1.2 空间向量基本定理

\(\mathbf{{\large {\color{Red} {欢迎到学科网下载资料学习}} } }\)【高分突破系列】 高二数学上学期同步知识点剖析精品讲义
\(\mathbf{{\large {{\color{Red} {跟贵哥学数学,so \quad easy!}} }}}\)

选择性必修第一册同步提高,难度3颗星!

知识剖析

空间向量基本定理

如果三个向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)不共面,那么对空间任一向量\(\vec{p}\),存在一个唯一的有序实数组\(x\)\(y\)\(z\),使\(\vec{p}=x \vec{a}+y \vec{b}+z \vec{c}\).
证明
存在性 \(\vec{a}\)\(\vec{b}\)\(\vec{c}\)不共面,过点\(O\)\(\overrightarrow{O A}=\vec{a}\)\(\overrightarrow{O B}=\vec{b}\)\(\overrightarrow{O C}=\vec{c}\)\(\overrightarrow{O P}=\vec{p}\)

过点\(P\)作直线\(PP'\)平行于\(OC\)交平面\(OAB\)于点\(P'\)在平面\(OAB\)内,
过点\(P'\)作直线\(P' A'//OB\)\(P' B'//OA\)
存在三个数\(x\)\(y\)\(z\),使得\(\overrightarrow{OA'}=x \overrightarrow{O A}=x\vec{a}\)\(\overrightarrow{OB'}=y \overrightarrow{O B}=y\vec{b}\)\(\overrightarrow{O C'}=z \overrightarrow{O C}=z\vec{c}\)
\(\therefore \overrightarrow{O P}=\overrightarrow{O A^{\prime}}+\overrightarrow{O B^{\prime}}+\overrightarrow{O C^{\prime}}=x \overrightarrow{O A}+y \overrightarrow{O B}+z \overrightarrow{O C}\)
\(\therefore \vec{p}=x\vec{a}+y\vec{b} +z\vec{c}\)
唯一性设另有一组实数\(x'\)\(y'\)\(z'\),使得\(\vec{p}=x'\vec{a}+y'\vec{b} +z'\vec{c}\)
\(x\vec{a}+y\vec{b} +z\vec{c}=x'\vec{a}+y'\vec{b} +z'\vec{c}\)
\(\therefore (x-x' ) \vec{a}+(y-y' ) \vec{a}+(z-z' ) \vec{c}=\vec{0}\)
\(\because \vec{a}\)\(\vec{b}\)\(\vec{c}\)不共面,\(\therefore x-x'=y-y'=z-z'=0\)
\(x=x'\)\(y=y'\)\(z=z'\).
故实数\(x\)\(y\)\(z\)是唯一的.
 

基底

若三向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)不共面,我们把\((\vec{a}, \vec{b}, \vec{c})\)叫做空间的一个基底, \(\vec{a}\)\(\vec{b}\)\(\vec{c}\)叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底.
特别地,如果空间的一个基底中的三个基向量两两垂直,且长度都为\(1\),那么这个基底叫做单位正交基底,常用\(\{\vec{i},\vec{j},\vec{k}\}\)表示.由 基本定理可知,对空间中的任意向量\(\vec{a}\),均可以分解为三个向量\(x\vec{i}\)\(y\vec{j}\)\(z\vec{k}\),使\(\vec{a}=x\vec{i}+y\vec{j}+z\vec{k}\),像这样,把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.
 

推论

\(O\)\(A\)\(B\)\(C\)是不共面的四点,则对空间任一点\(P\),都存在唯一的三个有序实数\(x\)\(y\)\(z\),使\(\overrightarrow{O P}=x \overrightarrow{O A}+y \overrightarrow{O B}+z \overrightarrow{O C}\).
\(x+y+z=1\),则点\(P\)\(A\)\(B\)\(C\)四点共面.
 

