8.5.3 平面与平面的平行

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度3颗星!

基础知识

定义

\(\alpha\cap\beta=\varnothing⟹\alpha|| \beta\).
判断
(1) \(\alpha\)内有无穷多条直线都与\(\beta\)平行 ( × );
(2) \(\alpha\)内的任何一条直线都与\(\beta\)平行 ( √ ) .
 

判定定理

如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.
解释
(1) 符号表述:\(a\)\(b\subset\alpha\)\(a\cap b=O\)\(a || \beta\)\(b|| \beta⇒\alpha || \beta\) .

(2) 推论:一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.
符号表述:\(a\)\(b\subset\alpha\)\(a\cap b=O\)\(a'\)\(b'\subset\beta\)\(a|| a'\)\(b ||b' ⇒\alpha|| \beta\).

 

面面平行的性质

(1) \(\left.\begin{array}{c} a \subset \alpha \\ \alpha \| \beta \end{array}\right\} \Rightarrow a \| \beta \quad \text { (面面平行 } \Rightarrow \text { 线面平行) }\)

(2) \(\left.\begin{array}{c} \alpha \| \beta \\ \alpha \cap \gamma=a \\ \beta \cap \gamma=b \end{array}\right\} \Rightarrow a \| b (面面平行 \Rightarrow 线线平行)\)
证明 如下图,\(\because \alpha\cap\gamma=a\)\(\beta\cap\gamma=b\)
\(\therefore a\subset\alpha\)\(b\subset\beta\)
\(\alpha || \beta\)\(\therefore a\)\(b\)没有公共点,
\(a\)\(b\)同在平面\(\gamma\)内,
\(\therefore a//b\).

(3) 夹在两个平行平面间的平行线段相等.
\(\alpha || \beta\)\(AB || CD\)\(A∈\alpha\)\(C∈\alpha\)\(B\in \beta\)\(D\in \beta\),则\(AB=CD\).

 

证明面面平行的方法

① 定义法;
② 判定定理及推论(常用)
 

基本方法

【题型1】 面面平行的判定

【典题1】 \(\alpha\)\(\beta\)是两个不重合的平面,下面说法正确的是(  )
 A.平面\(\alpha\)内有两条直线\(a\)\(b\)都与平面\(\beta\)平行,那么\(\alpha∥\beta\)
 B.平面\(\alpha\)内有无数条直线平行于平面\(\beta\),那么\(\alpha∥\beta\)
 C.若直线\(a\)与平面\(\alpha\)和平面\(\beta\)都平行,那么\(\alpha∥\beta\)
 D.平面\(\alpha\)内所有的直线都与平面\(\beta\)平行,那么\(\alpha∥\beta\)
解析 \(A\)\(B\)都不能保证\(\alpha\)\(\beta\)无公共点,如图①;
\(C\)中当\(a∥\alpha\)\(a∥\beta\)时,\(\alpha\)\(\beta\)可能相交,如图②;
只有\(D\)说明\(\alpha\)\(\beta\)一定无公共点.
image.png
 

【典题2】 如下图所示,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)\(E\)\(F\)\(N\)分别是\(A_1 B_1\)\(B_1 C_1\)\(C_1 D_1\)\(D_1 A_1\)的中点,求证:

  (1)\(E\)\(F\)\(B\)\(D\)四点共面;(2)平面\(MAN∥\)平面\(EFDB\)
证明 (1)连接\(B_1 D_1\)

