1.1.2 空间向量数量积的运算

\(\mathbf{{\large {\color{Red} {欢迎到学科网下载资料学习}} } }\)【高分突破系列】 高二数学上学期同步知识点剖析精品讲义
\(\mathbf{{\large {{\color{Red} {跟贵哥学数学,so \quad easy!}} }}}\)

选择性必修第一册同步提高,难度3颗星!

知识剖析

空间向量的夹角及其表示

空间向量的夹角及其表示:已知两非零向量 \(\vec{a}\)\(\vec{b}\) ,在空间任取一点\(O\),作 \(\overrightarrow{O A}=\vec{a}\)\(\overrightarrow{O B}=\vec{b}\)
\(∠AOB\)叫做向量\(\vec{a}\)\(\vec{b}\) 的夹角,记作\(\langle\vec{a}, \vec{b}\rangle\);且规定\(0 \leq<\vec{a}, \vec{b}><\pi\)
\(<\vec{a}, \vec{b}>=\dfrac{\pi}{2}\),则称\(\vec{a}\)\(\vec{b}\) 互相垂直,记作\(\vec{a} \perp \vec{b}\).
 

向量的模

\(\overrightarrow{O A}=\vec{a}\),则有向线段\(\overrightarrow{O A}\) 的长度叫做向量\(\vec{a}\)的长度或模,记作:\(|\vec{a}|\).
 

向量的数量积

已知向量\(\vec{a}\)\(\vec{b}\) ,则\(|\vec{a}| \vec{b} \mid \cos <\vec{a}, \vec{b}>\)叫做\(\vec{a}\)\(\vec{b}\) 的数量积,记作\(\vec{a} \cdot \vec{b}\)
\(\vec{a} \cdot \vec{b}=|\vec{a}| \vec{b} \mid \cos \langle\vec{a}, \vec{b}\rangle\).
 

空间向量数量积的性质

\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0\)\(|\vec{a}|^{2}=\vec{a}^{2}\).
 

空间向量数量积运算律

\((\lambda \vec{a}) \cdot \vec{b}=\lambda(\vec{a} \cdot \vec{b})=\vec{a}(\lambda \cdot \vec{b})\)
\(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\) (交换律)
\(\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}\)(分配律)
④不满足乘法结合律:\((\vec{a} \cdot \vec{b}) \cdot \vec{c} \neq \vec{a} \cdot(\vec{b} \cdot \vec{c})\)
 

经典例题

【题型一】数量积的运算

【典题1】 如图,在三棱锥\(A-BCD\)中,\(AB=AC=BD=CD=3\)\(AD=BC=2\)\(M\)\(N\)分别是\(AD\)\(BC\)的中点,则\(\overrightarrow{A N}\cdot \overrightarrow{CM}=\)\(\underline{\quad \quad}\)
image.png
【解析】 在三棱锥\(A-BCD\)中,连结\(ND\),取\(ND\)的中点为\(E\),连结\(ME\)
\(ME//AN\),异面直线\(AN\)\(CM\)所成的角就是\(∠EMC\)
\(\because AB=AC=BD=CD=3\)\(AD=BC=2\)\(M\)\(N\)分别是\(AD\)\(BC\)的中点,
\(\therefore AN=2\sqrt{2}\)\(ME=EN=\sqrt{2}\)\(MC=2\sqrt{2}\)
\(\because EN⊥NC\)\(\therefore E C=\sqrt{N C^2+N E^2}=\sqrt{3}\)
\(\cos \angle E M C=\dfrac{M C^2+M E^2-E C^2}{2 M C \cdot M E}=\dfrac{2+8-3}{2 \times \sqrt{2} \times 2 \sqrt{2}}=\dfrac{7}{8}\)
由图可知,\(\overrightarrow{A N}\)\(\overrightarrow{CM}\)所成角为钝角,则\(\cos ⁡⟨\overrightarrow{A N},\overrightarrow{CM}⟩=-\dfrac{7}{8}\)
\(\therefore \overrightarrow{A N}\cdot \overrightarrow{CM}=|\overrightarrow{A N}|\cdot |\overrightarrow{CM}|\cos <\overrightarrow{A N},\overrightarrow{CM}>=2\sqrt{2}×2\sqrt{2}×(-\dfrac{7}{8})=-7\)
故答案为:\(-7\)
image.png
 

