
			"field_name": {
				"order": "desc/asc"
			}
		}
	],
	"_source": ["age", "balance"]  // 只返回部分字段
}

 

聚合 aggregations

从数据中分组和提取数据的能力,类似 sql 中的 group by 和 sql 聚合函数。es中将命中结果hits中的数据聚合,并把一个响应中所有hits分隔开的能力。

 

{
	"query": {},
	"aggs": {
		"<aggregation_name>": {   // 给聚合起个名
			"<aggregation_type>": {
				<aggregation_body>
			}
			[, "meta" : { [<meta_data_body>] }]?    // 可以指定元数据
			[, "aggregations" : { [<sub_aggregation>]+ }]?  // 在聚合的基础上继续聚合
		}
		[, "<aggregation_name_2>" : {...}]*  // 第二个聚合
	}
}

例子:

查看代码
GET /bank/_search
{
    "query": {
        "match": {
            "address": "mill"
        }
    },
    "aggs": {
        "ageAgg": {
            "terms": { // 展示有多少个不同值
                "field": "age",
                "size": 10 // 最多展示10条
            }
        },
        "group_by": {
            "terms": {
                "field": "account_number"
            }
        },
        "avg_age": {
            "avg": {
                "field": "age"
            }
        }
    },
    "size": 0   // 不看查询到的结果
}

// 返回结果
{
    "took": 5,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 4,
            "relation": "eq"
        },
        "max_score": 5.4032025,
        "hits": [   ]   // 通过指定siz为0不查看数据
    },
    // 返回的聚合结果
    "aggregations": {
        "avg_age": {
            "value": 34.0
        },
        "ageAgg": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": 38,
                    "doc_count": 2
                },
                {
                    "key": 28,
                    "doc_count": 1
                },
                {
                    "key": 32,
                    "doc_count": 1
                }
            ]
        },
        "group_by": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": 136,
                    "doc_count": 1
                },
                {
                    "key": 345,
                    "doc_count": 1
                },
                {
                    "key": 472,
                    "doc_count": 1
                },
                {
                    "key": 970,
                    "doc_count": 1
                }
            ]
        }
    }
}

 查询不同年龄段的人的平均薪资

查看代码
// 复合聚合
{
    "query": {
        "match_all": {
        }
    },
    "size": 0,
    "aggs": {
        "ageAgg": {
            "terms":{
                "field": "age",
                "size": 100
            },
            "aggs": {
                "ageAvg": {
                    "avg": {
                        "field": "balance"
                    }
                }
            }
        }
    }
}

// 结果
{
    "took": 16,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 1000,
            "relation": "eq"
        },
        "max_score": null,
        "hits": []
    },
    "aggregations": {
        "ageAgg": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {   // 年龄为31的共有61人,平均工资 28312.918032786885
                    "key": 31,
                    "doc_count": 61,
                    "ageAvg": {
                        "value": 28312.918032786885
                    }
                },
                {
                    "key": 39,
                    "doc_count": 60,
                    "ageAvg": {
                        "value": 25269.583333333332
                    }
                },
                {
                    "key": 26,
                    "doc_count": 59,
                    "ageAvg": {
                        "value": 23194.813559322032
                    }
                },
                {
                    "key": 32,
                    "doc_count": 52,
                    "ageAvg": {
                        "value": 23951.346153846152
                    }
                },
                {
                    "key": 35,
                    "doc_count": 52,
                    "ageAvg": {
                        "value": 22136.69230769231
                    }
                },
                {
                    "key": 36,
                    "doc_count": 52,
                    "ageAvg": {
                        "value": 22174.71153846154
                    }
                },
                {
                    "key": 22,
                    "doc_count": 51,
                    "ageAvg": {
                        "value": 24731.07843137255
                    }
                },
                {
                    "key": 28,
                    "doc_count": 51,
                    "ageAvg": {
                        "value": 28273.882352941175
                    }
                },
                {
                    "key": 33,
                    "doc_count": 50,
                    "ageAvg": {
                        "value": 25093.94
                    }
                },
                {
                    "key": 34,
                    "doc_count": 49,
                    "ageAvg": {
                        "value": 26809.95918367347
                    }
                },
                {
                    "key": 30,
                    "doc_count": 47,
                    "ageAvg": {
                        "value": 22841.106382978724
                    }
                },
                {
                    "key": 21,
                    "doc_count": 46,
                    "ageAvg": {
                        "value": 26981.434782608696
                    }
                },
                {
                    "key": 40,
                    "doc_count": 45,
                    "ageAvg": {
                        "value": 27183.17777777778
                    }
                },
                {
                    "key": 20,
                    "doc_count": 44,
                    "ageAvg": {
                        "value": 27741.227272727272
                    }
                },
                {
                    "key": 23,
                    "doc_count": 42,
                    "ageAvg": {
                        "value": 27314.214285714286
                    }
                },
                {
                    "key": 24,
                    "doc_count": 42,
                    "ageAvg": {
                        "value": 28519.04761904762
                    }
                },
                {
                    "key": 25,
                    "doc_count": 42,
                    "ageAvg": {
                        "value": 27445.214285714286
                    }
                },
                {
                    "key": 37,
                    "doc_count": 42,
                    "ageAvg": {
                        "value": 27022.261904761905
                    }
                },
                {
                    "key": 27,
                    "doc_count": 39,
                    "ageAvg": {
                        "value": 21471.871794871793
                    }
                },
                {
                    "key": 38,
                    "doc_count": 39,
                    "ageAvg": {
                        "value": 26187.17948717949
                    }
                },
                {
                    "key": 29,
                    "doc_count": 35,
                    "ageAvg": {
                        "value": 29483.14285714286
                    }
                }
            ]
        }
    }
}