\(\because E\)\(F\)分别是边\(B_1 C_1\)\(C_1 D_1\)的中点,\(\therefore EF∥B_1 D_1\)
\(BD∥B_1 D_1\)\(\therefore BD∥EF\)
\(\therefore E\)\(F\)\(B\)\(D\)四点共面.
(2) \(\because MN//B_1 D_1\)\(B_1 D_1//BD\)\(\therefore MN∥BD\)
\(MN \not \subset\)平面\(EFDB\)\(DB\subset\)平面\(EFDB\)\(\therefore MN∥\)平面\(EFDB\)
连接\(MF\)\(\because\)\(M\)\(F\)分别是\(A_1 B_1\)\(C_1 D_1\)的中点,
\(\therefore MF∥AD\)\(\therefore\)四边形\(MFDA\)是平行四边形.\(\therefore AM∥DF\)
\(\because AM \not \subset\)平面\(EFDB\)\(\therefore AM∥\)平面\(EFDB\)
\(AM\cap MN=M\)
\(\therefore\)平面\(AMN∥\)平面\(EFDB\)
 

【巩固练习】

1.下列四个命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③平行于两条相交直线的两个平面平行;④与无数条直线都平行的两个平面平行.则其中正确命题的序号是\(\underline{\quad \quad}\)  .
 

2.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(O\)为底面\(ABCD\)的中心,\(P\)\(DD_1\)的中点,设\(Q\)\(CC_1\)上的点,当点\(Q\)\(\underline{\quad \quad}\) 位置时,平面\(D_1 BQ∥\)平面\(PAO\)
image.png
 

3.如图,已知四棱锥\(P-ABCD\)中,底面\(ABCD\)为平行四边形,点\(M\)\(N\)\(Q\)分别是\(PA\)\(BD\)\(PD\)的中点上,
  (1)求证:\(MN∥PC\)\(\qquad \qquad\)(2)求证:平面\(MNQ∥\)平面\(PBC\)
image.png
 
 

4.如图:正方体\(ABCD-A_1 B_1 C_1 D_1\)棱长为\(2\)\(E\)\(F\)分别为\(DD_1\)\(BB_1\)的中点.
  (1)求证:\(CF∥\)平面\(A_1 EC_1\)
  (2)过点\(D\)做正方体截面使其与平面\(A_1 EC_1\)平行,请给以证明并求出该截面的面积.

 
 
 

5.已知正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(P\)\(Q\)分别为对角线\(BD\)\(CD_1\)上的点,且\(\dfrac{C Q}{Q D}=\dfrac{B P}{P D}=\dfrac{2}{3}\).
  (1)作出平面\(PQC\)和平面\(AA_1 D_1 D\)的交线(保留作图痕迹),并求证:\(PQ∥\)平面\(A_1 D_1 DA\)
  (2)若\(R\)\(AB\)上的点,当\(\dfrac{AR}{AB}\)的值为多少时,能使平面\(PQR∥\)平面\(A_1 D_1 DA\)?请给出证明.
image.png
 
 
 

参考答案

  1. 答案 ②③
    解析 ①平行于同一直线的两个平面平行,不正确,如两相交平面,使直线与交线平行;
    ②平行于同一平面的两个平面平行,根据面面平行的性质可知正确;
    ③平行于两条相交直线的两个平面平行,根据面面平行的判定定理可知正确;
    ④与无数条直线都平行的两个平面平行,不正确,如无数直线是平行线就不正确了;
    故答案为:②③
  2. 答案 \(CC_1\)的中点
    解析 在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,
    \(\because O\)为底面\(ABCD\)的中心,\(P\)\(DD_1\)的中点,
    \(\therefore PO∥BD_1\)
    \(Q\)\(CC_1\)上的点,当点\(Q\)\(CC_1\)的中点位置时,
    \(PQ//AB\)\(\therefore\)四边形\(ABQP\)是平行四边形,
    \(\therefore AP∥BQ\)
    \(\because AP\cap PO=P\)\(BQ\cap BD_1=B\)
    \(AP\)\(PO\subset\)平面\(APO\)\(BQ\)\(BD_1\subset\)平面\(BQD_1\)
    \(\therefore\)平面\(D_1 BQ∥\)平面\(PAO\)
  3. 证明 (1)由题意:\(P-ABCD\)是四棱锥,底面\(ABCD\)为平行四边形,
    \(M\)\(N\)\(Q\)分别是\(PA\)\(BD\)\(PD\)的中点上,连接\(AC\)\(\therefore N\)\(AC\)的中点.
    \(\therefore MN\)是三角形\(ACP\)的中位线,
    \(\therefore MN∥PC\)
    (2)由(1)可得\(MN∥PC\)
    \(\because M\)\(Q\)分别在\(PA\)\(PD\)的中点上,
    \(\therefore MQ\)是三角形\(ADP\)的中位线,
    \(\therefore MQ∥PB\)
    \(MQ∥PB\)\(MN∥PC\)\(PB\subset\)平面\(PBC\)\(PC\subset\)平面\(PBC\)\(PB\cap PC=P\)
    同理\(MQ\subset\)平面\(MNQ\)\(MN\subset\)平面\(MNQ\)\(MQ\cap MN=M\)
    \(\therefore\)平面\(MNQ∥\)平面\(PBC\)
     image.png
  4. 答案 (1)略 (2) \(2\sqrt{6}\)
    解析 (1)证明:取\(CC_1\)中点\(M\),连接\(ME\)