【典题2】 已知四面体\(ABCD\),所有棱长均为\(2\),点\(E\)\(F\)分别为棱\(AB\)\(CD\)的中点,则\(\overrightarrow{AF}\cdot \overrightarrow{CE}=\)(  )
image.png
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(-1\) \(\qquad \qquad \qquad \qquad\) D.\(-2\)
【解析】 \(\because\)四面体\(ABCD\),所有棱长均为\(2\)\(\therefore\)四面体\(ABCD\)为正四面体,
\(\because E\)\(F\)分别为棱\(AB\)\(CD\)的中点,
\(\therefore \overrightarrow{AF}\cdot \overrightarrow{CE}=\dfrac{1}{2}(\overrightarrow{AC}+\overrightarrow{AD})\cdot (\overrightarrow{AE}-\overrightarrow{AC})\)
\(=\dfrac{1}{2} \overrightarrow{AC}\cdot \overrightarrow{AE}-\dfrac{1}{2} \overrightarrow{AC}^2+\dfrac{1}{2} \overrightarrow{AD}\cdot \overrightarrow{AE}-\dfrac{1}{2} \overrightarrow{AD}\cdot \overrightarrow{AC}\)
\(=\dfrac{1}{2}×2×1×\dfrac{1}{2}-\dfrac{1}{2}×4+\dfrac{1}{2}×2×1×\dfrac{1}{2}-\dfrac{1}{2}×2×2×\dfrac{1}{2}=-2\)
故选:\(D\)
【点拨】 求空间向量数量积,第一个念头是利用定义\(\vec{a}\cdot \vec{b}= |\vec{a}| \vec{b}|\cos <\vec{a},\vec{b}>\) ;但若两个向量的模或其夹角其一交难求解,可把所求向量的数量积转化为其他具有较多性质向量的数量积,比如本题把\(\overrightarrow{AF}\cdot \overrightarrow{CE}\)转化为\(\dfrac{1}{2}(\overrightarrow{AC}+\overrightarrow{AD})\cdot (\overrightarrow{AE}-\overrightarrow{AC})\),因为\(\overrightarrow{AC}\)\(\overrightarrow{AD}\)\(\overrightarrow{AE}\)\(\overrightarrow{AC}\)四个向量之间数量积易求.
 

巩固练习

1 (★) 平面上有四个互异点\(A\)\(B\)\(C\)\(D\),已知\((\overrightarrow{DB}+\overrightarrow{DC}+2\overrightarrow{AD})\cdot (\overrightarrow{AB}-\overrightarrow{AC})=0\),则\(△ABC\)的形状是(  )
 A.直角三角形 \(\qquad \qquad \qquad\) B.等腰直角三角形 \(\qquad \qquad \qquad\) C.等腰三角形 \(\qquad \qquad \qquad\) D.无法确定
 

2 (★) 在空间四边形\(ABCD\)中,\(AB=BC=CD=DA=1\)\(\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{AC}\cdot \overrightarrow{DB}+\overrightarrow{AD}\cdot \overrightarrow{BC}=\) ( )
 A.\(-1\) \(\qquad \qquad \qquad \qquad\) B.\(0\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.不确定
 

3 (★★) 如图,在三棱锥\(P-ABC\)中,\(AP\)\(AB\)\(AC\)两两垂直,\(AP=2\)\(AB=AC=1\)\(M\)\(PC\)的中点,则\(\overrightarrow{AC}\cdot \overrightarrow{BM}\)的值为 \(\underline{\quad \quad}\) .
image.png
 

4 (★★) 在棱长为\(1\)的正四面体\(ABCD\)中,点\(M\)满足\(\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}+(1-x-y)\overrightarrow{AD}\),点\(N\)满足\(\overrightarrow{DN}=\lambda\overrightarrow{DA}-(\lambda-1)\overrightarrow{DB}\),当\(AM\)\(DN\)最短时,\(\overrightarrow{AM}\cdot \overrightarrow{MN}=\) \(\underline{\quad \quad}\).
 

5 (★★★★) 已知三棱锥\(P-ABC\)的顶点\(P\)在平面\(ABC\)内的射影为点\(H\),侧棱\(PA=PB=PC\),点\(O\)为三棱锥\(P-ABC\)的外接球\(O\)的球心,\(AB=8\)\(AC=6\),已知 \(\overrightarrow{A O}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\),且\(\lambda+\mu =1\),则球\(O\)的表面积为\(\underline{\quad \quad}\)
 

参考答案

  1. 【答案】 \(C\)
    【解析】 \(\because ((\overrightarrow{DB}+\overrightarrow{DC}+2\overrightarrow{AD})\cdot (\overrightarrow{AB}-\overrightarrow{AC})=0\)
    \(\therefore (\overrightarrow{AB}+\overrightarrow{AC})\cdot (\overrightarrow{AB}-\overrightarrow{AC})=0\),可得\(\overrightarrow{A B}^2=\overrightarrow{A C}^2\).可得\(AB=AC\)
    \(△ABC\)的形状是等腰三角形.故选:\(C\)

  2. 【答案】 \(B\)
    【解析】 根据题意,\(\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{AC}\cdot \overrightarrow{DB}+\overrightarrow{AD}\cdot \overrightarrow{BC}\)\(=\overrightarrow{AB}\cdot (\overrightarrow{AD}-\overrightarrow{AC})+\overrightarrow{AC}\cdot (\overrightarrow{AB}-\overrightarrow{AD})+\overrightarrow{AD}\cdot (\overrightarrow{AC}-\overrightarrow{AB})\)\(=\overrightarrow{AB}\cdot \overrightarrow{AD}-\overrightarrow{AB}\cdot \overrightarrow{AC}+\overrightarrow{AC}\cdot \overrightarrow{AB}-\overrightarrow{AC}\cdot \overrightarrow{AD}+\overrightarrow{AD}\cdot \overrightarrow{AC}-\overrightarrow{AD}\cdot \overrightarrow{AB}=0\)
    故选:\(B\)

