7.3.1 离散型随机变量的均值

基础知识

概念

一般地,随机变量\(X\)的概率分布列为

\(X\) \(x_1\) \(x_2\) \(x_i\) \(x_n\)
\(P\) \(p_1\) \(p_2\) \(p_i\) \(p_n\)

则称\(E(X)=x_1 p_1+x_2 p_2+\cdots+x_i p_i+\cdots+x_n p_n=\sum_{i=1}^n x_i p_i\)\(X\)的数学期望或均值,简称为期望.
它是随机变量可能取值关于取值概率的加权平均数,反映了离散型随机变量取值的平均水平.
 

期望的性质

\(Y=a X+b\),其中\(a\)\(b\)为常数,则\(Y\)也是变量

$Y$ $aX_1+b$ $aX_2+b$ $aX_i+b$ $aX_n+b$
$P$ $p_1$ $p_2$ $p_i$ $p_n$

\(E (Y)=a E(X)+b\),即\(E(a X+b)=a E(X)+b\).
证明 \(E(a X+b)=\left(a x_1+b\right) p_1+\left(a x_2+b\right) p_2+\cdots+\left(a x_n+b\right) p_n\)
\(=a(x_1 p_1+x_2 p_2+⋯+x_n p_n )+b(p_1+p_2+⋯+p_n )=a E(X)+b\).
 

两点分布的期望

\(X\)服从两点分布,则\(E(X)=p\).
证明 \(E(X)=1× p+0×(1-p)=p\).
 

基本方法

【题型1】 求随机变量的期望

【典题1】 小张的公司年会有一小游戏:箱子中有材质和大小完全相同的六个小球,其中三个球标有号码\(1\),两个球标有号码\(2\),一个球标有号码\(3\),有放回的从箱子中取两次球,每次取一个,设第一个球的号码是\(x\),第二个球的号码是\(y\),记\(\xi=x+2y\),则\(P(\xi=7)=\) \(\underline{\quad \quad}\);若公司规定\(\xi=9\)\(8\)\(7\)时,分别为一二三等奖,奖金分别为\(1000\)元,\(500\)元,\(200\)元,其余无奖.则小张玩游戏一次获得奖金的期望为\(\underline{\quad \quad}\) 元.
解析 抽中号码是\(1\)的概率为\(\dfrac{1}{2}\),抽中号码是\(2\)的概率为\(\dfrac{1}{3}\),抽中号码是\(3\)的概率为\(\dfrac{1}{6}\)
\(x+2y=7\),则有\(\left\{\begin{array}{l} x=1 \\ y=3 \end{array}\right.\)\(\left\{\begin{array}{l} x=3 \\ y=2 \end{array}\right.\)两种情况,
所以\(P(\xi=7)=\dfrac{1}{2} \times \dfrac{1}{6}+\dfrac{1}{6} \times \dfrac{1}{3}=\dfrac{5}{36}\)
\(P(\xi=8)=P(x=2, \quad y=3)=\dfrac{1}{3} \times \dfrac{1}{6}=\dfrac{1}{18}\)
\(P(\xi=9)=P(x=3,y=3)=\dfrac{1}{6}\times \dfrac{1}{6}=\dfrac{1}{36}\)
所以玩游戏一次获得奖金的期望为
\(E(获得奖金)=1000 \times \dfrac{1}{36}+500 \times \dfrac{1}{18}+200 \times \dfrac{5}{36}=\dfrac{250}{3}\)
故答案为:\(\dfrac{5}{36}\)\(\dfrac{250}{3}\)
点拨 期望是随机变量可能取值关于取值概率的加权平均数,反映了离散型随机变量取值的平均水平.故本题中所求出的期望值肯定在\([0,1000]\)内,且向占比大的奖金数值靠拢,这可检查所求值是否合理,避免由于计算出错导致扣分.
 

【典题2】 在甲、乙等\(6\)个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为\(1\)\(2\),…,\(6\)),求:
  (1)甲、乙两单位的演出序号至少有一个为奇数的概率;
  (2)甲、乙两单位之间的演出单位个数\(\xi\)的分布列与数学期望.
解析 只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数.
(1)设\(A\)表示“甲、乙的演出序号至少有一个为奇数”,则\(\bar{A}\)表示“甲、乙的演出序号均为偶数”,
由等可能性事件的概率计算公式得
\(P(A)=1-P(\bar{A})=1-\dfrac{C_3^2}{C_6^2}=1-\dfrac{1}{5}=\dfrac{4}{5}\)
(2)\(\xi\)的所有可能值为\(0\)\(1\)\(2\)\(3\)\(4\),且
\(P(\xi=0)=\dfrac{5}{C_6^2}=\dfrac{1}{3}\)\(P(\xi=1)=\dfrac{4}{C_6^2}=\dfrac{4}{15}\)\(P(\xi=2)=\dfrac{3}{C_6^2}=\dfrac{1}{5}\)
\(P(\xi=3)=\dfrac{2}{C_6^2}=\dfrac{2}{15}\)\(P(\xi=4)=\dfrac{1}{C_6^2}=\dfrac{1}{15}\)
从而知\(\xi\)的分布列为

\(\xi\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(P\) \(\dfrac{1}{3}\) \(\dfrac{4}{15}\) \(\dfrac{1}{5}\) \(\dfrac{2}{15}\) \(\dfrac{1}{15}\)

\(\therefore E(\xi)=0 \times \dfrac{1}{3}+1 \times \dfrac{4}{15}+2 \times \dfrac{1}{5}+3 \times \dfrac{2}{15}+4 \times \dfrac{1}{15}=\dfrac{4}{3}\)
 

【巩固练习】

1.设随机变量\(X\)的分布列为\(P(X=k)=\dfrac{1}{4}\)\(k=1\)\(2\)\(3\)\(4\),则\(E(X)\)的值为(  )
 A.\(2.5\) \(\qquad \qquad \qquad \qquad\) B.\(3.5\) \(\qquad \qquad \qquad \qquad\) C.\(0.25\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

2.甲、乙两台自动车床生产同种标准件,\(X\)表示甲车床生产\(1 000\)件产品中的次品数,\(Y\)表示乙车床生产\(1 000\)件产品中的次品数,经一段时间考察,\(X\)\(Y\)的分布列分别是:

\(X\) \(0\) \(1\) \(2\) \(3\) \(Y\) \(0\) \(1\) \(2\) \(3\)
\(P\) \(0.7\) \(0.1\) \(0.1\) \(0.1\) \(P\) \(0.5\) \(0.3\) \(0.2\) \(0\)

据此判定(  )
 A.甲比乙质量好 \(\qquad \qquad \qquad\) B.乙比甲质量好 \(\qquad \qquad \qquad\) C.甲与乙质量相同 \(\qquad \qquad \qquad\) D.无法判定.
 