经典例题

【题型一】 空间向量基本定理的理解

【典题1】 \(\{\vec{a},\vec{b},\vec{c}\}\)构成空间的一个基底,则下列向量能构成空间的一个基底的是(  )
  A.\(\vec{b}+\vec{c}\)\(\vec{b}\)\(\vec{b}-\vec{c}\) \(\qquad \qquad \qquad \qquad\) B.\(\vec{a}+\vec{b}\)\(\vec{a}-\vec{b}\)\(\vec{c}\)
  C.\(\vec{a}\)\(\vec{a}+\vec{b}\)\(\vec{a}-\vec{b}\) \(\qquad \qquad \qquad \qquad\) D.\(\vec{a}+\vec{b}\)\(\vec{a}+\vec{b}+\vec{c}\)\(\vec{c}\)
【解析】 对于\(A\),若向量\(\vec{b}+\vec{c}\)\(\vec{b}\)\(\vec{b}-\vec{c}\)共面,
\(\vec{b}+\vec{c}=\lambda (\vec{b}-\vec{c})+\mu\vec{b}=(\lambda +\mu)\vec{b}-\lambda \vec{c}\)
\(\left\{\begin{array}{l} \lambda+\mu=1 \\ -\lambda=1 \end{array}\right.\),解得\(\lambda =-1\)\(\mu=2\)
故向量\(\vec{b}+\vec{c}\)\(\vec{b}\)\(\vec{b}-\vec{c}\)共面,故\(A\)错误,
对于\(B\),若向量\(\vec{a}+\vec{b}\)\(\vec{a}-\vec{b}\)\(\vec{c}\)共面,
\(\vec{a}+\vec{b}=\lambda (\vec{a}-\vec{b})+\mu\vec{c}\)\(\lambda\)\(\mu\)无解,
故向量\(\vec{a}+\vec{b}\)\(\vec{a}-\vec{b}\)\(\vec{c}\)不共面,故\(B\)正确,
对于\(C\),若向量\(\vec{a}\)\(\vec{a}+\vec{b}\)\(\vec{a}-\vec{b}\)共面,
\(\vec{a}+\vec{b}=\lambda \vec{a}+\mu(\vec{a}-\vec{b})=(\lambda +\mu)\vec{a}-\mu\vec{b}\)
\(\left\{\begin{array}{l} \lambda+\mu=1 \\ -\mu=1 \end{array}\right.\),解得\(\lambda =2\)\(\mu=-1\)
故向量\(\vec{a}\)\(\vec{a}+\vec{b}\)\(\vec{a}-\vec{b}\)共面,故\(C\)错误,
对于\(D\),若向量\(\vec{a}+\vec{b}\)\(\vec{a}+\vec{b}+\vec{c}\)\(\vec{c}\)共面,
\(\vec{a}+\vec{b}+\vec{c}=\lambda (\vec{a}+\vec{b})+\mu\vec{c}\),解得\(\lambda =\mu=1\)
故向量\(\vec{a}+\vec{b}\)\(\vec{a}+\vec{b}+\vec{c}\)\(\vec{c}\)共面,故\(D\)错误.
故选:\(B\)
 

【典题2】 已知非零向量\(\vec{a}=3\vec{m}-2\vec{n}-4\vec{p}\)\(\vec{b}=(x+1)\vec{m}+8\vec{n}+2y\vec{p}\),且\(\vec{m}\)\(\vec{n}\)\(\vec{p}\)不共面.若\(\vec{a}//\vec{b}\),则\(x+y=\)\(\underline{\quad \quad}\) .
【解析】 \(\because\vec{m}\)\(\vec{n}\)\(\vec{p}\)不共面,故\(\vec{m}\)\(\vec{n}\)\(\vec{p}\)可看作空间向量的一组基底,
\(\because \vec{a}//\vec{b}\),故存在\(\lambda ≠0\),使得\(\vec{b}=\lambda \vec{a}\)
\((x+1)\vec{m}+8\vec{n}+2y\vec{p}=3\lambda \vec{m}-2\lambda \vec{n}-4\lambda \vec{p}\)
\(\therefore\left\{\begin{array}{l} x+1=3 \lambda \\ 8=-2 \lambda \\ 2 y=-4 \lambda \end{array}\right.\),解得: \(\left\{\begin{array}{l} x=-13 \\ y=8 \end{array}\right.\),则\(x+y=-5\)
 