  3. 【答案】 \(\dfrac{1}{2}\)
    【解析】 由题意得\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}=\overrightarrow{BA}+\dfrac{1}{2}(\overrightarrow{AP}+\overrightarrow{AC})\)\(=\overrightarrow{BA}+\dfrac{1}{2} \overrightarrow{AP}+\dfrac{1}{2} \overrightarrow{AC}\)
    \(\overrightarrow{AC}\cdot \overrightarrow{BM}=\overrightarrow{AC}\cdot (\overrightarrow{BA}+\dfrac{1}{2} \overrightarrow{AP}+\dfrac{1}{2} \overrightarrow{AC} )\)\(=\overrightarrow{AC}\cdot \overrightarrow{BA}+\overrightarrow{AC}\cdot \dfrac{1}{2} \overrightarrow{AP}+\overrightarrow{AC}\cdot \dfrac{1}{2} \overrightarrow{AC}=\dfrac{1}{2}|\overrightarrow{AC}|^2=\dfrac{1}{2}\)

  4. 【答案】 \(-\dfrac{1}{3}\)
    【解析】 \(\because \overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}+(1-x-y)\overrightarrow{AD}\)\(\overrightarrow{DN}=\lambda\overrightarrow{DA}-(\lambda-1)\overrightarrow{DB}\)
    \(\therefore M\in\)平面\(BCD\)\(N\in\)直线\(AB\)
    \(AM\)\(DN\)最短时,\(AM⊥\)平面\(BCD\)\(DN⊥AB\)
    \(\therefore M\)\(△BCD\)的中心,\(N\)为线段\(AB\)的中点,
    如图:
    image.png
    又正四面体的棱长为\(1\)\(\therefore AM=\dfrac{\sqrt{6}}{3}\)
    \(\because AM⊥\)平面\(BCD\)
    \(\therefore \overrightarrow{A M} \cdot \overrightarrow{A B}=|\overrightarrow{A M}| \cdot|\overrightarrow{A B}| \cos \angle A M B=|\overrightarrow{A M}|^2\)
    \(\therefore \overrightarrow{AM}\cdot \overrightarrow{MN}=\overrightarrow{AM}\cdot (\overrightarrow{A N}-\overrightarrow{AM} )=\overrightarrow{AM}\cdot (\dfrac{1}{2} \overrightarrow{AB}-\overrightarrow{AM} )\)
    \(=\dfrac{1}{2} \overrightarrow{AM}\cdot \overrightarrow{AB}-\overrightarrow{AM}^2=-\dfrac{1}{2}|\overrightarrow{AM}|^2=-\dfrac{1}{2}×\dfrac{6}{9}=-\dfrac{1}{3}\)

  5. 【答案】 \(150\pi\)
    【解析】 由于三棱锥\(P-ABC\)的顶点\(P\)在平面\(ABC\)内的射影为点\(H\)\(O\)为球心,\(OA=OB=OC=OP=R\)
    即有\(PH⊥AB\)\(PH⊥AC\)
    \(\therefore \overrightarrow{HP}\cdot \overrightarrow{AB}=\overrightarrow{HP}\cdot \overrightarrow{AC}=0\)
    \(\overrightarrow{A O}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\),①
    则有 \(\overrightarrow{A O} \cdot \overrightarrow{A B}=\lambda \overrightarrow{A B} \cdot \overrightarrow{A B}+\mu \overrightarrow{A C} \cdot \overrightarrow{A B}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P} \cdot \overrightarrow{A B}\)
    即有\(32=64\lambda+\mu \overrightarrow{AC}\cdot \overrightarrow{AB}\),②
    同理对①两边取点乘\(\overrightarrow{AC}\),可得\(18=36\mu +\lambda\overrightarrow{AB}\cdot \overrightarrow{AC}\),③
    \(\mu +\lambda=1\)
    由②③④解得,\(\lambda=\dfrac{1}{2}\)\(\mu =\dfrac{1}{2}\)\(\overrightarrow{AB}\cdot \overrightarrow{AC}=0\)
    即有 \(\overrightarrow{A O}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\)
    即有 \(\overrightarrow{A O} \cdot \overrightarrow{A H}=\dfrac{1}{2} \overrightarrow{A B} \cdot \overrightarrow{A H}+\dfrac{1}{2} \overrightarrow{A C} \cdot \overrightarrow{A H}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P} \cdot \overrightarrow{A H}\)
    即为\(AH^2=\dfrac{1}{2}×32+\dfrac{1}{2}×18=25\)
    \(\overrightarrow{A O}^2=\left(\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A C}+\dfrac{1}{1+\sqrt{3}} \overrightarrow{H P}\right)^2\)
    \(R^2=\dfrac{1}{4} \times 64+\dfrac{1}{4} \times 36+\left(\dfrac{1}{1+\sqrt{3}}\right)^2 H P^2+2 \times \dfrac{1}{4} \times \overrightarrow{A B} \cdot \overrightarrow{A C}\)\(=25+\left(\dfrac{1}{1+\sqrt{3}}\right)^2 H P^2\),⑤
    又在直角三角形\(AOH\)中,\(R^2=(HP-R)^2+AH^2\)
    即有\((HP-R)^2=R^2-25\)
    由⑤⑥解得\(R^2=\dfrac{75}{2}\)
    则有球\(O\)的表面积\(S=4\pi R^2=150\pi\)
    image.png
     