3.某工厂生产甲、乙两种产品,甲产品的一等品率为\(80\%\),二等品率为\(20\%\);乙产品的一等品率为\(90\%\),二等品率为\(10\%\).生产\(1\)件甲产品,若是一等品,则获利\(4\)万元,若是二等品,则亏损\(1\)万元;生产\(1\)件乙产品,若是一等品,则获利\(6\)万元,若是二等品,则亏损\(2\)万元.两种产品的生产质量相互独立.设生产\(1\)件甲产品和\(1\)件乙产品可获得的总利润为\(X\),求该工厂生产甲、乙产品各\(1\)件获得利润的数学期望.
 
 
 

4.甲、乙两袋装有除颜色外其余均相同的白球和黑球若干个,其中甲袋装有\(2\)个白球,\(2\)个黑球;乙袋装有一个白球,\(3\)个黑球;现从甲、乙两袋中各抽取\(2\)个球,记取到白球的个数为\(\xi\),求\(\xi\)的数学期望.
 
 
 

5.甲、乙两名运动员站在\(A\)\(B\)\(C\)三处进行定点投篮训练,每人在这三处各投篮一次,每人每次投篮是否投中均相互独立,且甲、乙两人在\(A\)\(B\)\(C\)三处投中的概率均分别为\(\dfrac{1}{2}\)\(\dfrac{1}{3}\)\(\dfrac{1}{4}\).设\(X\)表示甲运动员投中的个数,求随机变量\(X\)的数学期望.
 
 
 

6.在某运动会上,有甲队女排与乙队女排以“五局三胜”制进行比赛,其中甲队是“慢热”型队伍,根据以往的经验,首场比赛甲队获胜的概率为\(P\),决胜局(第五局)甲队获胜的概率为\(\dfrac{2}{3}\),其余各局甲队获胜的概率均为\(\dfrac{1}{2}\)
  (1)求甲队以\(3:2\)获胜的概率;
  (2)现已知甲队以\(3:0\)获胜的概率是\(\dfrac{1}{12}\),若比赛结果为\(3:0\)\(3:1\),则胜利方得\(3\)分,对方得\(0\)分;若比赛结果为\(3:2\),则胜利方得\(2\)分,对方得\(1\)分,求甲队得分的数学期望.
 
 
 

参考答案

  1. 答案 \(A\)
    解析 \(E(X)=1\times \dfrac{1}{4}+2\times \dfrac{1}{4}+3\times \dfrac{1}{4}+4\times \dfrac{1}{4}=2.5\)
  2. 答案 \(A\)
    解析 \(E(X)=0\times 0.7+1\times 0.1+2\times 0.1+3\times 0.1=0.6\)
    \(E(Y)=0\times 0.5+1\times 0.3+2\times 0.2+3\times 0=0.7\)
    由于\(E(Y)>E(X)\),故甲比乙质量好.
  3. 答案 \(8.2\)
    解析 由题设知,\(X\)的取值为\(10\)\(5\)\(2\)\(-3\)
    \(P(X=10)=0.8\times 0.9=0.72\)\(P(X=5)=0.2\times 0.9=0.18\)
    \(P(X=2)=0.8\times 0.1=0.08\)\(P(X=-3)=0.2\times 0.1=0.02\)
    \(\therefore X\)的分布列为
\(X\) \(10\) \(5\) \(2\) \(-3\)
\(P\) \(0.72\) \(0.18\) \(0.08\) \(0.02\)

\(E(X)=10\times 0.72+5\times 0.18+2\times 0.08-3\times 0.02=8.2\)(万元).
\(\therefore\)获得利润的数学期望为\(8.2\)万元.

  1. 答案 \(\dfrac{3}{2}\)
    解析 由题意可得:\(\xi=0\)\(1\)\(2\)\(3\)
    \(P(\xi=0)=\dfrac{C_2^2 C_3^2}{C_4^2 C_4^2}=\dfrac{1}{12}\)\(P(\xi=1)=\dfrac{C_2^1 C_2^1 C_3^2+C_2^2 C_1^1 C_3^1}{C_4^2 c_4^2}=\dfrac{5}{12}\)
    \(P(\xi=2)=\dfrac{C_2^2 C_3^2+C_2^1 C_2^1 C_1^1 C_3^1}{C_4^2 C_4^2}=\dfrac{5}{12}\)\(P(\xi=3)=\dfrac{C_2^2 C_1^1 c_3^1}{C_4^2 C_4^2}=\dfrac{1}{12}\)
    可得其分布列:
\(\xi\) \(0\) \(1\) \(2\) \(3\)
\(P\) \(\dfrac{1}{12}\) \(\dfrac{5}{12}\) \(\dfrac{5}{12}\) \(\dfrac{1}{12}\)

\(E(\xi)=0 \times \dfrac{1}{12}+1 \times \dfrac{5}{12}+2 \times \dfrac{5}{12}+3 \times \dfrac{1}{12}=\dfrac{3}{2}\).

