1.1.2 空间向量数量积的运算
\(\mathbf{{\large {\color{Red} {欢迎到学科网下载资料学习}} } }\)【高分突破系列】 高二数学上学期同步知识点剖析精品讲义!
\(\mathbf{{\large {{\color{Red} {跟贵哥学数学,so \quad easy!}} }}}\)
选择性必修第一册同步提高,难度3颗星!
知识剖析
空间向量的夹角及其表示
空间向量的夹角及其表示:已知两非零向量 \(\vec{a}\) ,\(\vec{b}\) ,在空间任取一点\(O\),作 \(\overrightarrow{O A}=\vec{a}\),\(\overrightarrow{O B}=\vec{b}\),
则\(∠AOB\)叫做向量\(\vec{a}\)与\(\vec{b}\) 的夹角,记作\(\langle\vec{a}, \vec{b}\rangle\);且规定\(0 \leq<\vec{a}, \vec{b}><\pi\);
若\(<\vec{a}, \vec{b}>=\dfrac{\pi}{2}\),则称\(\vec{a}\)与\(\vec{b}\) 互相垂直,记作\(\vec{a} \perp \vec{b}\).
向量的模
设 \(\overrightarrow{O A}=\vec{a}\),则有向线段\(\overrightarrow{O A}\) 的长度叫做向量\(\vec{a}\)的长度或模,记作:\(|\vec{a}|\).
向量的数量积
已知向量\(\vec{a}\),\(\vec{b}\) ,则\(|\vec{a}| \vec{b} \mid \cos <\vec{a}, \vec{b}>\)叫做\(\vec{a}\) ,\(\vec{b}\) 的数量积,记作\(\vec{a} \cdot \vec{b}\),
即\(\vec{a} \cdot \vec{b}=|\vec{a}| \vec{b} \mid \cos \langle\vec{a}, \vec{b}\rangle\).
空间向量数量积的性质
① \(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0\) ②\(|\vec{a}|^{2}=\vec{a}^{2}\).
空间向量数量积运算律
① \((\lambda \vec{a}) \cdot \vec{b}=\lambda(\vec{a} \cdot \vec{b})=\vec{a}(\lambda \cdot \vec{b})\)
② \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\) (交换律)
③ \(\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}\)(分配律)
④不满足乘法结合律:\((\vec{a} \cdot \vec{b}) \cdot \vec{c} \neq \vec{a} \cdot(\vec{b} \cdot \vec{c})\)
经典例题
【题型一】数量积的运算
【典题1】 如图,在三棱锥\(A-BCD\)中,\(AB=AC=BD=CD=3\),\(AD=BC=2\),\(M\),\(N\)分别是\(AD\)、\(BC\)的中点,则\(\overrightarrow{A N}\cdot \overrightarrow{CM}=\)\(\underline{\quad \quad}\).
【解析】 在三棱锥\(A-BCD\)中,连结\(ND\),取\(ND\)的中点为\(E\),连结\(ME\),
则\(ME//AN\),异面直线\(AN\),\(CM\)所成的角就是\(∠EMC\).
\(\because AB=AC=BD=CD=3\),\(AD=BC=2\),\(M\),\(N\)分别是\(AD\)、\(BC\)的中点,
\(\therefore AN=2\sqrt{2}\),\(ME=EN=\sqrt{2}\),\(MC=2\sqrt{2}\),
又\(\because EN⊥NC\), \(\therefore E C=\sqrt{N C^2+N E^2}=\sqrt{3}\).
\(\cos \angle E M C=\dfrac{M C^2+M E^2-E C^2}{2 M C \cdot M E}=\dfrac{2+8-3}{2 \times \sqrt{2} \times 2 \sqrt{2}}=\dfrac{7}{8}\).
由图可知,\(\overrightarrow{A N}\)与\(\overrightarrow{CM}\)所成角为钝角,则\(\cos ⟨\overrightarrow{A N},\overrightarrow{CM}⟩=-\dfrac{7}{8}\).
\(\therefore \overrightarrow{A N}\cdot \overrightarrow{CM}=|\overrightarrow{A N}|\cdot |\overrightarrow{CM}|\cos <\overrightarrow{A N},\overrightarrow{CM}>=2\sqrt{2}×2\sqrt{2}×(-\dfrac{7}{8})=-7\).
故答案为:\(-7\).