【题型二】数量积的应用

【典题1】 如图,\(60^{\circ}\)的二面角的棱上有\(A\)\(B\)两点,直线\(AC\)\(BD\)分别在这个二面角的两个半平面内,且都垂直于\(AB\).已知\(AB=2\)\(AC=3\)\(BD=4\),求\(CD\)的长.
image.png
【解析】
方法一 如图过点\(A\)\(AE//BD\),过\(D\)\(DE//AB\)
则易得\(∠CAE=60^{\circ}\)\(AE=4\)\(ED=2\)
image.png
\(∆CAE\)中,\(C E^{2}=A C^{2}+A E^{2}-2 A C \cdot A E \cdot \cos \angle C A E=9+16-12=13\)
\(Rt∆CED\)中,\(C D^{2}=C E^{2}+E D^{2}=13+4=17 \Rightarrow C D=\sqrt{17}\).
方法二 如图,\(\overrightarrow{C D}=\overrightarrow{C A}+\overrightarrow{A B}+\overrightarrow{B D}\)
\(\overrightarrow{C D}^{2}=(\overrightarrow{C A}+\overrightarrow{A B}+\overrightarrow{B D})^{2}\)
\(=\overrightarrow{C A}^{2}+\overrightarrow{A B}^{2}+\overrightarrow{B D}^{2}+2(\overrightarrow{C A} \cdot \overrightarrow{A B}+\overrightarrow{A B} \cdot \overrightarrow{B D}+\overrightarrow{B D} \cdot \overrightarrow{C A})\)
\(=\overrightarrow{C A}^{2}+\overrightarrow{A B}^{2}+\overrightarrow{B D}^{2}+2 \overrightarrow{B D} \cdot \overrightarrow{C A}\)
\(=9+4+16+2 \times 4 \times 3 \times \cos 120^{\circ}\)
\(=17\)
\(∴CD\)的长为\(\sqrt{17}\)
【点拨】
\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0\)
② 方法一利用了二面角的概念和平几的知识进行求解,方法二直接利用向量的运算显得更简洁,也体现了向量的威力!
 

【典题2】 已知:正四面体\(ABCD\)(所有棱长均相等)的棱长为\(1\)\(E\)\(F\)\(G\)\(H\)分别是四面体\(ABCD\)中各棱的中点,求\(EF\)\(GH\)的夹角.
image.png
【解析】 (1)如图所示,
正四面体\(ABCD\)的棱长为\(1\)\(E\)\(F\)\(G\)\(H\)分别是四面体\(ABCD\)中各棱的中点,
\(\overrightarrow{AB}=\vec{a}\)\(\overrightarrow{AC}=\vec{b}\)\(\overrightarrow{AD}=\vec{c}\)
\(\therefore \overrightarrow{BE}=\dfrac{1}{2} \overrightarrow{BC}=\dfrac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})=\dfrac{1}{2}(\vec{b}-\vec{a})\)\(\overrightarrow{AF}=\dfrac{1}{2} \overrightarrow{AD}=\dfrac{1}{2} \vec{c}\)
\(\therefore \overrightarrow{EF}=\overrightarrow{EB}+\overrightarrow{BA}+\overrightarrow{AF}=-\dfrac{1}{2}(\vec{b}-\vec{a})-\vec{a}+\dfrac{1}{2} \vec{c}=\dfrac{1}{2}(\vec{c}-\vec{a}-\vec{b})\)
同理可得\(\overrightarrow{GH}=\dfrac{1}{2}(\vec{b}+\vec{c}-\vec{a})\)
\(\therefore \overrightarrow{E F} \cdot \overrightarrow{G H}=\dfrac{1}{4}\left[(\vec{c}-\vec{a})^2-\vec{b}^2\right]=\dfrac{1}{4}\left[\vec{c}^2+\vec{a}^2-2 \vec{c} \cdot \vec{a}-\vec{b}^2\right]\)
\(=\dfrac{1}{2} [1+1-2×1×1\cos ⁡60^{\circ}-1]=0\)
\(\therefore \overrightarrow{EF}\)\(\overrightarrow{GH}\)的夹角为\(90^{\circ}\)
 

巩固练习

1 (★★) 在平行六面体(底面是平行四边形的四棱柱)\(ABCD-A_1 B_1 C_1 D_1\)中,\(AB=AD=AA_1=1\)\(∠BAD=∠BAA_1=∠DAA_1=60°\),求\(AC_1\)的长度.
image.png
 