    \(MC∥FB_1\)\(MC=FB_1\)可得四边形\(MCFB_1\)为平行四边形,则\(FC∥MB_1\)
    \(ME∥A_1 B_1\)\(ME=A_1 B_1\)可得四边形\(MEA_1 B_1\)为平行四边形,则\(A_1 E∥MB_1\)
    \(A_1 E∥FC\),又\(A_1 E\subset\)平面\(A_1 EC_1\)\(CF \not \subset\)平面\(A_1 EC_1\),则\(FC∥\)平面\(A_1 EC_1\)
    (2)解:取\(AA_1\)\(CC_1\)中点\(G\)\(H\),连接\(DG\)\(CB_1\)\(B_1 H_1\)\(HD\)

    \(\because\)四边形\(ADHF\)为平行四边形,\(\therefore AF∥DH\)
    \(\because\)四边形\(AFB_1 G\)为平行四边形,\(\therefore GB_1∥AF∥DH\)
    \(\therefore GDB_1 H\)即为过点\(D\)长方体截面,
    证明如下:
    \(\because DG∥A_1 E\)\(A_1 E\subset\)平面\(AEC_1\)\(DG \not \subset\)平面\(AEC_1\)\(\therefore DG∥\)平面\(AEC_1\)
    \(\because DH∥C_1 E\)\(C_1 E\subset\)平面\(AEC_1\)\(DH \not \subset\)平面\(AEC_1\)\(\therefore DH∥\)平面\(AEC_1\)
    \(\because DH\cap DG=D\)\(\therefore\)平面\(DHB_1 G∥\)平面\(AEC_1\)
    \(\therefore \mathrm{S}_{\mathrm{GDHB}_1}=\dfrac{1}{2} \times 2 \sqrt{2} \times 2 \sqrt{3}=2 \sqrt{6}\).
  5. 答案 (1)略 (2) 当\(\dfrac{AR}{AB}\)的值为\(\dfrac{3}{5}\)时,能使平面\(PQR∥\)平面\(A_1 D_1 DA\)
    解析 (1)连结\(CP\)并延长与\(DA\)的延长线交于\(M\)点,
    则平面\(PQC\)和平面\(AA_1 D_1 D\)的线为\(D_1 M\)
    因为四边形\(ABCD\)为正方形,所以\(BC∥AD\)
    image.png
    \(△PBC∽△PDM\),所以\(\dfrac{C P}{P M}=\dfrac{B P}{P D}=\dfrac{2}{3}\)
    又因为\(\dfrac{C Q}{Q D_1}=\dfrac{B P}{P D}=\dfrac{2}{3}\),所以\(\dfrac{C Q}{Q D_1}=\dfrac{C P}{P M}=\dfrac{2}{3}\),所以\(PQ∥MD_1\)
    \(MD_1\subset\)平面\(A_1 D_1 DA\)\(PQ\)不在平面\(A_1 D_1 DA\)内,
    \(PQ∥\)平面\(A_1 D_1 DA\)
    (2)当\(\dfrac{AR}{AB}\)的值为\(\dfrac{3}{5}\)时,能使平面\(PQR∥\)平面\(A_1 D_1 DA\)
    image.png
    证明:因为\(\dfrac{A R}{A B}=\dfrac{3}{5}\),即\(\dfrac{B R}{R A}=\dfrac{2}{3}\)
    \(\dfrac{B R}{R A}=\dfrac{B P}{P D}\),所以\(PR∥DA\)
    \(DA\subset\)平面\(A_1 D_1 DA\)\(PR\)不在平面\(A_1 D_1 DA\)内,
    所以\(PR∥\)平面\(A_1 D_1 DA\)
    \(P Q \cap P R=P\)\(PQ∥\)平面\(A_1 D_1 DA\)
    所以平面\(PQR∥\)平面\(A_1 D_1 DA\)
     