查看不同年龄、不同性别的人的平均工资

查看代码
{
    "query": {
        "match_all": {
        }
    },
    "size": 0,
    "aggs": {
        "ageAgg": {
            "terms":{
                "field": "age",
                "size": 3
            },
            "aggs": {
                "genderAgg": {
                    "terms": {
                        "field": "gender.keyword"
                    },
                    "aggs": {
                        "balanceAvg": {
                            "avg": {
                                "field": "balance"
                            }
                        }
                    }
                },
                "ageBalanceAvg": {
                    "avg": {
                        "field": "balance"
                    }
                }
            }
        }
    }
}




// 响应结果
{
    "took": 32,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 1000,
            "relation": "eq"
        },
        "max_score": null,
        "hits": []
    },
    "aggregations": {
        "ageAgg": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 820,
            "buckets": [
                {
                    "key": 31,
                    "doc_count": 61,
                    "genderAgg": {
                        "doc_count_error_upper_bound": 0,
                        "sum_other_doc_count": 0,
                        "buckets": [
                            {
                                "key": "M",
                                "doc_count": 35,
                                "balanceAvg": {
                                    "value": 29565.628571428573
                                }
                            },
                            {
                                "key": "F",
                                "doc_count": 26,
                                "balanceAvg": {
                                    "value": 26626.576923076922
                                }
                            }
                        ]
                    },
                    "ageBalanceAvg": {
                        "value": 28312.918032786885
                    }
                },
                {
                    "key": 39,
                    "doc_count": 60,
                    "genderAgg": {
                        "doc_count_error_upper_bound": 0,
                        "sum_other_doc_count": 0,
                        "buckets": [
                            {
                                "key": "F",
                                "doc_count": 38,
                                "balanceAvg": {
                                    "value": 26348.684210526317
                                }
                            },
                            {
                                "key": "M",
                                "doc_count": 22,
                                "balanceAvg": {
                                    "value": 23405.68181818182
                                }
                            }
                        ]
                    },
                    "ageBalanceAvg": {
                        "value": 25269.583333333332
                    }
                },
                {
                    "key": 26,
                    "doc_count": 59,
                    "genderAgg": {
                        "doc_count_error_upper_bound": 0,
                        "sum_other_doc_count": 0,
                        "buckets": [
                            {
                                "key": "M",
                                "doc_count": 32,
                                "balanceAvg": {
                                    "value": 25094.78125
                                }
                            },
                            {
                                "key": "F",
                                "doc_count": 27,
                                "balanceAvg": {
                                    "value": 20943.0
                                }
                            }
                        ]
                    },
                    "ageBalanceAvg": {
                        "value": 23194.813559322032
                    }
                }
            ]
        }
    }
}