  1. 答案 \(\dfrac{13}{12}\)
    解析 (1)根据题意可知,随机变量\(X\)的所有可能取值为\(0\)\(1\)\(2\)\(3\)
    所以 \(P(X=0)=\left(1-\dfrac{1}{2}\right) \times\left(1-\dfrac{1}{3}\right) \times\left(1-\dfrac{1}{4}\right)=\dfrac{1}{4}\)
    \(P(X=1)=\dfrac{1}{2} \times\left(1-\dfrac{1}{3}\right) \times\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{2}\right) \times \dfrac{1}{3} \times\left(1-\dfrac{1}{4}\right)\)\(+\left(1-\dfrac{1}{2}\right) \times\left(1-\dfrac{1}{3}\right) \times \dfrac{1}{4}=\dfrac{11}{24}\)
    \(P(X=2)=\dfrac{1}{2} \times \dfrac{1}{3} \times\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{2}\right) \times \dfrac{1}{3} \times \dfrac{1}{4}+\dfrac{1}{2} \times\left(1-\dfrac{1}{3}\right) \times \dfrac{1}{4}=\dfrac{1}{4}\)
    \(P(X=3)=\dfrac{1}{2} \times \dfrac{1}{3} \times \dfrac{1}{4}=\dfrac{1}{24}\)
    所以随机变量\(X\)的分布列为:
\(\xi\) \(0\) \(1\) \(2\) \(3\)
\(P\) \(\dfrac{1}{4}\) \(\dfrac{11}{24}\) \(\dfrac{1}{4}\) \(\dfrac{1}{24}\)

随机变量\(X\)的数学期望为 \(E(X)=0 \times \dfrac{1}{4}+1 \times \dfrac{11}{24}+2 \times \dfrac{1}{4}+3 \times \dfrac{1}{24}=\dfrac{13}{12}\).

  1. 答案 (1)\(\dfrac{1}{4}\);(2) \(\dfrac{11}{8}\)
    解析 (1)记甲以\(3:2\)获胜为事件\(A\)
    \(P(A)=P \times C_3^1 \times \dfrac{1}{2} \times\left(\dfrac{1}{2}\right)^2 \times \dfrac{2}{3}+(1-P) \times C_3^2\left(\dfrac{1}{2}\right)^2 \times \dfrac{1}{2} \times \dfrac{2}{3}=\dfrac{1}{4}\)
    (2) \(\because\)甲以\(3:0\)获胜的概率为 \(\dfrac{1}{12}\)
    \(\therefore p \times\left(\dfrac{1}{2}\right)^2=\dfrac{1}{12}\),解得\(p=\dfrac{1}{3}\)
    记甲的得分为\(X\),则\(X\)的取值为\(0\)\(1\)\(2\)\(3\)
    \(P(X=3)=\dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}+\dfrac{2}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}+\dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2} \times 2=\dfrac{1}{4}\)
    \(P(X=2)=P(A)=\dfrac{1}{4}\)
    \(P(X=1)=\dfrac{2}{3} \times C_3^1 \times\left(\dfrac{1}{2}\right)^3 \times \dfrac{1}{3}+\dfrac{1}{3} C_3^2\left(\dfrac{1}{2}\right)^3 \times \dfrac{1}{3}=\dfrac{1}{8}\)
    \(P(X=0)=\dfrac{2}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}+\dfrac{2}{3} \times C_2^1\left(\dfrac{1}{2}\right)^3+\dfrac{1}{3} \times\left(\dfrac{1}{2}\right)^3=\dfrac{3}{8}\)
    所以\(X\)的分布列为:
\(X\) \(0\) \(1\) \(2\) \(3\)
\(P\) \(\dfrac{3}{8}\) \(\dfrac{1}{8}\) \(\dfrac{1}{4}\) \(\dfrac{1}{4}\)

\(\therefore E(X)=0 \times \dfrac{3}{8}+1 \times \dfrac{1}{8}+2 \times \dfrac{1}{4}+3 \times \dfrac{1}{4}=\dfrac{11}{8}\)
 

【题型2】 期望的性质

【典题1】 已知随机变量\(\xi\)的分布列为

\(\xi\) \(-1\) \(0\) \(1\)
\(P\) \(\dfrac{1}{2}\) \(\dfrac{1}{3}\) \(m\)

\(\eta =a\xi+3\)\(E(\eta)=\dfrac{7}{3}\),则\(a=\) (  )
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
解析 由分布列的性质得\(\dfrac{1}{2}+\dfrac{1}{3}+m=1\)\(\therefore m=\dfrac{1}{6}\)
\(\therefore E(\xi)=-1\times \dfrac{1}{2}+0\times \dfrac{1}{3}+1\times \dfrac{1}{6}=-\dfrac{1}{3}\)
\(\therefore E(\eta)=E(a \xi+3)=a E(\xi)+3=-\dfrac{1}{3} a+3=\dfrac{7}{3}\)
\(\therefore a=2\)
 

【巩固练习】

1.设\(E(\xi)=10\),则\(E(3\xi+5)=\)(  )
 A.\(35\) \(\qquad \qquad \qquad \qquad\) B.\(40\) \(\qquad \qquad \qquad \qquad\) C.\(30\) \(\qquad \qquad \qquad \qquad\) D.\(15\)
 

  1. 已知\(X\)分布列如图,设\(Y=2X-1\),则\(Y\)的数学期望\(E(Y)\)的值是(  )
\(X\) \(-1\) \(0\) \(1\)
\(P\) \(\dfrac{1}{2}\) \(\dfrac{1}{6}\) \(a\)

 A.\(\dfrac{11}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{8}{3}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{11}{6}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{2}\)
 

3.随机变量\(\xi\)的分布列如下,且满足\(E(\xi)=2\),则\(E(a\xi+b)\)的值(  )

\(\xi\) \(1\) \(2\) \(3\)
\(P\) \(a\) \(b\) \(c\)

 A.\(0\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.无法确定,与\(a\)\(b\)有关
 
 

参考答案

  1. 答案 \(A\)
    解析 \(\because E(\xi)=10\)\(\therefore E(3\xi+5)=3E(\xi)+5=3\times 10+5=35\)

