~按位取反

~是按位取反运算符

这里先说一下二进制在内存的存储:二进制数在内存中以补码的形式存储

另外,正数的原码、补码和反码都相同

 

负数的反码与原码符号位相同,数值为取反;补码是在反码的基础上加1

比如:

~9的计算步骤:

转二进制:0 1001

计算补码:0 1001

按位取反:1 0110

转为原码:1 0110

按位取反:1 1001   反码

末位加一:1 1010   补码

符号位为1是负数,即-10

规律:~x=-(x+1);

因此,t=~9(1001)并不能输出6(0110),而是-10;

 

牛客网暑假训练第七场A题:

链接:https://www.nowcoder.com/acm/contest/145/A
来源:牛客网

Minimum Cost Perfect Matching
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
Special Judge, 64bit IO Format: %lld

题目描述

You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive.

The weight of the edge connecting two vertices with numbers x and y is (bitwise AND).

Your task is to find a minimum cost perfect matching of the graph, i.e. each vertex on the left side matches with exactly one vertex on the right side and vice versa. The cost of a matching is the sum of cost of the edges in the matching.

denotes the bitwise AND operator. If you're not familiar with it, see {https://en.wikipedia.org/wiki/Bitwise_operation#AND}.

输入描述:

The input contains a single integer n (1 ≤ n ≤ 5 * 10
5
).

输出描述:

Output n space-separated integers, where the i-th integer denotes p
i
 (0 ≤ p
i
 ≤ n - 1, the number of the vertex in the right part that is matched with the vertex numbered i in the left part. All p
i
 should be distinct.

Your answer is correct if and only if it is a perfect matching of the graph with minimal cost. If there are multiple solutions, you may output any of them.
示例1

输入

3

输出

0 2 1
题意:给你一个n,让你输出一行与1~n-1 &起来 的值的和最小,如:0 2 1 (0&0+1&2+2&1=0
 

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define mod 1000000007
const int N=5e+5;
int a[N];
int main()
{
    ios_base::sync_with_stdio(0); cin.tie(0);
    int n;
    cin>>n;
    memset(a,-1,sizeof(a));
    for(int i=n-1;i>=0;i--)
    {
        int t=~i,k=0;//此时t是以补码输出的,是负数
     /***********************
        9      1001
       取反    0110  
          &    1111   
         得:   0110    
     */cout<<t;
        while(1<<k<i)k++;
        cout<<(1<<k)-1;
        t=t&((1<<k)-1);cout<<t<<endl;
        if(a[i]==-1)
            a[i]=t,a[t]=i;
    }
    for(int i=0;i<n;i++)
        cout<<a[i]<<" ";
    cout<<endl;
    return 0;
}

 

 

 

 

posted @ 2018-08-10 00:24  better46  阅读(10349)  评论(0编辑  收藏  举报