【题型2】 面面平行的性质

【典题1】 已知两条直线\(a\)\(b\),两个平面\(\alpha\)\(\beta\),则下列结论中正确的是 (  )
 A.若\(a\subset\beta\),且\(\alpha∥\beta\),则\(a∥\alpha\) \(\qquad \qquad \qquad \qquad\) B.若\(b\subset\alpha\)\(a∥b\),则\(a∥\alpha\)
 C.若\(a∥\beta\)\(\alpha∥\beta\),则\(a∥\alpha\) \(\qquad \qquad \qquad \qquad\) D.若\(b∥\alpha\)\(a∥b\),则\(a∥\alpha\)
解析 \(A\): \(\because \alpha∥\beta\),又\(a\subset\beta\)\(\therefore a∥\alpha\),故\(A\)正确;
\(B\):\(\because b\subset\alpha\)\(a∥b\),若\(a\subset\alpha\),则\(a\)不可能与\(\alpha\)平行,故\(B\)错误;
\(C\): \(\because a∥\beta\)\(\alpha∥\beta\),若\(a\subset\alpha\),则结论不成立,故\(C\)错误;
\(D\): \(\because b∥\alpha\)\(a∥b\),若\(a\subset\alpha\),则结论不成立,故\(D\)错误;
\(A\)正确.
点拨
① 线面的位置关系有三种:\(a∥\alpha\)\(a\subset\alpha\)\(a\cap \alpha=A\)
② 证明某些选项是错只需要举个反例,比如选项\(C\)是怎么会想到“\(a\subset\alpha\)”这个反例的呢?
运用“运动的思想”,先由\(\alpha∥\beta\)固定两个平面\(\alpha\)\(\beta\),再由\(a∥\beta\)把线段\(a\)由上至下“运动”下来,则\(a\)\(\alpha\)的关系有两种情况\(a\subset\alpha\)\(a∥\alpha\).选项\(B\)\(D\)也可类似.
 

【典题2】 如图所示,两条异面直线\(BA\)\(DC\)与两平行平面\(\alpha\)\(\beta\)分别交于\(B\)\(A\)点和\(D\)\(C\)点,\(M\)\(N\)分别是\(AB\)\(CD\)的中点.

求证:\(MN∥\)平面\(\alpha\)
证明 过点\(A\)\(AE∥CD\)\(\alpha\)\(E\),取\(AE\)的中点\(P\),连接\(MP\)\(PN\)\(BE\)\(ED\)\(AC\)
\(\because AE∥CD\)
\(\therefore AE\)\(CD\)确定平面\(AEDC\)
则平面\(AEDC\cap\)平面\(\alpha=DE\),平面\(AEDC\cap\)平面\(\beta=AC\)
\(\because \alpha∥\beta\)\(\therefore AC∥DE\)
\(P\)\(N\)分别为\(AE\)\(CD\)的中点,\(\therefore PN∥DE\)\(PN \not \subset\alpha\)\(DE\subset\alpha\)
\(\therefore PN∥\alpha\).又\(M\)\(P\)分别为\(AB\)\(AE\)的中点,
\(\therefore MP∥BE\),且\(MP \not \subset\alpha\)\(BE\subset\alpha\)
\(\therefore MP∥\alpha\)\(\therefore\)平面\(MPN∥\)平面\(\alpha\)
\(MN\subset\)平面\(MPN\)\(\therefore MN∥\alpha\)