【典题3】 如图,在三棱锥\(S-ABC\)中,点\(E\)\(F\)分别是\(SA\)\(BC\)的中点,点\(G\)在棱\(EF\)上,且满足\(\dfrac{E G}{G F}=\dfrac{1}{2}\),若\(\overrightarrow{SA}=\vec{a}\)\(\overrightarrow{SB}=\vec{b}\)\(\overrightarrow{SC}=\vec{c}\),则\(\overrightarrow{SG}=\) (  )
image.png
  A.\(\dfrac{1}{3} \vec{a}-\dfrac{1}{2}\vec{b}+\dfrac{1}{6} \vec{c}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{3} \vec{a}+\dfrac{1}{6} \vec{b}+\dfrac{1}{6} \vec{c}\)
  C.\(\dfrac{1}{6} \vec{a}-\dfrac{1}{3} \vec{b}+\dfrac{1}{2}\vec{c}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{3} \vec{a}-\dfrac{1}{6} \vec{b}+\dfrac{1}{2}\vec{c}\)
【解析】 因为\(\overrightarrow{SG}=\overrightarrow{SE}+\overrightarrow{EG}=\dfrac{1}{2}\overrightarrow{SA}+\dfrac{1}{3} \overrightarrow{EF}=\dfrac{1}{2}\overrightarrow{SA}+\dfrac{1}{3}(\overrightarrow{ES}+\overrightarrow{SC}+\overrightarrow{CF})\)\(=\dfrac{1}{2}\overrightarrow{SA}+\dfrac{1}{6} (AS) ⃗+\dfrac{1}{3} \overrightarrow{SC}+\dfrac{1}{6} \overrightarrow{CB}=\dfrac{1}{3} \overrightarrow{SA}+\dfrac{1}{3} \overrightarrow{SC}+\dfrac{1}{6}(\overrightarrow{CS}+\overrightarrow{SB})\)
\(=\dfrac{1}{3} \overrightarrow{SA}+\dfrac{1}{6} \overrightarrow{SB}+\dfrac{1}{6} \overrightarrow{SC}=\dfrac{1}{3} \vec{a}+\dfrac{1}{6} \vec{b}+\dfrac{1}{6} \vec{c}\)
故选:\(B\)
 

巩固练习

1(★) 已知\(O\)\(A\)\(B\)\(C\)为空间四点,且向量\(\overrightarrow{O A}\)\(\overrightarrow{O B}\)\(\overrightarrow{O C}\)不能构成空间的一个基底,则一定有(  )
  A.\(\overrightarrow{O A}\)\(\overrightarrow{O B}\)\(\overrightarrow{O C}\)共线
  B.\(O\)\(A\)\(B\)\(C\)中至少有三点共线
  C.\(\overrightarrow{O A}+ \overrightarrow{O B}\)\(\overrightarrow{O C}\)共线
  D.\(O\)\(A\)\(B\)\(C\)四点共面
 

2(★) (多选题)下面四个结论正确的是(  )
  A.空间向量\(\vec{a}\)\(\vec{b}(\vec{a}≠\vec{0},\vec{b}≠\vec{0})\),若\(\vec{a}⊥\vec{b}\),则\(\vec{a}\cdot \vec{b}=0\)
  B.若对空间中任意一点\(O\),有\(\overrightarrow{O P}=\dfrac{1}{6} \overrightarrow{O A}+\dfrac{1}{3} \overrightarrow{O B}+\dfrac{1}{2} \overrightarrow{O C}\),则\(P\)\(A\)\(B\)\(C\)点共面
  C.已知\(\{\vec{a},\vec{b},\vec{c}\}\)是空间的一组基底,若\(\vec{m}=\vec{a}+\vec{c}\),则\(\{\vec{a},\vec{b},\vec{m}\}\)也是空间的一组基底
  D.任意向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)满足\((\vec{a}\cdot \vec{b})\cdot \vec{c}=\vec{a}\cdot (\vec{b}\cdot \vec{c}) \vec{a}\cdot \vec{b}=0\)
 

3(★★) 如图所示,在四面体\(O-ABC\)中, \(\overrightarrow{O A}=\vec{a}\)\(\overrightarrow{O B}=\vec{b}\)\(\overrightarrow{O C}=\vec{c}\),点\(M\)\(OA\)上,且\(\overrightarrow{OM}=2\overrightarrow{MA}\)\(N\)\(BC\)的中点,则\(\overrightarrow{MN}=\) (  )
image.png
  A.\(\dfrac{1}{2}\vec{a}-\dfrac{2}{3} \vec{b}+\dfrac{1}{2}\vec{c}\) \(\qquad \qquad \qquad \qquad\) B.\(-\dfrac{2}{3} \vec{a}+\dfrac{1}{2}\vec{b}+\dfrac{1}{2}\vec{c}\)
  C.\(\dfrac{1}{2}\vec{a}+\dfrac{1}{2}\vec{b}-\dfrac{2}{3} \vec{c}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{2}{3} \vec{a}+\dfrac{2}{3} \vec{b}-\dfrac{1}{2}\vec{c}\)
 
 

参考答案

  1. 【答案】 \(D\)
    【解析】 由于向量\(\overrightarrow{O A}\)\(\overrightarrow{O B}\)\(\overrightarrow{O C}\)不能构成空间的一个基底知 \(\overrightarrow{O A}\)\(\overrightarrow{O B}\)\(\overrightarrow{O C}\)共面,
    所以\(O\)\(A\)\(B\)\(C\)四点共面,故选:\(D\)