  2. 答案 \(B\)
    解析 由已知得\(\dfrac{1}{2}+\dfrac{1}{6}+a=1\)\(\therefore a=\dfrac{1}{3}\)
    \(\therefore E(X)=\dfrac{1}{2}+\dfrac{1}{3}+1=\dfrac{11}{6}\)
    \(\because E(Y)=2E(X)-1\)\(\therefore E(Y)=\dfrac{8}{3}\)
    故选:\(B\)

  3. 答案 \(B\)
    解析 \(\because E(\xi)=2\)
    \(\therefore\)由随机变量\(\xi\)的分布列得到:\(a+2b+3c=2\)
    \(a+b+c=1\),解得\(a=c\)\(\therefore 2a+b=1\)
    \(\therefore E(a\xi+b)=aE(\xi)+b=2a+b=1\)
    故选:\(B\)
     

分层练习

【A组---基础题】

1.已知\(X\)分布列如图,设\(Y=2X+1\),则\(Y\)的数学期望\(E(Y)\)的值是(  )

\(X\) \(-1\) \(0\) \(1\)
\(P\) \(\dfrac{1}{2}\) \(\dfrac{1}{6}\) \(a\)

 A.\(-\dfrac{1}{6}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{2}{3}\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{29}{36}\)
 

2.设\(0<p<1\),随机变量\(X\)的分布列为

\(X\) \(1\) \(2\) \(3\)
\(P\) \(p^2\) \(1-p\) \(p-p^2\)

\(X\)的数学期望取得最大值时,\(p=\)(  )
 A.\(\dfrac{1}{8}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{4}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{1}{3}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{2}\)
 

3.某城市有甲、乙、丙\(3\)个旅游景点,一位客人游览这三个景点的概率分别是\(0.4\)\(0.5\)\(0.6\),且客人是否游览哪个景点互不影响,设\(\xi\)表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.则\(E(\xi)=\)(  )
 A.\(1.48\) \(\qquad \qquad \qquad \qquad\) B.\(0.76\) \(\qquad \qquad \qquad \qquad\) C.\(0.24\) \(\qquad \qquad \qquad \qquad\) D.\(1\)
 

4.(多选)一盒中有\(8\)个乒乓球,其中\(6\)个未使用过,\(2\)个已使用过.现从盒子中任取\(3\)个球来用,用完后再装回盒中.记盒中已使用过的球的个数为\(X\),则下列结论正确的是(  )
 A.\(X\)的所有可能取值是\(3\)\(4\)\(5\) \(\qquad \qquad \qquad \qquad\) B.\(X\)最有可能的取值是\(5\)
 C.\(X\)等于\(3\)的概率为 \(\dfrac{3}{28}\) \(\qquad \qquad \qquad \qquad \qquad\) D.\(X\)的数学期望是 \(\dfrac{17}{4}\)
 

5.马老师从课本上抄录一个随机变量\(\xi\)的概率分布列如下表:

\(X\) \(1\) \(2\) \(3\)
\(P(\xi=x)\) \(?\) \(!\) \(?\)

请小牛同学计算\(\xi\)的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案\(E(\xi)=\) \(\underline{\quad \quad}\)
 

6.设\(\xi\)的分布列为

\(\xi\) \(1\) \(2\) \(3\) \(4\)
\(P\) \(\dfrac{1}{6}\) \(\dfrac{1}{6}\) \(\dfrac{1}{3}\) \(\dfrac{1}{3}\)

又设\(\eta =2\xi+5\),则\(E(\eta )=\) \(\underline{\quad \quad}\)
 

7.某商场在儿童节矩形回馈顾客活动,凡在商场消费满\(100\)元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击\(3\)次,一旦击中,则可获奖且不再继续射击,否则一直射击到\(3\)次为止,设甲每次击中的概率为\(p(p≠0)\),射击参数为\(\eta\),若\(\eta\)的数学期望\(E(\eta)>\dfrac{7}{4}\),则\(p\)的取值范围是\(\underline{\quad \quad}\)
 

8.现有\(5\)张完全一样的纸牌(有正反面之分)放在桌面上,初始状态是\(3\)张纸牌正面朝上,\(2\)张纸牌正面朝下,若每次只能随机翻一张纸牌,记\(\xi_i\)表示第\(i\)次翻纸牌后正面朝上的纸牌数,则\(P(\xi_2=3)\)= \(\underline{\quad \quad}\)\(E(\xi_2 )=\) \(\underline{\quad \quad}\)
 

9.甲、乙、丙三人进行乒乓球挑战赛(其中两人比赛,另一人当裁判,每局结束时,负方在下一局当裁判),设在情况对等中各局比赛双方获胜的概率均为\(\dfrac{1}{2}\),但每局比赛结束时,胜的一方在下一局比赛时受体力影响,胜的概率均降为\(\dfrac{2}{5}\),第一局甲当裁判.
  (1)求第三局甲当裁判的概率;
  (2)设\(X\)表示前\(4\)局乙当裁判次数,求\(X\)的分布列和数学期望.
 
 

10.某单位招聘面试,每次从试题库中随机调用一道试题.若调用的是\(A\)类型试题,则使用后该试题回库,并增补一道\(A\)类型试题和一道\(B\)类型试题入库,此次调题工作结束,若调用的是\(B\)类型试题,则使用后该试题回库,此次调题工作结束.试题库中现有\(n+m\)道试题,其中有\(n\)\(A\)类型试题和\(m\)\(B\)类型试题.以\(X\)表示两次调题工作完成后,试题库中\(A\)类型试题的数量.
  (1)求\(X=n+2\)的概率;
  (2)设\(m=n\),求\(X\)的分布列和均值(数学期望).
 