 

【巩固练习】

1.如图,在直三棱柱\(ABC-A_1 B_1 C_1\)中,点\(E\)\(F\)分别是棱\(A_1 C_1\)\(BC\)的中点,则下列结论中不正确的是(  )
image.png
 A.\(CC_1∥\)平面\(A_1 ABB_1\) \(\qquad \qquad \qquad \qquad\) B.\(AF∥\)平面\(A_1 B_1 C_1\)
 C.\(EF∥\)平面\(A_1 ABB_1\) \(\qquad \qquad \qquad \qquad\) D.\(AE∥\)平面\(B_1 BCC_1\)
 

2.如图,各棱长均为\(1\)的正三棱柱\(ABC-A_1 B_1 C_1\)\(M\)\(N\)分别为线段\(A_1 B\)\(B_1 C\)上的动点,且\(MN∥\)平面\(ACC_1 A_1\),则这样的\(MN\)有(  )
image.png
 A.\(1\)\(\qquad \qquad \qquad \qquad\) B.\(2\)\(\qquad \qquad \qquad \qquad\)C.\(3\)\(\qquad \qquad \qquad \qquad\) D.无数条
 

3.如图所示,\(S\)为矩形\(ABCD\)所在平面外一点,\(E\)\(F\)分别是\(SD\)\(BC\)上的点,且\(SE:ED=BF:FC\),求证:\(EF∥\)平面\(SAB\)
image.png
 

4.如图,已知\(\alpha∥\beta\),点\(P\)是平面\(\alpha\)\(\beta\)外的一点(不在\(\alpha\)\(\beta\)之间).直线\(PB\)\(PD\)分别与\(\alpha\)\(\beta\)相交于点\(A\)\(B\)\(C\)\(D\)
image.png
  (1)求证:\(AC∥BD\)
  (2)已知\(PA=4 cm\)\(AB=5 cm\)\(PC=3 cm\),求\(PD\)的长.
 
 
 

参考答案

  1. 答案 \(D\)
    解析在直三棱柱\(ABC-A_1 B_1 C_1\)中,可得\(CC_1∥AA_1\)\(AA_1\subset\)平面\(A_1 ABB_1\)
    \(CC_1 \not \subset\)平面\(A_1 ABB_1\)\(\therefore CC_1∥\)平面\(A_1 ABB_1\),故\(A\)正确;
    \(AF\subset\)平面\(ABC\),在直三棱柱\(ABC-A_1 B_1 C_1\)中,可得平面\(ABC∥\)平面\(A_1 B_1 C_1\)
    所以\(AF∥\)平面\(A_1 B_1 C_1\),故\(B\)正确;
    \(A_1 B_1\)中点\(N\),又\(E\)\(A_1 C_1\)中点,
    所以\(NE∥C_1 B_1\),且\(NE=\dfrac{1}{2}C_1 B_1\)
    \(F\)是棱\(BC\)的中点,所以\(BF=\dfrac{1}{2}C_1 B_1\)\(AF∥C_1 B_1\)
    \(\therefore BF∥NE\)\(BF=NE\)
    所以四边形\(BFEN\)是平行四边形,
    所以\(EF∥BN\)\(BN\subset\)平面\(A_1 ABB_1\)\(EF \not \subset\)平面\(A_1 ABB_1\)
    \(\therefore EF∥\)平面\(A_1 ABB_1\),故\(C\)正确;
    因为\(EC_1∥AC\),但\(EC_1≠AC\),所以\(AE\)\(CC_1\)相交,
    从而有\(AE\)不平行于平面\(B_1 BCC_1\),故\(D\)错误.
    故选:\(D\)
    image.png