  2. 【答案】 \(ABC\)
    【解析】 对于\(A\):空间向量\(\vec{a}\)\(\vec{b}(\vec{a}≠\vec{0},\vec{b}≠\vec{0})\),若\(\vec{a}⊥\vec{b}\),则 ,故\(A\)正确;
    对于\(B\):若对空间中任意一点\(O\),有 \(\overrightarrow{O P}=\dfrac{1}{6} \overrightarrow{O A}+\dfrac{1}{3} \overrightarrow{O B}+\dfrac{1}{2} \overrightarrow{O C}\)
    由于\(\dfrac{1}{6}+\dfrac{1}{2}+\dfrac{1}{3}=1\),则\(P\)\(A\)\(B\)\(C\)四点共面,故\(B\)正确;
    对于\(C\):已知\(\{\vec{a},\vec{b},\vec{c}\}\)是空间的一组基底,若\(\vec{m}=\vec{a}+\vec{c}\)
    \(\{\vec{a},\vec{b},\vec{a}+\vec{c}\}\)两向量之间不共线,故也是空间的一组基底,故\(C\)正确;
    对于\(D\):任意向量\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)满足\((\vec{a}\cdot \vec{b})\cdot \vec{c}=\vec{a}\cdot (\vec{b}\cdot \vec{c})\),由于\(\vec{a}\cdot \vec{b}\)是一个数值,\(\vec{b}\cdot \vec{c}\)也是一个数值,则说明\(\vec{c}\)\(\vec{a}\)存在倍数关系,由于\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)是任意向量,不一定存在倍数关系,故\(D\)错误.
    故选:\(ABC\)

  3. 【答案】 \(B\)
    【解析】 连接\(ON\)
    \(\because N\)\(BC\)的中点,\(\therefore \overrightarrow{ON}=\dfrac{1}{2} \overrightarrow{O B}+\dfrac{1}{2} \overrightarrow{O C}\)
    \(\because \overrightarrow{OM}=2\overrightarrow{MA}\)\(\therefore \overrightarrow{OM}=\dfrac{2}{3} \overrightarrow{O A}\)
    \(\therefore \overrightarrow{MN}=\overrightarrow{ON}-\overrightarrow{OM}=\dfrac{1}{2} \overrightarrow{O B}+\dfrac{1}{2} \overrightarrow{O C}-\dfrac{2}{3} \overrightarrow{O A}=-\dfrac{2}{3} \vec{a}+\dfrac{1}{2}\vec{b}+\dfrac{1}{2}\vec{c}\)
    故选:\(B\)
    image.png
     

【题型二】空间向量基本定理的应用

【典题1】 如图,平行六面体\(ABCD-A_1 B_1 C_1 D_1\)的底面\(ABCD\)是菱形,且\(∠C_1 CB=∠C_1 CD=∠BCD=60^{\circ}\)\(CD=CC_1\),求证\(CA_1⊥\)平面\(C_1 BD\).
image.png
【证明】 如图,设\(CD=CB=CC_1=a\)
\(\overrightarrow{CD}=\vec{a}\)\(\overrightarrow{CB}=\vec{b}\)\(\overrightarrow{CC_1 }=\vec{c}\)
\(\overrightarrow{BD }=\vec{a}-\vec{b}, \overrightarrow{CA_1 }=\overrightarrow{CD}+\overrightarrow{CB}+\overrightarrow{CC_1 }=\vec{a}+\vec{b}+\vec{c}\)
\(\therefore \overrightarrow{CA_1 }\cdot \overrightarrow{BD }=(\vec{a}+\vec{b}+\vec{c} )(\vec{a}-\vec{b} )\)\(=\vec{a}\cdot \vec{a}-\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}-\vec{b}\cdot \vec{b}+\vec{c}\cdot \vec{a}-\vec{c}\cdot \vec{b}\)
\(\vec{a}\cdot \vec{a}=\vec{b}\cdot \vec{b}=\vec{c}\cdot \vec{c}=a^2,\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{c}=\vec{a}\cdot \vec{c}=\dfrac{1}{2}a^2\)
\(\therefore \overrightarrow{CA_1 }\cdot \overrightarrow{BD }=0\)\(\therefore \overrightarrow{CA_1 }⊥\overrightarrow{BD }\)\(\therefore CA_1⊥BD\)
同理可证\(CA_1⊥C_1 B\)
\(C_1 B∩BD=B\)\(C_1 B\)\(BD⊂\)平面\(C_1 BD\)
\(\therefore CA_1⊥\)平面\(C_1 BD\).
 