【典题2】 已知四面体\(ABCD\),所有棱长均为\(2\),点\(E\),\(F\)分别为棱\(AB\),\(CD\)的中点,则\(\overrightarrow{AF}\cdot \overrightarrow{CE}=\)( )
A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(-1\) \(\qquad \qquad \qquad \qquad\) D.\(-2\)
【解析】 \(\because\)四面体\(ABCD\),所有棱长均为\(2\),\(\therefore\)四面体\(ABCD\)为正四面体,
\(\because E\),\(F\)分别为棱\(AB\),\(CD\)的中点,
\(\therefore \overrightarrow{AF}\cdot \overrightarrow{CE}=\dfrac{1}{2}(\overrightarrow{AC}+\overrightarrow{AD})\cdot (\overrightarrow{AE}-\overrightarrow{AC})\)
\(=\dfrac{1}{2} \overrightarrow{AC}\cdot \overrightarrow{AE}-\dfrac{1}{2} \overrightarrow{AC}^2+\dfrac{1}{2} \overrightarrow{AD}\cdot \overrightarrow{AE}-\dfrac{1}{2} \overrightarrow{AD}\cdot \overrightarrow{AC}\)
\(=\dfrac{1}{2}×2×1×\dfrac{1}{2}-\dfrac{1}{2}×4+\dfrac{1}{2}×2×1×\dfrac{1}{2}-\dfrac{1}{2}×2×2×\dfrac{1}{2}=-2\).
故选:\(D\).
【点拨】 求空间向量数量积,第一个念头是利用定义\(\vec{a}\cdot \vec{b}= |\vec{a}| \vec{b}|\cos <\vec{a},\vec{b}>\) ;但若两个向量的模或其夹角其一交难求解,可把所求向量的数量积转化为其他具有较多性质向量的数量积,比如本题把\(\overrightarrow{AF}\cdot \overrightarrow{CE}\)转化为\(\dfrac{1}{2}(\overrightarrow{AC}+\overrightarrow{AD})\cdot (\overrightarrow{AE}-\overrightarrow{AC})\),因为\(\overrightarrow{AC}\),\(\overrightarrow{AD}\),\(\overrightarrow{AE}\),\(\overrightarrow{AC}\)四个向量之间数量积易求.
巩固练习
1 (★) 平面上有四个互异点\(A\)、\(B\)、\(C\)、\(D\),已知\((\overrightarrow{DB}+\overrightarrow{DC}+2\overrightarrow{AD})\cdot (\overrightarrow{AB}-\overrightarrow{AC})=0\),则\(△ABC\)的形状是( )
A.直角三角形 \(\qquad \qquad \qquad\) B.等腰直角三角形 \(\qquad \qquad \qquad\) C.等腰三角形 \(\qquad \qquad \qquad\) D.无法确定
2 (★) 在空间四边形\(ABCD\)中,\(AB=BC=CD=DA=1\),\(\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{AC}\cdot \overrightarrow{DB}+\overrightarrow{AD}\cdot \overrightarrow{BC}=\) ( )
A.\(-1\) \(\qquad \qquad \qquad \qquad\) B.\(0\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.不确定
3 (★★) 如图,在三棱锥\(P-ABC\)中,\(AP\),\(AB\),\(AC\)两两垂直,\(AP=2\),\(AB=AC=1\),\(M\)为\(PC\)的中点,则\(\overrightarrow{AC}\cdot \overrightarrow{BM}\)的值为 \(\underline{\quad \quad}\) .
4 (★★) 在棱长为\(1\)的正四面体\(ABCD\)中,点\(M\)满足\(\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}+(1-x-y)\overrightarrow{AD}\),点\(N\)满足\(\overrightarrow{DN}=\lambda\overrightarrow{DA}-(\lambda-1)\overrightarrow{DB}\),当\(AM\)、\(DN\)最短时,\(\overrightarrow{AM}\cdot \overrightarrow{MN}=\) \(\underline{\quad \quad}\).
5 (★★★★) 已知三棱锥\(P-ABC\)的顶点\(P\)在平面\(ABC\)内的射影为点\(H\),侧棱\(PA=PB=PC\),点\(O\)为三棱锥\(P-ABC\)的外接球\(O\)的球心,\(AB=8\),\(AC=6\),已知 \(\overrightarrow{A O}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\),且\(\lambda+\mu =1\),则球\(O\)的表面积为\(\underline{\quad \quad}\) .
参考答案
-
【答案】 \(C\)
【解析】 \(\because ((\overrightarrow{DB}+\overrightarrow{DC}+2\overrightarrow{AD})\cdot (\overrightarrow{AB}-\overrightarrow{AC})=0\),
\(\therefore (\overrightarrow{AB}+\overrightarrow{AC})\cdot (\overrightarrow{AB}-\overrightarrow{AC})=0\),可得\(\overrightarrow{A B}^2=\overrightarrow{A C}^2\).可得\(AB=AC\).