 

2 (★★) 如图,三棱锥\(O-ABC\)各棱的棱长都是\(1\),点\(D\)是棱\(AB\)的中点,点\(E\)在棱\(OC\)上,且\(\overrightarrow{O E}=\lambda \overrightarrow{O C}\),记\(\overrightarrow{O A}=\vec{a},\)\(\overrightarrow{O B}=\vec{b}\)\(\overrightarrow{O C}=\vec{c}\).求\(DE\)的最小值.
image.png
 
 

3 (★) 如图所示,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,求异面直线\(A_1 B\)\(AC\)所成的角.
image.png
 
 

4 (★★) 如图,在平行四边形\(ABCD\)中,\(AB=AC=1\),∠ACD=\(90^{\circ}\),将它沿对角线\(AC\)折起,使\(AB\)\(CD\)\(60^{\circ}\)角,求\(B\)\(D\)间的距离.
image.png
 
 

5 (★★) 已知空间四边形\(OABC\)各边及对角线长都相等,\(E\)\(F\)分别为\(AB\)\(OC\)的中点,求\(OE\)\(BF\)夹角余弦值.
image.png
 
 

6 (★★) 在三棱锥\(O-ABC\)中,已知侧棱\(OA\)\(OB\)\(OC\)两两垂直,用空间向量知识证明:底面三角形\(ABC\)是锐角三角形.
image.png
 
 

7 (★★★) 在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,底面\(ABCD\)是边长为\(1\)的正方形,\(∠BAA_1=∠DAA_1=\dfrac{\pi }{3}\)\(AC_1=\sqrt{26}\)
  (1)求侧棱\(AA_1\)的长;
  (2)\(M\)\(N\)分别为\(D_1 C_1\)\(C_1 B_1\)的中点,求\(\overrightarrow{AC_1 }\cdot \overrightarrow{MN}\)及两异面直线\(AC_1\)\(MN\)的夹角.
image.png
 
 

参考答案

  1. 【答案】 \(\sqrt{6}\)
    【解析】 \(\because \overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\)
    \(\overrightarrow{A C_{1}}^{2}=\left(\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\right)^{2}\)\(=\overrightarrow{A B}^{2}+\overrightarrow{A D}^{2}+\overrightarrow{A A_{1}}^{2}+2 \overrightarrow{A B} \cdot \overrightarrow{A D}+2 \overrightarrow{A B} \cdot \overrightarrow{A A_{1}}+2 \overrightarrow{A D} \cdot \overrightarrow{A A_{1}}\)
    \(=1+1+1+3 \times 2 \times 1 \times 1 \times \cos 60^{\circ}=6\)
    \(\therefore\left|\overrightarrow{A C_{1}}\right|=\sqrt{6}\).

  2. 【答案】 \((1) \overrightarrow{D E}=\lambda \vec{c}-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b} \quad (2) \dfrac{\sqrt{2}}{2}\)
    【解析】 (1)根据题意,连接\(OD\)\(CD\),点\(D\)是棱\(AB\)的中点,点\(E\)在棱\(OC\)上,且\(\overrightarrow{O E}=\lambda \overrightarrow{O C}\)
    \(\overrightarrow{O A}=\vec{a}\)\(\overrightarrow{O B}=\vec{b}\)\(\overrightarrow{O C}=\vec{c}\)
    \(\therefore \overrightarrow{D E}=\overrightarrow{O E}-\overrightarrow{O D}=\lambda \overrightarrow{O C}-\dfrac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})=\lambda \vec{c}-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}\)
    (2)根据题意,点\(D\)是棱\(AB\)的中点,则\(|O D|=\dfrac{\sqrt{3}}{2}\),且\(\cos \angle D O E=\dfrac{\sqrt{3}}{3}\)
    \(|\overrightarrow{D E}|^{2}=|\overrightarrow{O E}-\overrightarrow{O D}|^{2}=\overrightarrow{O E}^{2}-2 \overrightarrow{O E} \cdot \overrightarrow{O D}+\overrightarrow{O D^{2}}\)
    \(=(\lambda \vec{c})^{2}-2 \times \lambda \times 1 \times \dfrac{\sqrt{3}}{2} \times \cos \angle D O E+\dfrac{3}{4}\)
    \(=\lambda^{2}-\lambda+\dfrac{3}{4}=\left(\lambda-\dfrac{1}{2}\right)^{2}+\dfrac{1}{2}\)
    则当\(\lambda=\dfrac{1}{2}\)时,\(|\overrightarrow{D E}|^{2}\)取得最小值\(\dfrac{1}{2}\),则\(|\overrightarrow{D E}|\)的最小值为\(\dfrac{\sqrt{2}}{2}\)
    image.png