【典题2】 如图,在三棱锥\(P-ABC\)中,点\(G\)\(△ABC\)的重心,点\(M\)\(PG\)上,且\(PM=3MG\),过点\(M\)任意作一个平面分别交线段\(PA\)\(PB\)\(PC\)于点\(D\)\(E\)\(F\),若\(\overrightarrow{PD}=m\overrightarrow{PA}\)\(\overrightarrow{PE}=n\overrightarrow{PB}\)\(\overrightarrow{PF}=t\overrightarrow{PC}\),求证: \(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{t}\)为定值,并求出该定值.
image.png
【证明】 如图示:
连接\(AG\)并延长交\(BC\)于点\(H\)
由题意可令\(\{\overrightarrow{PA},\overrightarrow{PB},\overrightarrow{PC}\}\)为空间的一个基底,
\(\overrightarrow{PM}=\dfrac{3}{4}\overrightarrow{PG}=\dfrac{3}{4}(\overrightarrow{PA}+\overrightarrow{AG})=\dfrac{3}{4} \overrightarrow{PA}+\dfrac{3}{4}\cdot \dfrac{2}{3} \overrightarrow{AH}\)
\(=\dfrac{3}{4} \overrightarrow{PA}+\dfrac{1}{2}\cdot \dfrac{1}{2}(\overrightarrow{AB }+\overrightarrow{AC})\)\(=\dfrac{3}{4} \overrightarrow{PA}+\dfrac{1}{4}(\overrightarrow{PB}-\overrightarrow{PA})+\dfrac{1}{4}(\overrightarrow{PC}-\overrightarrow{PA})\)\(=\dfrac{1}{4} \overrightarrow{PA}+\dfrac{1}{4} \overrightarrow{PB}+\dfrac{1}{4} \overrightarrow{PC}\)
连接\(DM\),因为点\(D\)\(E\)\(F\)\(M\)共面,
故存在实数\(\lambda\)\(\mu\),使得\(\overrightarrow{DM}=\lambda \overrightarrow{DE}+\mu\overrightarrow{DF }\)
\(\overrightarrow{PM}-\overrightarrow{PD}=\lambda (\overrightarrow{PE}-\overrightarrow{PD})+\mu(\overrightarrow{PF}-\overrightarrow{PD})\)
\(\overrightarrow{P M}=(1-\lambda-\mu) \overrightarrow{P D}+\lambda \overrightarrow{P E}+\mu \overrightarrow{P F}\)\(=(1-\lambda-\mu) m \overrightarrow{P A}+\lambda n \overrightarrow{P B}+\mu t \overrightarrow{P C}\)
由空间向量基本定理知\(\dfrac{1}{4}=(1-\lambda -\mu)m\)\(\dfrac{1}{4}=\lambda n\)\(\dfrac{1}{4}=\mu t\)
\(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{t}=4(1-\lambda-\mu)+4 \lambda+4 \mu=4\),为定值.
image.png
 

巩固练习

1(★★) 如图,三棱柱\(ABC-A_1 B_1 C_1\)的所有棱长都相等,\(∠A_1 AB=∠A_1 AC=60^{\circ}\),点\(M\)\(△ABC\)的重心,\(AM\)的延长线交\(BC\)于点\(N\),连接\(A_1 M\).设\(\overrightarrow{AB }=\vec{a}\)\(\overrightarrow{AC}=\vec{b}\)\(\overrightarrow{A_1 A}=\vec{c}\)
  (1)用\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)表示\(\overrightarrow{A_1 M}\)\(\qquad \qquad\) (2)证明:\(A_1 M⊥AB\)
image.png
 
 
 

2(★★) 如图,在棱长为\(1\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中, \(E\)\(F\)分别为\(DD_1\)\(BD\) 的中点,点\(G\)\(CD\)上,且\(CG=\dfrac{1}{4} CD\).
  (1) 求证: \(EF⊥B_1 C\)\(\qquad \qquad\) (2) 求\(EF\)\(C_1 G\) 所成角的余弦值.
image.png
 
 
 

3(★★★) 如图,在底面\(ABCD\)为菱形的平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)\(N\)分别在棱\(AA_1\)\(CC_1\)上,且\(A_1 M=\dfrac{1}{3} AA_1\)\(CN=\dfrac{1}{3} CC_1\),且\(∠A_1 AD=∠A_1 AB=∠DAB=60^{\circ}\)
  (1)用向量\(\overrightarrow{AA_1 }\)\(\overrightarrow{AD }\)\(\overrightarrow{AB }\)表示向量\(\overrightarrow{MN}\)
  (2)求证:\(D\)\(M\)\(B_1\)\(N\)共面;
  (3)当 \(\dfrac{A A_1}{A B}\)为何值时,\(AC_1⊥A_1 B\)
image.png
 
 
 

4(★★★) 已知四面体中三组相对棱的中点间的距离都相等, 求证: 这个四面体相对的棱丙两垂直.
已知:如图,四面体\(ABCD\)\(E\)\(F\)\(G\)\(H\)\(K\)\(M\)分别为棱\(AB\)\(BC\)\(CD\)\(DA\)\(BD\)\(AC\)的中点,且\(|EG|=|FH|=|KM|\).
image.png
求证 \(AB⊥CD\)\(AC⊥BD\)\(AD⊥BC\).
 