 

 

Mapping 映射

定义文档和字段如何被存储和索引的。一般不指定,在第一次保存时有es推断。例如:

  1. 哪些字符串字段应该被全文检索
  2. 哪些字段包含数字、日期、地理信息
  3. 如何格式化字符串

查看 mapping 信息:

GET 127.0.0.1:9200/bank/_mapping

{
    "bank": {
        "mappings": {
            "properties": {
                "account_number": {
                    "type": "long"
                },
                "address": {
                    "type": "text",
                    "fields": {
                        "keyword": {  // keyword 子属性,用于精确查询
                            "type": "keyword",
                            "ignore_above": 256
                        }
                    }
                },
                "age": {
                    "type": "long"
                },
                "balance": {
                    "type": "long"
                },
                "city": {
                    "type": "text",
                    "fields": {
                        "keyword": {
                            "type": "keyword",
                            "ignore_above": 256
                        }
                    }
                },
                "email": {
                    "type": "text",
                    "fields": {
                        "keyword": {
                            "type": "keyword",
                            "ignore_above": 256
                        }
                    }
                }
            }
        }
    }
}

 

指定索引映射

创建索引时指定映射

PUT /my-index-name
{
    "mappings": {
        "properties": {
            "age": {"type": "integer"},
            "email": {"type": "keyword"},
            "name": {"type": "text"}
        }
    }
}

// 成功创建索引,并指定索引下的映射
{
    "acknowledged": true,
    "shards_acknowledged": true,
    "index": "my_index"
}

新增映射

PUT 127.0.0.1:9200/my_index/_mapping
{
    "properties": {
        "employee-id": {
            "type": "keyword",
            "index": false  // 不被索引不能用于检索数据,默认为true
        }
    }
}

// 新增成功
{
    "acknowledged": true
}

对已创建的映射无法更新,只能删除旧索引创建新新索引。这个过程称为数据迁移。

数据迁移

// 处理新版
POST /_reindex  // 固定写法
{
    "source": {
        "index": "old"
    },
    "dest": {
        "index": "new"
    }
}

// 带有type的旧版
{
	"source": {
		"index": "twitter",
		"type": "tweet"
	},
	"dest": {
		"index": "tweets"
	}
}

 

 

分词

默认分词功能不支持中文

POST _analyze
{
	"analyzer": "standard", // 自带的标准分词功能,对英文效果好
	"text": "This is a text."
}

 到 https://github.com/medcl/elasticsearch-analysis-ik 下载与es版本一致的插件,解压到 ES_HOME/plugins/ik 目录下。

 ik 有两种模式, ik_smart 和 ik_max_word 两种。

  1. ik_smart 最粗粒度的拆分,把一句话拆分
  2. ik_max_word 最细粒度的拆分,找到一句话中的所有单词
GET my_index/_analyze
{
	"analyzer": "ik_smart",
	"text": "这是一个分词器"
}

GET my_index/_analyze
{
    "analyzer": "ik_max_word",
    "text": "这个一个分词器"
}

 词库是有限的,可以自行拓展词库。在 ES_HOME/plugins/ik/config/IKAnalyzer.cfg 中配置,内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
	<comment>IK Analyzer 扩展配置</comment>
	<!--用户可以在这里配置自己的扩展字典 -->
	<entry key="ext_dict"> <!-- 本地dic文件名 --> </entry>
	 <!--用户可以在这里配置自己的扩展停止词字典-->
	<entry key="ext_stopwords"></entry>
	<!--用户可以在这里配置远程扩展字典 -->
	<!-- <entry key="remote_ext_dict">words_location 例如 "http://192.168.15.110" 由nginx动态提供字典 </entry> -->
	<!--用户可以在这里配置远程扩展停止词字典-->
	<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

 

java 操作

https://www.elastic.co/guide/en/elasticsearch/client/index.html

<dependencies>

        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-client</artifactId>
            <version>7.15.1</version> <!-- 这个版本号要与es的版本一致 -->
        </dependency>