  3. 【答案】 \(60^{\circ}\)
    【解析】 不妨设正方体的棱长为\(1\),设\(\overrightarrow{AB}=\vec{a}\)\(\overrightarrow{AD}=\vec{b}\)\(\overrightarrow{A A_1}=\vec{c}\)
    \(|\vec{a}|=|\vec{b}|=|\vec{c}|=1\)\(\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{c}=\vec{c}\cdot \vec{a}=0\)
    \(\overrightarrow{A_1 B}=\vec{a}-\vec{c}\)\(\overrightarrow{AC}=\vec{a}+\vec{b}\)
    \(\therefore \overrightarrow{A_1 B}\cdot \overrightarrow{AC}=(\vec{a}-\vec{c})\cdot (\vec{a}+\vec{b})=|\vec{a}|^2+\vec{a}\cdot \vec{b}-\vec{a}\cdot \vec{c}-\vec{b}\cdot \vec{c}=1\)
    \(|\overrightarrow{A_1 B} |=|\overrightarrow{AC}|=\sqrt{2}\)
    \(\therefore \cos <\overrightarrow{A_1 B}, \overrightarrow{A C}>=\dfrac{1}{\sqrt{2} \times \sqrt{2}}=\dfrac{1}{2}\)\(\therefore <\overrightarrow{A_1 B},\overrightarrow{AC}>=60^{\circ}\)
    所以异面直线\(A_1 B\)\(AC\)所成的角为\(60^{\circ}\).

  4. 【答案】 \(2\)\(\sqrt{2}\)
    【解析】 由题可知\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CD}\)
    \(\because ∠ACD=90^{\circ}\)\(\therefore \overrightarrow{AC}\cdot \overrightarrow{CD}=0\),同理\(\overrightarrow{AC}\cdot \overrightarrow{BA}=0\)
    \(\because AB\)\(CD\)\(60^{\circ}\)角,\(\therefore ∠\overrightarrow{BA},\overrightarrow{CD}>=60^{\circ}\)\(120^{\circ}\)
    \(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CD}\)
    \(\therefore |\overrightarrow{BD} |^2=|\overrightarrow{BA}|^2+|\overrightarrow{AC}|^2+|\overrightarrow{CD}|^2+2\overrightarrow{BA}\cdot \overrightarrow{AC}+2\overrightarrow{BA}\cdot \overrightarrow{CD}+2\overrightarrow{AC}\cdot \overrightarrow{CD}\)
    \(=3+2×1×1×\cos <\overrightarrow{BA},\overrightarrow{CD}>\)
    \(= \begin{cases}4 & \left(<\overrightarrow{B A}, C D>=60^{\circ}\right) \\ 2 & \left(<\overrightarrow{B A}, C D>=120^{\circ}\right)\end{cases}\)
    \(\therefore |BD|=2\)\(\sqrt{2}\).
    \(B\)\(D\)之间的距离为\(2\)\(\sqrt{2}\).

  5. 【答案】 \(\dfrac{2}{3}\)
    【解析】 \(\overrightarrow{OA}=\vec{a}\)\(\overrightarrow{OB}=\vec{b}\)\(\overrightarrow{OC}=\vec{c}\),且各长度均为\(1\)
    \(\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{c}=\vec{a}\cdot \vec{c}=1×1×\cos ⁡60^{\circ}=\dfrac{1}{2}\)
    因为\(\overrightarrow{OE}=\dfrac{1}{2}(\vec{a}+\vec{b})\)\(\overrightarrow{BF}=\dfrac{1}{2} c-\vec{b}\),且\(|\overrightarrow{OE}|=\dfrac{\sqrt{3}}{2}\)\(|\overrightarrow{BF}|=\dfrac{\sqrt{3}}{2}\)
    所以\(\overrightarrow{OE}\cdot \overrightarrow{BF}=\dfrac{1}{2}(\vec{a}+\vec{b})\cdot (\dfrac{1}{2} \vec{c}-\vec{b} )=\dfrac{1}{4} \vec{a}\cdot \vec{c}+\dfrac{1}{4} \vec{b}\cdot \vec{c}-\dfrac{1}{2} \vec{a}\cdot \vec{b}-\dfrac{1}{2} \vec{b}^2=-\dfrac{1}{2}\)
    所以\(\cos <\overrightarrow{O E}, \overrightarrow{B F}>=\dfrac{\overrightarrow{O E} \cdot \overrightarrow{B F}}{|\overrightarrow{O E}||\overrightarrow{B F}|}=-\dfrac{2}{3}\).
    \(\therefore OE\)\(BF\)所成角的余弦值为\(\dfrac{2}{3}\).

  6. 【证明】 \(∵OA,OB,OC\)两两互相垂直.
    \(\overrightarrow{A B} \cdot \overrightarrow{A C}=(\overrightarrow{O B}-\overrightarrow{O A}) \cdot(\overrightarrow{O C}-\overrightarrow{O A})=\overrightarrow{O A^{2}}=|\overrightarrow{O A}|^{2}>0\)
    \(\therefore<\overrightarrow{A B}, \overrightarrow{A C}>\)为锐角,即\(∠BAC\)为锐角,
    同理\(∠ABC\)\(∠BCA\)均为锐角,
    \(∴△ABC\)为锐角三角形.