则\(△ABC\)的形状是等腰三角形.故选:\(C\). -
【答案】 \(B\)
【解析】 根据题意,\(\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{AC}\cdot \overrightarrow{DB}+\overrightarrow{AD}\cdot \overrightarrow{BC}\)\(=\overrightarrow{AB}\cdot (\overrightarrow{AD}-\overrightarrow{AC})+\overrightarrow{AC}\cdot (\overrightarrow{AB}-\overrightarrow{AD})+\overrightarrow{AD}\cdot (\overrightarrow{AC}-\overrightarrow{AB})\)\(=\overrightarrow{AB}\cdot \overrightarrow{AD}-\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{AC}\cdot \overrightarrow{AB}-\overrightarrow{AC}\cdot \overrightarrow{AD}+\overrightarrow{AD}\cdot \overrightarrow{AC}-\overrightarrow{AD}\cdot \overrightarrow{AB}=0\),
故选:\(B\). -
【答案】 \(\dfrac{1}{2}\)
【解析】 由题意得\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}=\overrightarrow{BA}+\dfrac{1}{2}(\overrightarrow{AP}+\overrightarrow{AC})\)\(=\overrightarrow{BA}+\dfrac{1}{2} \overrightarrow{AP}+\dfrac{1}{2} \overrightarrow{AC}\),
故\(\overrightarrow{AC}\cdot \overrightarrow{BM}=\overrightarrow{AC}\cdot (\overrightarrow{BA}+\dfrac{1}{2} \overrightarrow{AP}+\dfrac{1}{2} \overrightarrow{AC} )\)\(=\overrightarrow{AC}\cdot \overrightarrow{BA}+\overrightarrow{AC}\cdot \dfrac{1}{2} \overrightarrow{AP}+\overrightarrow{AC}\cdot \dfrac{1}{2} \overrightarrow{AC}=\dfrac{1}{2}|\overrightarrow{AC}|^2=\dfrac{1}{2}\). -
【答案】 \(-\dfrac{1}{3}\)
【解析】 \(\because \overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}+(1-x-y)\overrightarrow{AD}\),\(\overrightarrow{DN}=\lambda\overrightarrow{DA}-(\lambda-1)\overrightarrow{DB}\),
\(\therefore M\in\)平面\(BCD\),\(N\in\)直线\(AB\),
当\(AM\)、\(DN\)最短时,\(AM⊥\)平面\(BCD\),\(DN⊥AB\),
\(\therefore M\)为\(△BCD\)的中心,\(N\)为线段\(AB\)的中点,
如图:
又正四面体的棱长为\(1\),\(\therefore AM=\dfrac{\sqrt{6}}{3}\),
\(\because AM⊥\)平面\(BCD\),
\(\therefore \overrightarrow{A M} \cdot \overrightarrow{A B}=|\overrightarrow{A M}| \cdot|\overrightarrow{A B}| \cos \angle A M B=|\overrightarrow{A M}|^2\),
\(\therefore \overrightarrow{AM}\cdot \overrightarrow{MN}=\overrightarrow{AM}\cdot (\overrightarrow{A N}-\overrightarrow{AM} )=\overrightarrow{AM}\cdot (\dfrac{1}{2} \overrightarrow{AB}-\overrightarrow{AM} )\)
\(=\dfrac{1}{2} \overrightarrow{AM}\cdot \overrightarrow{AB}-\overrightarrow{AM}^2=-\dfrac{1}{2}|\overrightarrow{AM}|^2=-\dfrac{1}{2}×\dfrac{6}{9}=-\dfrac{1}{3}\). -
【答案】 \(150\pi\)
【解析】 由于三棱锥\(P-ABC\)的顶点\(P\)在平面\(ABC\)内的射影为点\(H\),\(O\)为球心,\(OA=OB=OC=OP=R\),
即有\(PH⊥AB\),\(PH⊥AC\),
\(\therefore \overrightarrow{HP}\cdot \overrightarrow{AB}=\overrightarrow{HP}\cdot \overrightarrow{AC}=0\),
由\(\overrightarrow{A O}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\),①
则有 \(\overrightarrow{A O} \cdot \overrightarrow{A B}=\lambda \overrightarrow{A B} \cdot \overrightarrow{A B}+\mu \overrightarrow{A C} \cdot \overrightarrow{A B}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P} \cdot \overrightarrow{A B}\),
即有\(32=64\lambda+\mu \overrightarrow{AC}\cdot \overrightarrow{AB}\),②
同理对①两边取点乘\(\overrightarrow{AC}\),可得\(18=36\mu +\lambda\overrightarrow{AB}\cdot \overrightarrow{AC}\),③
又\(\mu +\lambda=1\)④
由②③④解得,\(\lambda=\dfrac{1}{2}\),\(\mu =\dfrac{1}{2}\),\(\overrightarrow{AB}\cdot \overrightarrow{AC}=0\),
即有 \(\overrightarrow{A O}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\).