        <dependency>
            <groupId>co.elastic.clients</groupId>
            <artifactId>elasticsearch-java</artifactId>
            <version>7.15.1</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
            <version>2.12.3</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
            <version>2.12.3</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-annotations</artifactId>
            <version>2.12.3</version>
        </dependency>

        <dependency>
            <groupId>jakarta.json</groupId>
            <artifactId>jakarta.json-api</artifactId>
            <version>2.0.1</version>
        </dependency>

  </dependencies>

创建索引

ElasticsearchClient client = ...
client.indices().create(c -> c.index("products"));

保存单个对象

Product product = new Product("bk-1", "City bike", 123.0);
IndexResponse response = esClient.index(i -> i
    .index("products")
    .id(product.getSku())
    .document(product)
);

批量保存对象

List<Product> products = fetchProducts();

BulkRequest.Builder br = new BulkRequest.Builder();

for (Product product : products) {
    br.operations(op -> op           
        .index(idx -> idx            
            .index("products")       
            .id(product.getSku())
            .document(product)
        )
    );
}

BulkResponse result = esClient.bulk(br.build());

// Log errors, if any
if (result.errors()) {
    logger.error("Bulk had errors");
    for (BulkResponseItem item: result.items()) {
        if (item.error() != null) {
            logger.error(item.error().reason());
        }
    }
}

通过id获取对象

GetResponse<Product> response = esClient.get(g -> g
    .index("products") 
    .id("bk-1"),
    Product.class      
);

if (response.found()) {
    Product product = response.source();
    logger.info("Product name " + product.getName());
} else {
    logger.info ("Product not found");
}

简单搜索

SearchResponse<Product> search = client.search(s -> s
    .index("products")
    .query(q -> q
        .term(t -> t
            .field("name")
            .value(v -> v.stringValue("bicycle"))
        )),
    Product.class);

for (Hit<Product> hit: search.hits().hits()) {
    processProduct(hit.source());
}
String searchText = "bike";

SearchResponse<Product> response = esClient.search(s -> s
    .index("products") 
    .query(q -> q      
        .match(t -> t   
            .field("name")  
            .query(searchText)
        )
    ),
    Product.class      
);

TotalHits total = response.hits().total();
boolean isExactResult = total.relation() == TotalHitsRelation.Eq;

if (isExactResult) {
    logger.info("There are " + total.value() + " results");
} else {
    logger.info("There are more than " + total.value() + " results");
}

List<Hit<Product>> hits = response.hits().hits();
for (Hit<Product> hit: hits) {
    Product product = hit.source();
    logger.info("Found product " + product.getSku() + ", score " + hit.score());
}

嵌套搜索

String searchText = "bike";
double maxPrice = 200.0;

// Search by product name
Query byName = MatchQuery.of(m -> m 
    .field("name")
    .query(searchText)
)._toQuery(); 

// Search by max price
Query byMaxPrice = RangeQuery.of(r -> r
    .field("price")
    .gte(JsonData.of(maxPrice)) 
)._toQuery();

// Combine name and price queries to search the product index
SearchResponse<Product> response = esClient.search(s -> s
    .index("products")
    .query(q -> q
        .bool(b -> b 
            .must(byName) 
            .must(byMaxPrice)
        )
    ),
    Product.class
);

List<Hit<Product>> hits = response.hits().hits();
for (Hit<Product> hit: hits) {
    Product product = hit.source();
    logger.info("Found product " + product.getSku() + ", score " + hit.score());
}

聚合操作

String searchText = "bike";

Query query = MatchQuery.of(m -> m
    .field("name")
    .query(searchText)
)._toQuery();

SearchResponse<Void> response = esClient.search(b -> b
    .index("products")
    .size(0) 
    .query(query) 
    .aggregations("price-histogram", a -> a 
        .histogram(h -> h 
            .field("price")
            .interval(50.0)
        )
    ),
    Void.class 
);

List<HistogramBucket> buckets = response.aggregations()
    .get("price-histogram") 
    .histogram() 
    .buckets().array(); 

for (HistogramBucket bucket: buckets) {
    logger.info("There are " + bucket.docCount() +
        " bikes under " + bucket.key());
}

 

posted @ 2022-06-09 07:52  某某人8265  阅读(48)  评论(0编辑  收藏  举报