 

11.甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得\(3\)分;如果只有一个人投中,则“虎队”得\(1\)分;如果两人都没投中,则“虎队”得\(0\)分.已知甲每轮投中的概率是\(\dfrac{3}{4}\),乙每轮投中的概率是\(\dfrac{2}{3}\);每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.
  (1)假设“虎队”参加两轮活动,求:“虎队”至少投中\(3\)个的概率;
  (2)①设“虎队”两轮得分之和为\(X\),求\(X\)的分布列;
\(\qquad\) ②设“虎队”\(n\)轮得分之和为\(X_n\),求\(X_n\)的期望值.
(参考公式\(E(X+Y)=EX+EY\))
 
 

参考答案

  1. 答案 \(B\)
    解析 由已知得\(\dfrac{1}{2}+\dfrac{1}{6}+a=1\)\(\therefore a=\dfrac{1}{3}\)
    \(\therefore E(X)=-\dfrac{1}{2}+\dfrac{1}{3}=-\dfrac{1}{6}\)
    \(\because E(Y)=2E(X)+1\)\(\therefore E(Y)=\dfrac{2}{3}\)
    故选:\(B\)

  2. 答案 \(B\)
    解析 由随机变量\(X\)的分布列,得: \(\left\{\begin{array}{l} p^2+(1-p)+\left(p-p^2\right)=1 \\ 0<p<1 \\ E(X)=p^2+2(1-p)+3\left(p-p^2\right) \end{array}\right.\)
    \(\therefore E(X)=-2\left(p-\dfrac{1}{4}\right)^2+\dfrac{17}{8}\)
    \(\therefore p=\dfrac{1}{4}\)时,\(X\)的数学期望取得最大值\(\dfrac{17}{8}\)
    故选:\(B\)

  3. 答案 \(A\)
    解析 \(\xi\)的分布列为

\(\xi\) \(1\) \(3\)
\(P\) \(0.76\) \(0.24\)

\(E(\xi)=1\times 0.76+3\times 0.24=1.48\)

  1. 答案 \(ACD\)
    解析 记未使用过的乒乓球为\(A\),已使用过的为\(B\)
    任取\(3\)个球的所有可能是:\(1A2B\)\(2A1B\)\(3A\)
    \(A\)使用后成为\(B\),故\(X\)的所有可能取值是\(3\)\(4\)\(5\)
    \(P(X=3)=\dfrac{C_6^1 C_2^2}{C_8^3}=\dfrac{6}{56}=\dfrac{3}{28}\)\(P(X=4)=\dfrac{C_6^2 C_2^1}{C_8^3}=\dfrac{30}{56}\)\(P(X=5)=\dfrac{C_6^3 C_2^0}{C_8^3}=\dfrac{20}{56}\)
    \(X\)最有可能的取值是\(4\)\(E(X)=3 \times \dfrac{3}{28}+4 \times \dfrac{30}{56}+5 \times \dfrac{20}{56}=\dfrac{17}{4}\)
    综上,\(ACD\)正确,
    故选:\(ACD\)

  2. 答案 \(2\)
    解析 \(P(\xi=1)=P(\xi=3)=a\)\(P(\xi=2)=b\),则\(2a+b=1\)
    于是,\(E(\xi)=a+2b+3a=2(2a+b)=2\)

  3. 答案 \(\dfrac{32}{3}\)
    解析 \(E(\xi)=1 \times \dfrac{1}{6}+2 \times \dfrac{1}{6}+3 \times \dfrac{1}{3}+4 \times \dfrac{1}{3}=\dfrac{1}{6}+\dfrac{2}{6}+\dfrac{6}{6}+\dfrac{8}{6}=\dfrac{17}{6}\)
    \(\therefore E(\eta)=E(2 \xi+5)=2 E(\xi)+5=2 \times \dfrac{17}{6}+5=\dfrac{32}{3}\)

  4. 答案 \((0,0.5)\)
    解析 根据题意,每次击中的概率为\(p\),即\(P(\eta =1)=p\)
    二次射击成功的概率\(P(\eta =2)=p(1-p)\)
    三次射击成功的概率\(P(\eta =3)=(1-p)^2\)
    \(E(x)=p+2p(1-p)+3(1-p)^2=p^2-3p+3\)
    依题意有\(E(\eta)>\dfrac{7}{4}\),则\(p^2-3p+3>1.75\)
    解可得,\(p>2.5\)\(p<0.5\)
    结合\(p\)的实际意义,可得\(0<p<0.5\),即\(p\in(0,0.5)\)
    故答案为:\((0,0.5)\)

  5. 答案 \(\dfrac{17}{25}\)\(\dfrac{67}{25}\)
    解析 由题意可知\(\xi_2\)的可取\(1\)\(3\)\(5\)
    \(P\left(\xi_2=1\right)=\dfrac{3}{5} \times \dfrac{2}{5}=\dfrac{6}{25}\)\(P\left(\xi_2=3\right)=\dfrac{3}{5} \times \dfrac{3}{5}+\dfrac{2}{5} \times \dfrac{4}{5}=\dfrac{17}{25}\)\(P\left(\xi_2=5\right)=\dfrac{1}{5} \times \dfrac{2}{5}=\dfrac{2}{25}\)
    分布列为

\(\xi_2\) \(1\) \(3\) \(5\)
\(P\) \(\dfrac{6}{25}\) \(\dfrac{17}{25}\) \(\dfrac{2}{25}\)

\(E\left(\xi_2\right)=\dfrac{6}{25} \times 1+\dfrac{17}{25} \times 3+\dfrac{2}{25} \times 5=\dfrac{67}{25}\)
故答案为:\(\dfrac{17}{25}\)\(\dfrac{67}{25}\)