即有 \(\overrightarrow{A O} \cdot \overrightarrow{A H}=\dfrac{1}{2} \overrightarrow{A B} \cdot \overrightarrow{A H}+\dfrac{1}{2} \overrightarrow{A C} \cdot \overrightarrow{A H}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P} \cdot \overrightarrow{A H}\),
即为\(AH^2=\dfrac{1}{2}×32+\dfrac{1}{2}×18=25\),
又 \(\overrightarrow{A O}^2=\left(\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\right)^2\),
即 \(R^2=\dfrac{1}{4} \times 64+\dfrac{1}{4} \times 36+\left(\dfrac{1}{1+\sqrt{3}}\right)^2 H P^2+2 \times \dfrac{1}{4} \times \overrightarrow{A B} \cdot \overrightarrow{A C}\)\(=25+\left(\dfrac{1}{1+\sqrt{3}}\right)^2 H P^2\),⑤
又在直角三角形\(AOH\)中,\(R^2=(HP-R)^2+AH^2\),
即有\((HP-R)^2=R^2-25\)⑥
由⑤⑥解得\(R^2=\dfrac{75}{2}\),
则有球\(O\)的表面积\(S=4\pi R^2=150\pi\) .
【题型二】数量积的应用
【典题1】 如图,\(60^{\circ}\)的二面角的棱上有\(A\)、\(B\)两点,直线\(AC\)、\(BD\)分别在这个二面角的两个半平面内,且都垂直于\(AB\).已知\(AB=2\),\(AC=3\),\(BD=4\),求\(CD\)的长.
【解析】
方法一 如图过点\(A\)作\(AE//BD\),过\(D\)作\(DE//AB\),
则易得\(∠CAE=60^{\circ}\),\(AE=4\),\(ED=2\),
在\(∆CAE\)中,\(C E^{2}=A C^{2}+A E^{2}-2 A C \cdot A E \cdot \cos \angle C A E=9+16-12=13\)
在\(Rt∆CED\)中,\(C D^{2}=C E^{2}+E D^{2}=13+4=17 \Rightarrow C D=\sqrt{17}\).
方法二 如图,\(\overrightarrow{C D}=\overrightarrow{C A}+\overrightarrow{A B}+\overrightarrow{B D}\),
\(\overrightarrow{C D}^{2}=(\overrightarrow{C A}+\overrightarrow{A B}+\overrightarrow{B D})^{2}\)
\(=\overrightarrow{C A}^{2}+\overrightarrow{A B}^{2}+\overrightarrow{B D}^{2}+2(\overrightarrow{C A} \cdot \overrightarrow{A B}+\overrightarrow{A B} \cdot \overrightarrow{B D}+\overrightarrow{B D} \cdot \overrightarrow{C A})\)
\(=\overrightarrow{C A}^{2}+\overrightarrow{A B}^{2}+\overrightarrow{B D}^{2}+2 \overrightarrow{B D} \cdot \overrightarrow{C A}\)
\(=9+4+16+2 \times 4 \times 3 \times \cos 120^{\circ}\)
\(=17\)
\(∴CD\)的长为\(\sqrt{17}\).
【点拨】
①\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0\);
② 方法一利用了二面角的概念和平几的知识进行求解,方法二直接利用向量的运算显得更简洁,也体现了向量的威力!
【典题2】 已知:正四面体\(ABCD\)(所有棱长均相等)的棱长为\(1\),\(E\)、\(F\)、\(G\)、\(H\)分别是四面体\(ABCD\)中各棱的中点,求\(EF\),\(GH\)的夹角.
【解析】 (1)如图所示,
正四面体\(ABCD\)的棱长为\(1\),\(E\)、\(F\)、\(G\)、\(H\)分别是四面体\(ABCD\)中各棱的中点,
设\(\overrightarrow{AB}=\vec{a}\),\(\overrightarrow{AC}=\vec{b}\),\(\overrightarrow{AD}=\vec{c}\),
\(\therefore \overrightarrow{BE}=\dfrac{1}{2} \overrightarrow{BC}=\dfrac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})=\dfrac{1}{2}(\vec{b}-\vec{a})\),\(\overrightarrow{AF}=\dfrac{1}{2} \overrightarrow{AD}=\dfrac{1}{2} \vec{c}\);
\(\therefore \overrightarrow{EF}=\overrightarrow{EB}+\overrightarrow{BA}+\overrightarrow{AF}=-\dfrac{1}{2}(\vec{b}-\vec{a})-\vec{a}+\dfrac{1}{2} \vec{c}=\dfrac{1}{2}(\vec{c}-\vec{a}-\vec{b})\),
同理可得\(\overrightarrow{GH}=\dfrac{1}{2}(\vec{b}+\vec{c}-\vec{a})\);
\(\therefore \overrightarrow{E F} \cdot \overrightarrow{G H}=\dfrac{1}{4}\left[(\vec{c}-\vec{a})^2-\vec{b}^2\right]=\dfrac{1}{4}\left[\vec{c}^2+\vec{a}^2-2 \vec{c} \cdot \vec{a}-\vec{b}^2\right]\)
\(=\dfrac{1}{2} [1+1-2×1×1\cos 60^{\circ}-1]=0\),
\(\therefore \overrightarrow{EF}\)与\(\overrightarrow{GH}\)的夹角为\(90^{\circ}\).