  7. 【答案】 (1)\(4\);(2)\(0\)\(90^{\circ}\)
    【解析】 (1)设侧棱\(AA_1=x\)
    \(\because\)在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,底面\(ABCD\)是边长为\(1\)的正方形,且\(∠A_1 AD=∠A_1 AB=60^{\circ}\)
    \(\therefore \overrightarrow{AB}^2=\overrightarrow{AD}^2=1\)\(\overrightarrow{A A}_1^2=x^2\)\(\overrightarrow{AB}\cdot \overrightarrow{AD}=0\)\(\overrightarrow{AB}\cdot \overrightarrow{AA_1}=\dfrac{x}{2}\)\(\overrightarrow{AD}\cdot \overrightarrow{AA_1}=\dfrac{x}{2}\)
    \(\because \overrightarrow{AC_1 }=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA_1}\)
    \(\therefore \overrightarrow{AC_1 }^2=(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA_1} )^2\)
    \(=\overrightarrow{AB}^2+\overrightarrow{AD}^2+\overrightarrow{AA_1}^2+2\overrightarrow{AB}\cdot \overrightarrow{AD}+2\overrightarrow{AB}\cdot \overrightarrow{AA_1}+2\overrightarrow{AD}\cdot \overrightarrow{AA_1}=26\)
    \(\therefore x^2+2x-24=0\)\(\because x>0\)\(\therefore x=4\)
    即侧棱\(AA_1=4\)
    (2)\(\because \overrightarrow{AC_1 }=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA_1}\)\(\overrightarrow{MN}=\dfrac{1}{2} \overrightarrow{DB}=\dfrac{1}{2}(\overrightarrow{AB}-\overrightarrow{AD})\)
    \(\therefore \overrightarrow{A C_1} \cdot \overrightarrow{M N}=\dfrac{1}{2}(\overrightarrow{A B}-\overrightarrow{A D}) \cdot\left(\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A}_1\right)\)
    \(=\dfrac{1}{2}\left(\overrightarrow{A B}^2-\overrightarrow{A D}^2+\overrightarrow{A B} \cdot \overrightarrow{A A_1}-\overrightarrow{A D} \cdot \overrightarrow{A A_1}\right)\)
    \(=\dfrac{1}{2}(1-1+2-2)=0\)
    \(\therefore\) 两异面直线\(AC_1\)\(MN\)的夹角为\(90^{\circ}\)
     

【题型三】数量积的最值

【典题1】 已知\(MN\)是正方体内切球的一条直径,点\(P\)在正方体表面上运动,正方体的棱长是\(2\),则\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的取值范围为(  )
A.\([0,4]\) \(\qquad \qquad \qquad \qquad\) B.\([0,2]\) \(\qquad \qquad \qquad \qquad\) C.\([1,4]\) \(\qquad \qquad \qquad \qquad\) D.\([1,2]\)
【解析】
image.png
设正方体内切球球心为\(S\)\(MN\)是该内切球的任意一条直径,
则内切球的半径为\(1\)
所以 \(\overrightarrow{P M} \cdot \overrightarrow{P N}=(\overrightarrow{P S}+\overrightarrow{S M}) \cdot(\overrightarrow{P S}+\overrightarrow{S N})=(\overrightarrow{P S}+\overrightarrow{S M}) \cdot(\overrightarrow{P S}-\overrightarrow{S M})\)
\(=\overrightarrow{P S}^2-1 \in[0,2]\)
所以\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的取值范围是\([0,2]\)
故选:\(B\)
 

巩固练习

1 (★★) 已知球\(O\)内切于正四面体\(A-BCD\),且正四面体的棱长为\(2 \sqrt{6}\),线段\(MN\)是球\(O\)的一条动直径(\(M\)\(N\)是直径的两端点),点\(P\)是正四面体\(A-BCD\)的表面上的一个动点,则\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的最大值是\(\underline{\quad \quad}\) .
 

2 (★★★) 已知球\(O\)是棱长为\(2\)的正八面体(八个面都是全等的等边三角形)的内切球,\(MN\)为球\(O\)的一条直径,点\(P\)为正八面体表面上的一个动点,则\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的取值范围是\(\underline{\quad \quad}\)
 

3 (★★★★) 如图,在三棱锥\(D-ABC\)中,已知\(AB=2\)\(\overrightarrow{AC}\cdot \overrightarrow{BD}=-3\),设\(AD=a\)\(BC=b\)\(CD=c\),则 \(\dfrac{c^2}{a b+1}\)的最小值为\(\underline{\quad \quad}\) .
image.png
 
 

参考答案

  1. 【答案】 \(8\)
    【解析】 由正四面体棱长为\(2 \sqrt{6}\),其内切圆的半径为\(1\)
    由题意,\(M,N\)是直径的两端点,可得\(\overrightarrow{O M}+\overrightarrow{O N}=\overrightarrow{0}\)\(\overrightarrow{O M} \cdot \overrightarrow{O N}=-1\)
    \(\overrightarrow{P M} \cdot \overrightarrow{P N}=(\overrightarrow{P O}+\overrightarrow{O M}) \cdot(\overrightarrow{P O}+\overrightarrow{O N})\)\(=\overrightarrow{P O^{2}}+\overrightarrow{P O} \cdot(\overrightarrow{0 M}+\overrightarrow{O N})+\overrightarrow{O M} \cdot \overrightarrow{O N}\)\(=\overrightarrow{P O^{2}}+0-1=\overrightarrow{P O^{2}}-1\)
    当点\(P\)在正四面体顶点时,\(\overrightarrow{P O}^{2}\)最大,且最大值为\(9\)
    \(\overrightarrow{P O}^{2}-1\)的最大值为\(8\).