  2. 答案 \(D\)
    解析 如图,任取线段\(A_1 B\)上一点\(M\),过\(M\)\(MH∥AA_1\),交\(AB\)\(H\)
    \(H\)\(HG∥AC\)\(BC\)\(G\), 过\(G\)\(CC_1\)的平行线,与\(CB_1\)一定有交点\(N\),且\(MN∥\)平面\(ACC_1 A_1\)
    则这样的\(MN\)有无数个.
    故选:\(D\)
    image.png

  3. 证明 如图所示,在\(SC\)上取一点\(H\),使\(SH:HC=SE:ED\),则\(EH∥DC\)
    \(\because DC∥AB\)\(\therefore EH∥AB\)
    \(\because EH \not \subset\)平面\(SAB\)\(AB\subset\)平面\(SAB\)\(\therefore EH∥\)平面\(SAB\)
    \(\because SE:ED=BF:FC\)\(EH∥DC\)\(\therefore SH:HC=BF:FC\)\(\therefore HF∥BS\)
    \(\because HF \not \subset\)平面\(SAB\)\(BS\subset\)平面\(SAB\)\(\therefore HF∥\)平面\(SAB\)
    \(\because FH\cap HE=H\)\(\therefore\)平面\(EHF∥\)平面\(SAB\)
    \(\because EF\subset\)平面\(EHF\)\(\therefore EF∥\)平面\(SAB\)
    image.png

  4. 答案 (1)略 (2) \(\dfrac{27}{4} \mathrm{~cm}\)
    解析 (1)证明:\(\because PB\cap PD=P\)
    \(\therefore\)直线\(PB\)\(PD\)确定一个平面\(\gamma\),则\(\alpha\cap \gamma=AC\)\(\beta\cap \gamma=BD\)
    \(\alpha∥\beta\)\(\therefore AC∥BD\)
    (2)解:由(1)得\(AC∥BD\)\(\therefore \dfrac{P A}{A B}=\dfrac{P C}{C D}\)
    \(\therefore \dfrac{4}{5}=\dfrac{3}{C D}\)\(\therefore C D=\dfrac{15}{4}\)
    \(\therefore P D=P C+C D=\dfrac{27}{4}(\mathrm{~cm})\)
     

【题型3】 综合应用

【典题1】 如图,在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(AD=DD_1=1\)\(AB=\sqrt{3}\)\(E\)\(F\)\(G\)分别为\(AB\)\(BC\)\(C_1 D_1\)的中点,点\(P\)在平面\(ABCD\)内,若直线\(D_1 P∥\)平面\(EFG\),则\(D_1\)与满足题意的\(P\)构成的平面截正方体的截面面积为(  )
image.png
 A. \(\dfrac{2 \sqrt{2}}{3}\)\(\qquad \qquad \qquad \qquad\) B. \(\dfrac{\sqrt{6}}{2}\) \(\qquad \qquad \qquad \qquad\)C.\(\dfrac{\sqrt{5}}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{\sqrt{7}}{2}\)
解析 \(\because E\)\(F\)\(G\)分别为\(AB\)\(BC\)\(C_1 D_1\)的中点,
\(\therefore AC∥EF\)\(AD_1∥EG\)
\(\because AC\subset\)\(ACD_1\)\(EF \not \subset\)\(ACD_1\)
\(\therefore EF∥\)\(ACD_1\)
同理可证\(EG∥\)\(ACD_1\)
\(\because EF\subset\)\(EFG\)\(EG\subset\)\(EFG\)\(EF\cap EG=E\)
\(\therefore 面ACD_1∥\)\(EFG\)
即点\(P\)在直线\(AC\)上,则\(D_1\)与满足题意的\(P\)构成的平面截正方体的截面为\(△ACD_1\)
\(△ACD_1\)中,有\(AD_1=\sqrt{2}\)\(AC=2\)\(CD_1=2\)
\(\therefore S_{\triangle A C D_1}=\dfrac{1}{2} \times \sqrt{2} \times \sqrt{2^2-\left(\dfrac{\sqrt{2}}{2}\right)^2}=\dfrac{\sqrt{7}}{2}\)
故选:\(D\)
 