巩固练习
1 (★★) 在平行六面体(底面是平行四边形的四棱柱)\(ABCD-A_1 B_1 C_1 D_1\)中,\(AB=AD=AA_1=1\),\(∠BAD=∠BAA_1=∠DAA_1=60°\),求\(AC_1\)的长度.
2 (★★) 如图,三棱锥\(O-ABC\)各棱的棱长都是\(1\),点\(D\)是棱\(AB\)的中点,点\(E\)在棱\(OC\)上,且\(\overrightarrow{O E}=\lambda \overrightarrow{O C}\),记\(\overrightarrow{O A}=\vec{a},\),\(\overrightarrow{O B}=\vec{b}\),\(\overrightarrow{O C}=\vec{c}\).求\(DE\)的最小值.
3 (★) 如图所示,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,求异面直线\(A_1 B\)与\(AC\)所成的角.
4 (★★) 如图,在平行四边形\(ABCD\)中,\(AB=AC=1\),∠ACD=\(90^{\circ}\),将它沿对角线\(AC\)折起,使\(AB\)与\(CD\)成\(60^{\circ}\)角,求\(B\)、\(D\)间的距离.
5 (★★) 已知空间四边形\(OABC\)各边及对角线长都相等,\(E\),\(F\)分别为\(AB\),\(OC\)的中点,求\(OE\)与\(BF\)夹角余弦值.
6 (★★) 在三棱锥\(O-ABC\)中,已知侧棱\(OA\),\(OB\),\(OC\)两两垂直,用空间向量知识证明:底面三角形\(ABC\)是锐角三角形.
7 (★★★) 在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,底面\(ABCD\)是边长为\(1\)的正方形,\(∠BAA_1=∠DAA_1=\dfrac{\pi }{3}\),\(AC_1=\sqrt{26}\).
(1)求侧棱\(AA_1\)的长;
(2)\(M\),\(N\)分别为\(D_1 C_1\),\(C_1 B_1\)的中点,求\(\overrightarrow{AC_1 }\cdot \overrightarrow{MN}\)及两异面直线\(AC_1\)和\(MN\)的夹角.
参考答案
-
【答案】 \(\sqrt{6}\)
【解析】 \(\because \overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\),
则\(\overrightarrow{A C_{1}}^{2}=\left(\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\right)^{2}\)\(=\overrightarrow{A B}^{2}+\overrightarrow{A D}^{2}+\overrightarrow{A A_{1}}^{2}+2 \overrightarrow{A B} \cdot \overrightarrow{A D}+2 \overrightarrow{A B} \cdot \overrightarrow{A A_{1}}+2 \overrightarrow{A D} \cdot \overrightarrow{A A_{1}}\)
\(=1+1+1+3 \times 2 \times 1 \times 1 \times \cos 60^{\circ}=6\).
\(\therefore\left|\overrightarrow{A C_{1}}\right|=\sqrt{6}\). -
【答案】 \((1) \overrightarrow{D E}=\lambda \vec{c}-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b} \quad (2) \dfrac{\sqrt{2}}{2}\)
【解析】 (1)根据题意,连接\(OD\),\(CD\),点\(D\)是棱\(AB\)的中点,点\(E\)在棱\(OC\)上,且\(\overrightarrow{O E}=\lambda \overrightarrow{O C}\),
记\(\overrightarrow{O A}=\vec{a}\),\(\overrightarrow{O B}=\vec{b}\),\(\overrightarrow{O C}=\vec{c}\).
\(\therefore \overrightarrow{D E}=\overrightarrow{O E}-\overrightarrow{O D}=\lambda \overrightarrow{O C}-\dfrac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})=\lambda \vec{c}-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}\),
(2)根据题意,点\(D\)是棱\(AB\)的中点,则\(|O D|=\dfrac{\sqrt{3}}{2}\),且\(\cos \angle D O E=\dfrac{\sqrt{3}}{3}\),
\(|\overrightarrow{D E}|^{2}=|\overrightarrow{O E}-\overrightarrow{O D}|^{2}=\overrightarrow{O E}^{2}-2 \overrightarrow{O E} \cdot \overrightarrow{O D}+\overrightarrow{O D^{2}}\),
\(=(\lambda \vec{c})^{2}-2 \times \lambda \times 1 \times \dfrac{\sqrt{3}}{2} \times \cos \angle D O E+\dfrac{3}{4}\)
\(=\lambda^{2}-\lambda+\dfrac{3}{4}=\left(\lambda-\dfrac{1}{2}\right)^{2}+\dfrac{1}{2}\)
则当\(\lambda=\dfrac{1}{2}\)时,\(|\overrightarrow{D E}|^{2}\)取得最小值\(\dfrac{1}{2}\),则\(|\overrightarrow{D E}|\)的最小值为\(\dfrac{\sqrt{2}}{2}\).