  1. 答案 (1)\(\dfrac{2}{5}\) ;(2)分布列略,数学期望\(\dfrac{28}{25}\)
    解析 (1)第三局甲当裁判的概率为\(\dfrac{1}{2}\times \dfrac{2}{5}+\dfrac{1}{2}\times \dfrac{2}{5}=\dfrac{2}{5}\)
    (2)\(X\)的可能取值为\(0\)\(1\)\(2\)
    \(X=0\)时,前三局乙均胜,故 \(P(X=0)=\dfrac{1}{2} \times\left(\dfrac{2}{5}\right)^2=\dfrac{2}{25}\)
    \(\because\)不能连续两局当裁判,第一局由甲当裁判,故乙只能是第\(2\)\(4\)局当裁判,
    故乙在第一局中输掉,在第三局中也输掉,
    \(P(X=2)=\dfrac{1}{2}\times \dfrac{2}{5}=\dfrac{1}{5}\)
    \(\therefore P(X=1)=1-\dfrac{2}{25}-\dfrac{1}{5}=\dfrac{18}{25}\)
    其分布列为
\(X\) \(0\) \(1\) \(2\)
\(P\) \(\dfrac{2}{25}\) \(\dfrac{18}{25}\) \(\dfrac{1}{5}\)

\(E X=\dfrac{18}{25}+\dfrac{2}{5}=\dfrac{28}{25}\)

  1. 答案 (1)\(\dfrac{n(n+1)}{(m+n)(m+n+2)}\);(2)分布列略,期望\(n+1\)
    解析 (1)以\(A_i\)表示第\(i\)次调题调用到\(A\)类型试题,\(i=1\)\(2\)
    \(P(X=n+2)=P\left(A_1 A_2\right)=\dfrac{n}{m+n} \cdot \dfrac{n+1}{m+n+2}=\dfrac{n(n+1)}{(m+n)(m+n+2)}\)
    (2) \(X\)的可能取值为\(n\)\(n+1\)\(n+2\)
    \(P(X=n)=P\left(\bar{A_1} \bar{A_2}\right)=\dfrac{n}{n+n} \cdot \dfrac{n}{n+n}=\dfrac{1}{4}\)
    \(P(X=n+1)=P\left(A_1 \bar{A_2}\right)+P\left(\bar{A_1} A_2\right)\)\(=\dfrac{n}{n+n} \cdot \dfrac{n+1}{n+n+2}+\dfrac{n}{n+n} \cdot \dfrac{n}{n+n}=\dfrac{1}{2}\)
    \(P(X=n+2)=P\left(A_1 A_2\right)=\dfrac{n}{n+n} \cdot \dfrac{n+1}{n+n+2}=\dfrac{1}{4}\)
    从而\(X\)的分布列是
\(X\) \(n\) \(n+1\) \(n+2\)
\(P\) \(\dfrac{1}{4}\) \(\dfrac{1}{2}\) \(\dfrac{1}{4}\)

\(E(X)=n \times \dfrac{1}{4}+(n+1) \times \dfrac{1}{2}+(n+2) \times \dfrac{1}{4}=n+1\)

  1. 答案 (1) \(\dfrac{2}{3}\);(2)①略,②\(\dfrac{23}{12} n\)
    解析 (1)设甲、乙在第\(n\)轮投中分别记作事件\(A_n\)\(B_n\),“虎队”至少投中\(3\)个记作事件\(C\)
    \(P(C)=P\left(A_1 \overline{A_2} B_1 B_2\right)+P\left(\overline{A_1} A_2 B_1 B_2\right)+P\left(A_1 A_2 B_1 \overline{B_2}\right)+P\left(A_1 A_2 B_1 B_2\right)\)
    \(=C_2^1 \cdot \dfrac{3}{4} \cdot\left(1-\dfrac{3}{4}\right) \cdot\left(\dfrac{2}{3}\right)^2+\left(\dfrac{3}{4}\right)^2 \cdot C_2^1 \cdot \dfrac{2}{3} \cdot\left(1-\dfrac{2}{3}\right)+\left(\dfrac{3}{4}\right)^2 \cdot\left(\dfrac{2}{3}\right)^2=\dfrac{2}{3}\)
    (2)①“虎队”两轮得分之和\(X\)的可能取值为:\(0\)\(1\)\(2\)\(3\)\(4\)\(6\)
    \(P(X=0)=\left(1-\dfrac{3}{4}\right)^2 \cdot\left(1-\dfrac{2}{3}\right)^2=\dfrac{1}{144}\)
    \(P(X=1)=2 \times\left[\dfrac{3}{4} \cdot\left(1-\dfrac{3}{4}\right) \cdot \dfrac{3}{4} \cdot\left(1-\dfrac{2}{3}\right)^2+\left(1-\dfrac{3}{4}\right)^2 \cdot \dfrac{2}{3} \cdot\left(1-\dfrac{2}{3}\right)\right]=\dfrac{10}{144}\)
    \(P(X=2)=\dfrac{3}{4} \cdot\left(1-\dfrac{2}{3}\right) \cdot \dfrac{3}{4} \cdot\left(1-\dfrac{2}{3}\right)+\dfrac{3}{4} \cdot\left(1-\dfrac{2}{3}\right) \cdot\left(1-\dfrac{3}{4}\right) \cdot \dfrac{2}{3}\) \(+\left(1-\dfrac{3}{4}\right) \cdot \dfrac{2}{3} \cdot \dfrac{3}{4} \cdot\left(1-\dfrac{2}{3}\right)+\left(1-\dfrac{3}{4}\right) \cdot \dfrac{2}{3} \cdot\left(1-\dfrac{3}{4}\right) \cdot \dfrac{2}{3}=\dfrac{25}{144}\)
    \(P(X=3)=2 \times\left[\dfrac{3}{4} \cdot \dfrac{2}{3} \cdot\left(1-\dfrac{3}{4}\right) \cdot\left(1-\dfrac{2}{3}\right)\right]=\dfrac{12}{144}\)
    \(P(X=4)=2 \times\left[\dfrac{3}{4} \cdot\left(1-\dfrac{3}{4}\right) \cdot\left(\dfrac{2}{3}\right)^2+\dfrac{2}{3} \cdot\left(1-\dfrac{2}{3}\right) \cdot\left(\dfrac{3}{4}\right)^2\right]=\dfrac{60}{144}\)
    \(P(X=6)=\left(\dfrac{3}{4}\right)^2 \cdot\left(\dfrac{2}{3}\right)^2=\dfrac{36}{144}\)
    \(X\)的分布列如下图所示:
\(\xi\) \(0\) \(1\) \(2\) \(3\) \(4\) \(6\)
\(P\) \(\dfrac{1}{144}\) \(\dfrac{10}{144}\) \(\dfrac{25}{144}\) \(\dfrac{12}{144}\) \(\dfrac{60}{144}\) \(\dfrac{36}{144}\)