 
 

5(★★★) 已知正三棱锥\(P-ABC\)的侧棱长为\(2\),过其底面中心\(O\)作动平面\(α\)交线段\(PC\)于点\(S\),分别交\(PA\)\(PB\)的延长线于点\(M\)\(N\),求\(\dfrac{1}{P S}+\dfrac{1}{P M}+\dfrac{1}{P N}\)的值.
image.png
 
 
 

参考答案

  1. 【答案】 (1) \(\overrightarrow{A_1 M}=\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\vec{c}\)(2)略
    【解析】 (1)因为\(△ABC\)为正三角形,点\(M\)\(△ABC\)的重心,所以\(N\)\(BC\)的中点,
    所以 \(\overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A C}\)\(\overrightarrow{A M}=\dfrac{2}{3} \overrightarrow{A N}\)
    所以 \(\overrightarrow{A_1 M}=\overrightarrow{A_1 A}+\overrightarrow{A M}=-\overrightarrow{A A_1}+\dfrac{2}{3} \overrightarrow{A N}\)
    \(=-\overrightarrow{A A}_1+\dfrac{1}{3} \overrightarrow{A B}+\dfrac{1}{3} \overrightarrow{A C}=\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\vec{c}\)
    (2)设三棱柱的棱长为\(m\)
    \(\overrightarrow{A_1 M} \cdot \overrightarrow{A B}=\left(\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\vec{c}\right) \cdot \vec{a}=\dfrac{1}{3} \vec{a}^2+\dfrac{1}{3} \vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{a}\)\(=\dfrac{1}{3} m^2+\dfrac{1}{3} m^2 \times \dfrac{1}{2}-m^2 \times \dfrac{1}{2}=0\)
    所以\(A_1 M⊥AB\)

  2. 【答案】 (1) 略 (2) \(\dfrac{\sqrt{51}}{17}\)
    【解析】 (1)证明 设\(\overrightarrow{DA}=\vec{a}\)\(\overrightarrow{DC}=\vec{b}\)\(\overrightarrow{DD_1 }=\vec{c}\)
    \(\overrightarrow{EF}=\overrightarrow{DF }-\overrightarrow{DE}=\dfrac{1}{2}\overrightarrow{DB}-\dfrac{1}{2}\overrightarrow{DD_1 }=\dfrac{1}{2}(\overrightarrow{DA}+\overrightarrow{DC})-\dfrac{1}{2}\overrightarrow{DD_1 }\)\(=\dfrac{1}{2}(\vec{a}+\vec{b})-\dfrac{1}{2}\vec{c}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c})\)
    \(\overrightarrow{B_1 C}=\overrightarrow{A_1 D}=-\overrightarrow{D A_1}=-\left(\overrightarrow{D A}+\overrightarrow{D D}_1\right)=-(\vec{a}+\vec{c})\)
    \(\because \overrightarrow{EF}\cdot \overrightarrow{B_1 C}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c} )\cdot [-(\vec{a}+\vec{c} )]\)
    \(=-\dfrac{1}{2}(\vec{a}^2+\vec{a}\cdot \vec{c}+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{c}-\vec{a}\cdot \vec{c}-\vec{c}^2 )\)
    \(=-\dfrac{1}{2}(1+0+0+0-0-1)=0\)
    \(\therefore \overrightarrow{EF}⊥\overrightarrow{B_1 C}\)\(\therefore EF⊥B_1 C\).
    (2)解 由(1)知\(\overrightarrow{EF}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c})\)
    \(\overrightarrow{GC}_1=\overrightarrow{GC}+\overrightarrow{CC_1 }=\dfrac{1}{4} \overrightarrow{DC}+\overrightarrow{CC_1 }=\dfrac{1}{4} \vec{b}+\vec{c}\)
    \(|\overrightarrow{E F}|=\dfrac{\sqrt{3}}{2}\)\(\left|\overrightarrow{G C_1}\right|=\dfrac{\sqrt{17}}{4}\)
    \(\overrightarrow{E F} \cdot \overrightarrow{G C_1}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c}) \cdot\left(\dfrac{1}{4} \vec{b}+\vec{c}\right)\)
    \(=\dfrac{1}{2}\left(\dfrac{1}{4} \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\dfrac{1}{4} \vec{b}^2+\vec{b} \cdot \vec{c}-\dfrac{1}{4} \vec{b} \cdot \vec{c}-\vec{c}^2\right)\)\(=\dfrac{1}{2}\left(0+0+\dfrac{1}{4}+0-0-1\right)=\dfrac{1}{2} \times\left(-\dfrac{3}{4}\right)=-\dfrac{3}{8}\)
    \(\cos \left\langle\overrightarrow{E F}, \overrightarrow{G C_1}\right\rangle=\dfrac{\overrightarrow{E F} \cdot \overrightarrow{G C_1}}{|\overrightarrow{E F} \|| \overrightarrow{G C_1} \mid}=\dfrac{-\dfrac{3}{8}}{\dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{17}}{4}}=-\dfrac{\sqrt{51}}{17}\)
    \(\therefore EF\)\(C_1 G\)所成角的余弦值为 \(\dfrac{\sqrt{51}}{17}\).