-
【答案】 \(60^{\circ}\)
【解析】 不妨设正方体的棱长为\(1\),设\(\overrightarrow{AB}=\vec{a}\),\(\overrightarrow{AD}=\vec{b}\),\(\overrightarrow{A A_1}=\vec{c}\),
则\(|\vec{a}|=|\vec{b}|=|\vec{c}|=1\),\(\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{c}=\vec{c}\cdot \vec{a}=0\),
\(\overrightarrow{A_1 B}=\vec{a}-\vec{c}\),\(\overrightarrow{AC}=\vec{a}+\vec{b}\),
\(\therefore \overrightarrow{A_1 B}\cdot \overrightarrow{AC}=(\vec{a}-\vec{c})\cdot (\vec{a}+\vec{b})=|\vec{a}|^2+\vec{a}\cdot \vec{b}-\vec{a}\cdot \vec{c}-\vec{b}\cdot \vec{c}=1\),
而\(|\overrightarrow{A_1 B} |=|\overrightarrow{AC}|=\sqrt{2}\),
\(\therefore \cos <\overrightarrow{A_1 B}, \overrightarrow{A C}>=\dfrac{1}{\sqrt{2} \times \sqrt{2}}=\dfrac{1}{2}\),\(\therefore <\overrightarrow{A_1 B},\overrightarrow{AC}>=60^{\circ}\)
所以异面直线\(A_1 B\)与\(AC\)所成的角为\(60^{\circ}\). -
【答案】 \(2\)或\(\sqrt{2}\)
【解析】 由题可知\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CD}\),
\(\because ∠ACD=90^{\circ}\),\(\therefore \overrightarrow{AC}\cdot \overrightarrow{CD}=0\),同理\(\overrightarrow{AC}\cdot \overrightarrow{BA}=0\),
\(\because AB\)与\(CD\)成\(60^{\circ}\)角,\(\therefore ∠\overrightarrow{BA},\overrightarrow{CD}>=60^{\circ}\)或\(120^{\circ}\),
又\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CD}\),
\(\therefore |\overrightarrow{BD} |^2=|\overrightarrow{BA}|^2+|\overrightarrow{AC}|^2+|\overrightarrow{CD}|^2+2\overrightarrow{BA}\cdot \overrightarrow{AC}+2\overrightarrow{BA}\cdot \overrightarrow{CD}+2\overrightarrow{AC}\cdot \overrightarrow{CD}\)
\(=3+2×1×1×\cos <\overrightarrow{BA},\overrightarrow{CD}>\)
\(= \begin{cases}4 & \left(<\overrightarrow{B A}, C D>=60^{\circ}\right) \\ 2 & \left(<\overrightarrow{B A}, C D>=120^{\circ}\right)\end{cases}\)
\(\therefore |BD|=2\)或\(\sqrt{2}\).
即\(B\)、\(D\)之间的距离为\(2\)或\(\sqrt{2}\). -
【答案】 \(\dfrac{2}{3}\)
【解析】 设\(\overrightarrow{OA}=\vec{a}\),\(\overrightarrow{OB}=\vec{b}\),\(\overrightarrow{OC}=\vec{c}\),且各长度均为\(1\),
则\(\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{c}=\vec{a}\cdot \vec{c}=1×1×\cos 60^{\circ}=\dfrac{1}{2}\),
因为\(\overrightarrow{OE}=\dfrac{1}{2}(\vec{a}+\vec{b})\),\(\overrightarrow{BF}=\dfrac{1}{2} c-\vec{b}\),且\(|\overrightarrow{OE}|=\dfrac{\sqrt{3}}{2}\),\(|\overrightarrow{BF}|=\dfrac{\sqrt{3}}{2}\),
所以\(\overrightarrow{OE}\cdot \overrightarrow{BF}=\dfrac{1}{2}(\vec{a}+\vec{b})\cdot (\dfrac{1}{2} \vec{c}-\vec{b} )=\dfrac{1}{4} \vec{a}\cdot \vec{c}+\dfrac{1}{4} \vec{b}\cdot \vec{c}-\dfrac{1}{2} \vec{a}\cdot \vec{b}-\dfrac{1}{2} \vec{b}^2=-\dfrac{1}{2}\),
所以\(\cos <\overrightarrow{O E}, \overrightarrow{B F}>=\dfrac{\overrightarrow{O E} \cdot \overrightarrow{B F}}{|\overrightarrow{O E}||\overrightarrow{B F}|}=-\dfrac{2}{3}\).
\(\therefore OE\)与\(BF\)所成角的余弦值为\(\dfrac{2}{3}\). -
【证明】 \(∵OA,OB,OC\)两两互相垂直.