\(X_1\)有可能取为\(0\)\(1\)\(3\)
\(P\left(X_1=0\right)=\left(1-\dfrac{3}{4}\right)\left(1-\dfrac{2}{3}\right)=\dfrac{1}{12}\)
\(P\left(X_1=1\right)=\dfrac{3}{4} \cdot\left(1-\dfrac{2}{3}\right)+\left(1-\dfrac{3}{4}\right) \cdot \dfrac{2}{3}=\dfrac{5}{12}\)
\(P\left(X_1=3\right)=\dfrac{3}{4} \cdot \dfrac{2}{3}=\dfrac{6}{12}\)
\(\therefore E X_1=0 \times \dfrac{1}{12}+1 \times \dfrac{5}{12}+3 \times \dfrac{6}{12}=\dfrac{23}{12}\)
设“虎队”\(n\)轮得分之和为\(X_n\)
\(X_n\)的期望值\(E X_n=n E X_1=\dfrac{23}{12} n\)
 

【B组---提高题】

1.(多选)已知随机变量\(X\)的取值为不大于\(n(n\in N^*)\)的非负整数,它的概率分布列为:

\(\xi\) \(0\) \(1\) \(2\) \(3\) \(n\)
\(P\) \(p_0\) \(p_1\) \(p_2\) \(p_3\) \(p_n\)

其中\(p_i (i=0,1,2,3,…,n)\)满足\(p_i\in [0,1]\),且\(p_0+p_1+p_2+⋯+p_n=1\).定义由\(X\)生成的函数\(f(x)=p_0+p_1 x+p_2 x^2+p_3 x^3+⋯+p_i x^i+⋯+p_n x^n\)\(g(x)\)为函数\(f(x)\)的导函数,\(E(X)\)为随机变量\(X\)的期望.现有一枚质地均匀的正四面体型骰子,四个面分别标有\(1\)\(2\)\(3\)\(4\)个点数,这枚骰子连续抛掷两次,向下点数之和为\(X\),此时由\(X\)生成的函数为\(f_1 (x)\),则(  )
 A.\(E(X)=g(2)\) \(\qquad \qquad\) B.\(f_1 (2)=\dfrac{15}{2}\) \(\qquad \qquad\)C.\(E(X)=g(1)\) \(\qquad \qquad\) D. \(f_1(2)=\dfrac{225}{4}\)
 

2.某种机器需要同时装配两个部件\(S\)才能正常运行,且两个部件互不影响,部件\(S\)有两个等级:一等品售价\(5\)千元,使用寿命为\(5\)个月或\(6\)个月(概率均为\(0.5\));二等品售价\(2\)千元使用寿命为\(2\)个月或\(3\)个月(概率均为\(0.5\))
  (1)若从\(4\)件一等品和\(2\)件二等品共\(6\)件部件\(S\)中任取\(2\)件装入机器内,求机器可运行时间不少于\(3\)个月的概率.
  (2)现有两种购置部件\(S\)的方案,方案甲:购置\(2\)件一等品;方案乙:购置\(1\)件一等品和\(2\)件二等品,试从性价比(即机器正常运行时间与购置部件\(S\)的成本之比)角度考虑,选择哪一种方案更实惠.
 
 
 

参考答案

  1. 答案 \(CD\)
    解析 \(X\)的取值为\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)
    \(X\)的分布列为
\(\xi\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\)
\(P\) \(\dfrac{1}{16}\) \(\dfrac{1}{8}\) \(\dfrac{3}{16}\) \(\dfrac{1}{4}\) \(\dfrac{3}{16}\) \(\dfrac{1}{8}\) \(\dfrac{1}{16}\)

\(E(X)=2 \times \dfrac{1}{16}+3 \times \dfrac{1}{8}+4 \times \dfrac{3}{16}+5 \times \dfrac{1}{4}+6 \times \dfrac{3}{16}+7 \times \dfrac{1}{8}+8 \times \dfrac{1}{16}=5\)
\(f_1(x)=\dfrac{1}{16} x^2+\dfrac{1}{8} x^3+\dfrac{3}{16} x^4+\dfrac{1}{4} x^5+\dfrac{3}{16} x^6+\dfrac{1}{8} x^7+\dfrac{1}{16} x^8\)
\(\therefore g(x)=f^{\prime}(x)=\dfrac{1}{8} x+\dfrac{3}{8} x^2+\dfrac{3}{4} x^3+\dfrac{5}{4} x^4+\dfrac{9}{8} x^5+\dfrac{7}{8} x^6+\dfrac{1}{2} x^7\)
\(g(1)=\dfrac{1}{8}+\dfrac{3}{8}+\dfrac{3}{4}+\dfrac{5}{4}+\dfrac{9}{8}+\dfrac{7}{8}+\dfrac{1}{2}=5\)
\(g(2)=\dfrac{1}{8} \times 2+\dfrac{3}{8} \times 2^2+\dfrac{3}{4} \times 2^3+\dfrac{5}{4} \times 2^4+\dfrac{9}{8} \times 2^5+\dfrac{7}{8} \times 2^6+\dfrac{1}{2} \times 2^7=187 \dfrac{3}{4}\)
\(f_1(2)=\dfrac{1}{16} \times 2^2+\dfrac{1}{8} \times 2^3+\dfrac{3}{16} \times 2^4+\dfrac{1}{4} \times 2^5+\dfrac{3}{16} \times 2^6+\dfrac{1}{8} \times 2^7+\dfrac{1}{16} \times 2^8=\dfrac{225}{4}\)
故选:\(CD\)