  3. 【答案】 (1)\(\overrightarrow{MN}=\overrightarrow{AB }+\overrightarrow{AD }-\dfrac{1}{3} \overrightarrow{AA_1 }\) (2)略 (3)\(1\)
    【解析】 (1)\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB }+\overrightarrow{BC }+\overrightarrow{CN }=-\dfrac{2}{3} \overrightarrow{AA_1 }+\overrightarrow{AB }+\overrightarrow{BC }+\dfrac{1}{3} \overrightarrow{AA_1 }\)\(=\overrightarrow{AB }+\overrightarrow{AD }-\dfrac{1}{3} \overrightarrow{AA_1 }\)
    证明:(2) \(\because \overrightarrow{D M}=\overrightarrow{A M}-\overrightarrow{A D}=\dfrac{2}{3} \overrightarrow{A A_1}-\overrightarrow{A D}\)\(\overrightarrow{N B_1}=\overrightarrow{C_1 B_1}-\overrightarrow{C_1 N}=\dfrac{2}{3} \overrightarrow{A A_1}-\overrightarrow{A D}\)
    \(\therefore \overrightarrow{D M}=\overrightarrow{N B_1}\)\(\therefore D\)\(M\)\(B_1\)\(N\)共面.
    解:(3)当 \(\dfrac{A A_1}{A B}=1\)\(AC_1⊥A_1 B\)
    证明:设\(\overrightarrow{AA_1 }=\vec{c}\)\(\overrightarrow{AD }=\vec{b}\)\(\overrightarrow{AB }=\vec{a}\)
    \(\because\)底面\(ABCD\)为菱形,则当\(\dfrac{A A_1}{A B}=1\)时,\(|\vec{a}|=|\vec{b}|=|\vec{c}|\)
    \(\because \overrightarrow{AC_1 }=\overrightarrow{AB }+\overrightarrow{BC }+\overrightarrow{CC_1 }=\vec{a}+\vec{b}+\vec{c}\)\(\overrightarrow{A_1 B}=\overrightarrow{A B}-\overrightarrow{A A_1}=\vec{a}-\vec{c}\)
    \(\angle A_1 A D=\angle A_1 A B=\angle D A B=60^{\circ}\)\(\therefore \overrightarrow{A C_1} \cdot \overrightarrow{A_1 B}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}-\vec{c})=\vec{a}^2+\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{c}-\vec{c}^2=0\)
    \(\therefore AC_1⊥A_1 B\)