【巩固练习】

1.已知平面\(\alpha∥\)平面\(\beta\)\(P\)\(\alpha\)\(\beta\)外一点,过点\(P\)的直线\(m\)\(\alpha\)\(\beta\)分别交于点\(A\)\(C\),过点\(P\)的直线\(n\)\(\alpha\)\(\beta\)分别交于点\(B\)\(D\),且\(PA=6\)\(AC=9\)\(PD=8\),则\(BD\)的长为(  )
 A.\(\dfrac{24}{5}\) \(\qquad \qquad \qquad \qquad\)B.\(\dfrac{12}{5}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{24}{5}\)\(24\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{12}{5}\)\(12\)
 

2.如图,已知四棱锥\(P﹣ABCD\)的底面是平行四边形,\(AC\)\(BD\)于点\(O\)\(E\)\(AD\)中点,\(F\)\(PA\)上,\(AP=λAF\)\(PC∥\)平面\(BEF\),则\(λ\)的值为(  )
image.png
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(3\)
 

3.如图所示,\(P\)是三角形\(ABC\)所在平面外一点,平面\(\alpha∥\)平面\(ABC\)\(\alpha\)分别交线段\(PA\)\(PB\)\(PC\)\(A'\)\(B'\)\(C'\),若 \(P A^{\prime}: A A^{\prime}=3: 4\),则 \(S_{\triangle A^{\prime} B^{\prime} C^{\prime}}: S_{\triangle A B C}=\)\(\underline{\quad \quad}\)
image.png
 
 

参考答案

  1. 答案 \(C\)
    解析 连接\(AB\)\(CD\)
    ①当点\(P\)\(CA\)的延长线上,即\(P\)在平面\(\alpha\)与平面\(\beta\)的同侧时,如图\(1\)
    \(\because \alpha∥\beta\),平面\(PCD\cap \alpha=AB\),平面\(PCD\cap \beta=CD\)
    \(\therefore AB∥CD\)\(\therefore \dfrac{P A}{A C}=\dfrac{P B}{B D}\)
    \(\because PA=6\)\(AC=9\)\(PD=8\)
    \(\therefore \dfrac{6}{9}=\dfrac{8-B D}{B D}\),解得 \(B D=\dfrac{24}{5}\)
    ②当点\(P\)在线段\(CA\)上,即\(P\)在平面\(\alpha\)与平面\(\beta\)之间时,如图\(2\)
    类似①的方法,可得 \(\dfrac{P A}{P C}=\dfrac{P B}{P D}\)
    \(\because PA=6\)\(PC=AC-PA=9-6=3\)\(PD=8\)
    \(\therefore \dfrac{6}{3}=\dfrac{P B}{8}\),解得\(PB=16\)
    \(\therefore BD=PB+PD=24\)
    综上,\(BD\)的长为\(\dfrac{24}{5}\)\(24\)
    故选:\(C\)
    image.png

  2. 答案 \(D\)
    解析\(AO\)\(BE\)于点\(G\),连结\(FG\),如图所示,
    因为\(E\)\(AD\)的中点,则\(AE=\dfrac{1}{2}AD=\dfrac{1}{2}BO\)
    四边形\(ABCD\)是平行四边形,\(AD∥BC\),则\(△AEG∽△CBG\)
    所以\(\dfrac{A G}{G C}=\dfrac{A E}{B C}=\dfrac{1}{2}\),所以 \(\dfrac{A G}{A C}=\dfrac{1}{3}\)
    又因为\(PC∥\)平面\(BEF\)\(PC\subset\)平面\(PAC\),平面\(BEF\cap\) 平面\(PAC=GF\)
    所以\(GF∥PC\)
    所以 \(\lambda=\dfrac{A P}{A F}=\dfrac{A C}{A G}=3\)
    故选:\(D\)
    image.png