\(\overrightarrow{A B} \cdot \overrightarrow{A C}=(\overrightarrow{O B}-\overrightarrow{O A}) \cdot(\overrightarrow{O C}-\overrightarrow{O A})=\overrightarrow{O A^{2}}=|\overrightarrow{O A}|^{2}>0\),
\(\therefore<\overrightarrow{A B}, \overrightarrow{A C}>\)为锐角,即\(∠BAC\)为锐角,
同理\(∠ABC\),\(∠BCA\)均为锐角,
\(∴△ABC\)为锐角三角形. -
【答案】 (1)\(4\);(2)\(0\),\(90^{\circ}\)
【解析】 (1)设侧棱\(AA_1=x\),
\(\because\)在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,底面\(ABCD\)是边长为\(1\)的正方形,且\(∠A_1 AD=∠A_1 AB=60^{\circ}\),
\(\therefore \overrightarrow{AB}^2=\overrightarrow{AD}^2=1\), \(\overrightarrow{A A}_1^2=x^2\),\(\overrightarrow{AB}\cdot \overrightarrow{AD}=0\),\(\overrightarrow{AB}\cdot \overrightarrow{AA_1}=\dfrac{x}{2}\),\(\overrightarrow{AD}\cdot \overrightarrow{AA_1}=\dfrac{x}{2}\),
又\(\because \overrightarrow{AC_1 }=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA_1}\),
\(\therefore \overrightarrow{AC_1 }^2=(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA_1} )^2\)
\(=\overrightarrow{AB}^2+\overrightarrow{AD}^2+\overrightarrow{AA_1}^2+2\overrightarrow{AB}\cdot \overrightarrow{AD}+2\overrightarrow{AB}\cdot \overrightarrow{AA_1}+2\overrightarrow{AD}\cdot \overrightarrow{AA_1}=26\),
\(\therefore x^2+2x-24=0\),\(\because x>0\),\(\therefore x=4\),
即侧棱\(AA_1=4\).
(2)\(\because \overrightarrow{AC_1 }=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA_1}\),\(\overrightarrow{MN}=\dfrac{1}{2} \overrightarrow{DB}=\dfrac{1}{2}(\overrightarrow{AB}-\overrightarrow{AD})\),
\(\therefore \overrightarrow{A C_1} \cdot \overrightarrow{M N}=\dfrac{1}{2}(\overrightarrow{A B}-\overrightarrow{A D}) \cdot\left(\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A}_1\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{A B}^2-\overrightarrow{A D}^2+\overrightarrow{A B} \cdot \overrightarrow{A A_1}-\overrightarrow{A D} \cdot \overrightarrow{A A_1}\right)\)
\(=\dfrac{1}{2}(1-1+2-2)=0\),
\(\therefore\) 两异面直线\(AC_1\)和\(MN\)的夹角为\(90^{\circ}\).
【题型三】数量积的最值
【典题1】 已知\(MN\)是正方体内切球的一条直径,点\(P\)在正方体表面上运动,正方体的棱长是\(2\),则\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的取值范围为( )
A.\([0,4]\) \(\qquad \qquad \qquad \qquad\) B.\([0,2]\) \(\qquad \qquad \qquad \qquad\) C.\([1,4]\) \(\qquad \qquad \qquad \qquad\) D.\([1,2]\)
【解析】
设正方体内切球球心为\(S\),\(MN\)是该内切球的任意一条直径,
则内切球的半径为\(1\),
所以 \(\overrightarrow{P M} \cdot \overrightarrow{P N}=(\overrightarrow{P S}+\overrightarrow{S M}) \cdot(\overrightarrow{P S}+\overrightarrow{S N})=(\overrightarrow{P S}+\overrightarrow{S M}) \cdot(\overrightarrow{P S}-\overrightarrow{S M})\)
\(=\overrightarrow{P S}^2-1 \in[0,2]\).
所以\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的取值范围是\([0,2]\).
故选:\(B\).
巩固练习
1 (★★) 已知球\(O\)内切于正四面体\(A-BCD\),且正四面体的棱长为\(2 \sqrt{6}\),线段\(MN\)是球\(O\)的一条动直径(\(M\),\(N\)是直径的两端点),点\(P\)是正四面体\(A-BCD\)的表面上的一个动点,则\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的最大值是\(\underline{\quad \quad}\) .
2 (★★★) 已知球\(O\)是棱长为\(2\)的正八面体(八个面都是全等的等边三角形)的内切球,\(MN\)为球\(O\)的一条直径,点\(P\)为正八面体表面上的一个动点,则\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的取值范围是\(\underline{\quad \quad}\).
3 (★★★★) 如图,在三棱锥\(D-ABC\)中,已知\(AB=2\),\(\overrightarrow{AC}\cdot \overrightarrow{BD}=-3\),设\(AD=a\),\(BC=b\),\(CD=c\),则 \(\dfrac{c^2}{a b+1}\)的最小值为\(\underline{\quad \quad}\) .