  4. 证明 \(\overrightarrow{AB }=\vec{a}\)\(\overrightarrow{AC}=\vec{b}\)\(\overrightarrow{AD }=\vec{c}\)
    \(\overrightarrow{EG}=\overrightarrow{AG}-\overrightarrow{AE}=\dfrac{1}{2}(\overrightarrow{AC}+\overrightarrow{AD })-\dfrac{1}{2}\overrightarrow{AB }\)\(=-\dfrac{1}{2}\vec{a}+\dfrac{1}{2}\vec{b}+\dfrac{1}{2}\vec{c}=\dfrac{1}{2}(-\vec{a}+\vec{b}+\vec{c})\)
    \(\overrightarrow{FH}=\overrightarrow{AH}-\overrightarrow{AF}=\dfrac{1}{2}\overrightarrow{AD }-\dfrac{1}{2}(\overrightarrow{AB }+\overrightarrow{AC})\)\(=\dfrac{1}{2}\vec{c}-\dfrac{1}{2}(\vec{a}+\vec{b})=\dfrac{1}{2}(-\vec{a}-\vec{b}+\vec{c})\)
    \(\overrightarrow{KM}=\overrightarrow{AM}-\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{2}(\overrightarrow{AB }+\overrightarrow{AD })\)\(=\dfrac{1}{2}\vec{b}-\dfrac{1}{2}(\vec{a}+\vec{c})=\dfrac{1}{2}(-\vec{a}+\vec{b}-\vec{c})\)
    \(\because |\overrightarrow{EG}|=|\overrightarrow{FH}|\)\(\therefore |\dfrac{1}{2}(-\vec{a}+\vec{b}+\vec{c})|=|\dfrac{1}{2}(-\vec{a}-\vec{b}+\vec{c})|\)
    \(\therefore (-\vec{a}+\vec{b}+\vec{c})^2=(-\vec{a}-\vec{b}+\vec{c})^2\)
    \(\therefore \vec{a}^2+\vec{b}^2+\vec{c}^2-2\vec{a}\cdot \vec{b}-2\vec{a}\cdot \vec{c}+2\vec{b}\cdot \vec{c}\)\(=\vec{a}^2+\vec{b}^2+\vec{c}^2+2\vec{a}\cdot \vec{b}-2\vec{a}\cdot \vec{c}-2\vec{b}\cdot \vec{c}\)
    \(\therefore 4\vec{a}\cdot \vec{b}=4\vec{b}\cdot \vec{c},\therefore \vec{a}\cdot \vec{b}-\vec{b}\cdot \vec{c}=0\)\(\therefore \vec{b}\cdot (\vec{a}-\vec{c})=0\).
    \(\vec{b}=\overrightarrow{AC}\)\(\vec{a}-\vec{c}=\overrightarrow{DB}\)\(\therefore \overrightarrow{AC}\cdot \overrightarrow{DB}=0\)
    \(\therefore \overrightarrow{AC}⊥\overrightarrow{DB}\)\(\therefore AC⊥DB\),同理可证\(AD⊥BC\)\(AB⊥CD\)
    \(\therefore\)这个四面体相对的棱丙两垂直.

  5. 【答案】 \(\dfrac{3}{2}\)
    【解析】 \(\because △ABC\)是等边三角形,\(\therefore O\)\(△ABC\)的重心,
    延长\(AO\)\(BC\)于点\(D\),则\(D\)\(BC\)的中点,\(\therefore \overrightarrow{AD }=\dfrac{1}{2}(\overrightarrow{AB }+\overrightarrow{AC})\)
    \(\overrightarrow{PO}=\overrightarrow{PA}+\overrightarrow{AO}=\overrightarrow{PA}+\dfrac{2}{3} \overrightarrow{AD }=\overrightarrow{AP}+\dfrac{1}{3} (\overrightarrow{AB }+\overrightarrow{AC} )\)\(=\overrightarrow{PA}+\dfrac{1}{3} (\overrightarrow{PB}-\overrightarrow{PA}+\overrightarrow{PC}-\overrightarrow{PA} )\)
    \(=\dfrac{1}{3} \overrightarrow{PA}+\dfrac{1}{3} \overrightarrow{PB}+\dfrac{1}{3} \overrightarrow{PC}\)
    \(\overrightarrow{PA}=x\overrightarrow{PM}\)\(\overrightarrow{PB}=y\overrightarrow{PN}\)\(\overrightarrow{PC}=z\overrightarrow{PS}\)
    \(\overrightarrow{PO}=\dfrac{1}{3} x\overrightarrow{PM}+\dfrac{1}{3} y\overrightarrow{PN}+\dfrac{1}{3} z\overrightarrow{PS}\)
    \(\because O\)\(M\)\(N\)\(S\)四点共面,\(\therefore \dfrac{1}{3} x+\dfrac{1}{3} y+\dfrac{1}{3} z=1\),即\(x+y+z=3\)
    \(x=\dfrac{P A}{P M}=\dfrac{2}{P M}\)\(y=\dfrac{P B}{P N}=\dfrac{2}{P N}\)\(z=\dfrac{P C}{P S}=\dfrac{2}{P S}\)
    \(\therefore 2\left(\dfrac{1}{P S}+\dfrac{1}{P M}+\dfrac{1}{P N}\right)=3\)
    \(\therefore \dfrac{1}{P S}+\dfrac{1}{P M}+\dfrac{1}{P N}=\dfrac{3}{2}\)

posted @ 2023-05-11 16:09  贵哥讲数学  阅读(259)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