  1. 答案 (1) \(\dfrac{41}{60}\) (2)从性价比角度考虑,方案乙更实惠.
    解析 (1)由题意知机器运行时间不少于\(3\)个月,共有三种可能:
    第一,取到\(2\)个一等品,对应概率为\(\dfrac{C_4^2}{C_6^2}=\dfrac{2}{5}\)
    第二,取到\(1\)个一等品,\(1\)个二等品,且二等品的使用寿命为\(3\)个月,
    对应概率为\(\dfrac{C_4^1 C_2^1}{C_6^2} \times \dfrac{1}{2}=\dfrac{4}{15}\)
    第三,取到\(2\)个二等品,且二者使用寿命均为\(3\)个月,对应概率为:\(\dfrac{C_2^2}{C_6^2} \times \dfrac{1}{2} \times \dfrac{1}{2}=\dfrac{1}{60}\)
    \(\therefore\)机器可运行时间不少于\(3\)个月的概率 \(P=\dfrac{2}{5}+\dfrac{4}{15}+\dfrac{1}{60}=\dfrac{41}{60}\)
    (2)若采用甲方案,则机器正常运行的时间为\(X\)(单位:月),
    \(X\)的可能取值为\(5\)\(6\)
    \(P(X=6)=\dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4}\)\(P(X=5)=1-P(X=6)=\dfrac{3}{4}\)
    \(X\)的分布列为:
\(X\) \(5\) \(6\)
\(P\) \(\dfrac{3}{4}\) \(\dfrac{1}{4}\)

\(\therefore E(X)=5 \times \dfrac{3}{4}+6 \times \dfrac{1}{4}=\dfrac{21}{4}\)
它与成本价之比为\(\dfrac{E(X)}{5+5}=\dfrac{21}{40}\)
若采用方案乙,两个二等品的使用寿命之和\(Y\)(单位:月),
\(Y\)的可能取值为\(4\)\(5\)\(6\)
\(P(Y=4)=\dfrac{1}{2} \times \dfrac{1}{2}=\dfrac{1}{4}\)\(P(Y=5)=2\times \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{2}\)\(P(Y=6)=\dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4}\)
\(Y\)的分布列为:

\(X\) \(4\) \(5\) \(6\)
\(P\) \(\dfrac{1}{4}\) \(\dfrac{1}{2}\) \(\dfrac{1}{4}\)

\(M\)为一等品的使用寿命(单位:月),此时机器的正常运用时间为\(Z\)
\(Z\)的可能取值为\(4\)\(5\)\(6\)
\(P(Z=4)=P(Y=4)=\dfrac{1}{4}\)
\(P(Z=5)=P(M=5,Y>5)+P(M=6,Y=5)\)\(=\dfrac{1}{2}\times \dfrac{3}{4}+\dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{5}{8}\)
\(P(Z=6)=P(M=y=6)=\dfrac{1}{2}\times \dfrac{1}{4}=\dfrac{1}{8}\)
\(Z\)的分布列为:

\(Z\) \(4\) \(5\) \(6\)
\(P\) \(\dfrac{1}{4}\) \(\dfrac{5}{8}\) \(\dfrac{1}{8}\)

\(E(Z)=4 \times \dfrac{1}{4}+5 \times \dfrac{5}{8}+6 \times \dfrac{1}{8}=\dfrac{39}{8}\)
它与成本价之比为\(\dfrac{E(Z)}{5+2+2}=\dfrac{13}{24}\)
\(\because \dfrac{21}{40}<\dfrac{13}{24}\)\(\therefore\) 从性价比角度考虑,方案乙更实惠.
 

【C组---拓展题】

1.随机变量\(X\)的概率分布列如表:

\(X\) \(0\) \(1\) \(2\) ... \(k\) ... \(12\)
\(P\) \(\dfrac{1}{a}\) \(\dfrac{12}{a}\) \(\dfrac{1}{a} C_{12}^2\) ... \(\dfrac{1}{a} C_{12}^k\) ... \(\dfrac{1}{a}\)

其中\(k=0\)\(1\)\(2\),…,\(12\),则\(E(X)=\)(  )
  A. \(2^{12}\) \(\qquad \qquad \qquad \qquad\) B.\(2^6\) \(\qquad \qquad \qquad \qquad\)C.\(6\) \(\qquad \qquad \qquad \qquad\) D.\(12\)
 
 

参考答案

  1. 答案 \(C\)
    解析 由分布列的归一性:\(\dfrac{1}{a}\left(C_{12}^0+C_{12}^1+\cdots+C_{12}^k+\cdots+C_{12}^{12}\right)=\dfrac{2^{12}}{a}=1\),得\(a=2^{12}\)
    \(E(X)=\dfrac{1}{2^{12}} \cdot\left(0 \cdot C_{12}^0+1 \cdot C_{12}^1+2 C_{12}^2+\cdots+k C_{12}^k+\cdots+12 C_{12}^{12}\right)\) ①,
    \(E(X)=\dfrac{1}{2^{12}}\left[12 \cdot C_{12}^{12}+11 \cdot C_{12}^{11}+10 C_{12}^{10}+\cdots+(12-k) C_{12}^{12-k}+\cdots+0 C_{12}^0\right]\)
    \(=\dfrac{1}{2^{12}}\left[12 \cdot C_{12}^0+11 \cdot C_{12}^1+10 C_{12}^2+\cdots+(12-k) C_{12}^k+\cdots+0 C_{12}^{12}\right]\)②,
    由①+②得 \(2 E(X)=\dfrac{12}{2^{12}}\left(C_{12}^0+C_{12}^1+C_{12}^2+\cdots+C_{12}^k+\cdots+C_{12}^{12}\right)=\dfrac{12}{2^{12}} \cdot 2^{12}=12\)
    所以\(E(X)=6\)
    故选:\(C\)
posted @ 2023-05-08 17:43  贵哥讲数学  阅读(394)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