参考答案
-
【答案】 \(8\)
【解析】 由正四面体棱长为\(2 \sqrt{6}\),其内切圆的半径为\(1\),
由题意,\(M,N\)是直径的两端点,可得\(\overrightarrow{O M}+\overrightarrow{O N}=\overrightarrow{0}\),\(\overrightarrow{O M} \cdot \overrightarrow{O N}=-1\),
则\(\overrightarrow{P M} \cdot \overrightarrow{P N}=(\overrightarrow{P O}+\overrightarrow{O M}) \cdot(\overrightarrow{P O}+\overrightarrow{O N})\)\(=\overrightarrow{P O^{2}}+\overrightarrow{P O} \cdot(\overrightarrow{0 M}+\overrightarrow{O N})+\overrightarrow{O M} \cdot \overrightarrow{O N}\)\(=\overrightarrow{P O^{2}}+0-1=\overrightarrow{P O^{2}}-1\),
当点\(P\)在正四面体顶点时,\(\overrightarrow{P O}^{2}\)最大,且最大值为\(9\),
则\(\overrightarrow{P O}^{2}-1\)的最大值为\(8\). -
【答案】 \(\left[\dfrac{1}{3}, \dfrac{4}{3}\right]\)
【解析】 设球\(O\)的半径为\(R\),
则\(\dfrac{1}{2}×\sqrt{2}×1=\dfrac{1}{2}×\sqrt{3}×R\),解得\(R=\dfrac{\sqrt{6}}{3}\).
\(|\overrightarrow{OP}|\in [1,\sqrt{2}]\).
\(\overrightarrow{P M} \cdot \overrightarrow{P N}=(\overrightarrow{O M}-\overrightarrow{O P}) \cdot(\overrightarrow{O N}-\overrightarrow{O P})=\overrightarrow{O P^2}-\vec{R}^2\)\(=\overrightarrow{O P}^2-\dfrac{2}{3} \in\left[\dfrac{1}{3}, \dfrac{4}{3}\right]\).
故答案为:\(\left[\dfrac{1}{3}, \dfrac{4}{3}\right]\).
-
【答案】 \(2\)
【解析】 \(\because\)在三棱锥\(D-ABC\)中,\(AB=2\),\(\overrightarrow{AC}\cdot \overrightarrow{BD}=-3\),
设\(\overrightarrow{AD}=\vec{a}\),\(\overrightarrow{BC}=\vec{b}\),\(\overrightarrow{CD}=\vec{c}\),
\(\therefore \overrightarrow{AC}=\vec{a}-\vec{c}\),\(\overrightarrow{BD}=\vec{b}+\vec{c}\),
\(\therefore \overrightarrow{AC}\cdot \overrightarrow{BD}=(\vec{a}-\vec{c})\cdot (\vec{b}+\vec{c})=\vec{a}\cdot \vec{b}+\vec{a}\cdot \vec{c}-\vec{b}\cdot \vec{c}-\vec{c}^2=-3\),
\(\therefore \vec{c}^2=\vec{a}\cdot \vec{b}+\vec{a}\cdot \vec{c}-\vec{b}\cdot \vec{c}+3\),
又\(\overrightarrow{AB}=\vec{a}-\overrightarrow{BD}=\vec{a}-\vec{b}-\vec{c}\),\(\therefore |(\vec{a}-\vec{b})-\vec{c}|=2\),①
\(\therefore \dfrac{c^2}{a b+1}=\dfrac{\vec{a} \cdot \vec{b}+(\vec{a}-\vec{b}) \cdot \vec{c}+3}{a b+1}\),②
将①两边平方得\((\vec{a}-\vec{b})^2+\vec{c}^2-2(\vec{a}-\vec{b})\cdot \vec{c}=4\),
\(\therefore (\vec{a}-\vec{b})^2+\vec{c}^2-4=2(\vec{a}-\vec{b})\cdot \vec{c}\),
\(\therefore \dfrac{(\vec{a}-\vec{b})^2}{2}+\dfrac{\vec{c}^2}{2}-2=(\vec{a}-\vec{b}) \cdot \vec{c}\),
代入②中,得 \(\dfrac{c^2}{a b+1}=\dfrac{\vec{a} \cdot \vec{b}+\dfrac{(\vec{a}-\vec{b})^2}{2}+\dfrac{\vec{c}^2}{2}+1}{a b+1}\),
\(\therefore \dfrac{1}{2} \vec{c}^2=\vec{a} \cdot \vec{b}+1+\dfrac{(\vec{a}-\vec{b})^2}{2}=\vec{a} \cdot \vec{b}+1+\dfrac{1}{2}\left(\vec{a}^2+\vec{b}^2-2 \vec{a} \cdot \vec{b}\right)\)
\(=1+\dfrac{1}{2}\left(\vec{a}^2+\vec{b}^2\right)\),
\(\therefore \vec{c}^2=2+\vec{a}^2+\vec{b}^2\),
又\(\vec{c}^2=c^2\),\(\vec{a}^2=a^2\),\(\vec{b}^2=b^2\),
\(\therefore \dfrac{c^2}{a b+1}=\dfrac{2+a^2+b^2}{a b+1} \geq \dfrac{2+2 a b}{a b+1}=2\).
\(\therefore \dfrac{c^2}{a b+1}\)的最小值为\(2\).
故答案为:\(2\).