  2. 【答案】 \(\left[\dfrac{1}{3}, \dfrac{4}{3}\right]\)
    【解析】 设球\(O\)的半径为\(R\)
    \(\dfrac{1}{2}×\sqrt{2}×1=\dfrac{1}{2}×\sqrt{3}×R\),解得\(R=\dfrac{\sqrt{6}}{3}\)
    \(|\overrightarrow{OP}|\in [1,\sqrt{2}]\)
    \(\overrightarrow{P M} \cdot \overrightarrow{P N}=(\overrightarrow{O M}-\overrightarrow{O P}) \cdot(\overrightarrow{O N}-\overrightarrow{O P})=\overrightarrow{O P^2}-\vec{R}^2\)\(=\overrightarrow{O P}^2-\dfrac{2}{3} \in\left[\dfrac{1}{3}, \dfrac{4}{3}\right]\)
    故答案为:\(\left[\dfrac{1}{3}, \dfrac{4}{3}\right]\)
    image.png

  3. 【答案】 \(2\)
    【解析】 \(\because\)在三棱锥\(D-ABC\)中,\(AB=2\)\(\overrightarrow{AC}\cdot \overrightarrow{BD}=-3\)
    \(\overrightarrow{AD}=\vec{a}\)\(\overrightarrow{BC}=\vec{b}\)\(\overrightarrow{CD}=\vec{c}\)
    \(\therefore \overrightarrow{AC}=\vec{a}-\vec{c}\)\(\overrightarrow{BD}=\vec{b}+\vec{c}\)
    \(\therefore \overrightarrow{AC}\cdot \overrightarrow{BD}=(\vec{a}-\vec{c})\cdot (\vec{b}+\vec{c})=\vec{a}\cdot \vec{b}+\vec{a}\cdot \vec{c}-\vec{b}\cdot \vec{c}-\vec{c}^2=-3\)
    \(\therefore \vec{c}^2=\vec{a}\cdot \vec{b}+\vec{a}\cdot \vec{c}-\vec{b}\cdot \vec{c}+3\)
    \(\overrightarrow{AB}=\vec{a}-\overrightarrow{BD}=\vec{a}-\vec{b}-\vec{c}\)\(\therefore |(\vec{a}-\vec{b})-\vec{c}|=2\),①
    \(\therefore \dfrac{c^2}{a b+1}=\dfrac{\vec{a} \cdot \vec{b}+(\vec{a}-\vec{b}) \cdot \vec{c}+3}{a b+1}\),②
    将①两边平方得\((\vec{a}-\vec{b})^2+\vec{c}^2-2(\vec{a}-\vec{b})\cdot \vec{c}=4\)
    \(\therefore (\vec{a}-\vec{b})^2+\vec{c}^2-4=2(\vec{a}-\vec{b})\cdot \vec{c}\)
    \(\therefore \dfrac{(\vec{a}-\vec{b})^2}{2}+\dfrac{\vec{c}^2}{2}-2=(\vec{a}-\vec{b}) \cdot \vec{c}\)
    代入②中,得 \(\dfrac{c^2}{a b+1}=\dfrac{\vec{a} \cdot \vec{b}+\dfrac{(\vec{a}-\vec{b})^2}{2}+\dfrac{\vec{c}^2}{2}+1}{a b+1}\)
    \(\therefore \dfrac{1}{2} \vec{c}^2=\vec{a} \cdot \vec{b}+1+\dfrac{(\vec{a}-\vec{b})^2}{2}=\vec{a} \cdot \vec{b}+1+\dfrac{1}{2}\left(\vec{a}^2+\vec{b}^2-2 \vec{a} \cdot \vec{b}\right)\)
    \(=1+\dfrac{1}{2}\left(\vec{a}^2+\vec{b}^2\right)\)
    \(\therefore \vec{c}^2=2+\vec{a}^2+\vec{b}^2\)
    \(\vec{c}^2=c^2\)\(\vec{a}^2=a^2\)\(\vec{b}^2=b^2\)
    \(\therefore \dfrac{c^2}{a b+1}=\dfrac{2+a^2+b^2}{a b+1} \geq \dfrac{2+2 a b}{a b+1}=2\)
    \(\therefore \dfrac{c^2}{a b+1}\)的最小值为\(2\)
    故答案为:\(2\)

posted @ 2023-05-11 16:00  贵哥讲数学  阅读(199)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