  3. 答案 \(9:49\)
    解析 由题意:\(\because\)平面\(\alpha∥\)平面\(ABC\)
    \(\therefore A' B' || AB\)\(B' C' || BC\)\(A' C' || AC\)
    \(\therefore\)三角\(PA'B'\)相似于三角形\(PAB\),三角形\(PB'C'\)相似于三角形\(PBC\),三角形\(PA'C'\)相似于三角形\(PAC\)
    \(\therefore P A^{\prime}: P A=P B^{\prime}: P B=A^{\prime} B^{\prime}: A B\)\(P B^{\prime}: P B=P C^{\prime}: P C=B^{\prime} C^{\prime}: B C\)\(P C^{\prime}: P C=P A^{\prime}: P A=A^{\prime} C^{\prime}: A C\)
    \(\therefore A^{\prime} B^{\prime}: A B=B^{\prime} C^{\prime}: B C=A^{\prime} C^{\prime}: A C\)
    故得: \(S_{\triangle A^{\prime} B^{\prime} C^{\prime}} \sim S_{\triangle A B C}\)
    \(\therefore S_{\triangle A^{\prime} B^{\prime} C^{\prime}}: S_{\triangle A B C}=A^{\prime} B^{\prime 2}: A B^2\)
    \(\because P A^{\prime}: A^{\prime} A=3: 4\)
    \(\therefore P A^{\prime}: P A=3: 7\)\(A^{\prime} B^{\prime}: A B=3: 7\)
    所以得\(S_{\triangle A^{\prime} B^{\prime} C^{\prime}}: S_{\triangle A B C}=9: 49\)
     

分层练习

【A组---基础题】

1.已知直线\(a\subset\alpha\),给出以下三个命题:
①若平面\(\alpha∥\)平面\(\beta\),则直线\(a∥\)平面\(\beta\)
②若直线\(a∥\)平面\(\beta\),则平面\(\alpha∥\)平面\(\beta\)
③若直线\(a\)不平行于平面\(\beta\),则平面\(\alpha\)不平行于平面\(\beta\)
其中正确的命题是(  )
 A.② \(\qquad \qquad \qquad \qquad\) B.③ \(\qquad \qquad \qquad \qquad\) C.①②\(\qquad \qquad \qquad \qquad\) D.①③
 

2.如图在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,棱长为\(a\)\(M\)\(N\)分别为\(A_1 B\)\(AC\)的中点,则\(MN\)与平面\(BB_1 C_1 C\)的位置关系是(  )
image.png
 A.相交 \(\qquad \qquad \qquad \qquad\) B.平行 \(\qquad \qquad \qquad \qquad\)C.垂直 \(\qquad \qquad \qquad \qquad\) D.不能确定
 

3.如图,在多面体\(ABC﹣DEFG\)中,平面\(ABC∥\)平面\(DEFG\)\(EF∥DG\),且\(AB=DE\)\(DG=2EF\),则(  )
image.png
 A.\(BF∥\)平面\(ACGD\) \(\qquad\) B.\(CF∥\)平面\(ABED\)\(\qquad\)C.\(BC∥FG\) \(\qquad\) D.平面\(ABED∥\)平面\(CGF\)
 

4.如图,在正四棱锥\(S﹣ABCD\)中,\(E\)\(BC\)的中点,\(P\)点在侧面\(△SCD\)内及其边界上运动,并且总是保持\(PE∥\)平面\(SBD\).则动点\(P\)的轨迹与\(△SCD\)组成的相关图形最有可能是图中的(  )
image.png
 A.image.png \(\qquad \qquad\) B.image.png \(\qquad \qquad\)C.image.png \(\qquad \qquad\)D.image.png
 

5.如图所示,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)\(N\)\(P\)分别是\(C_1 C\)\(C_1 B_1\)\(C_1 D_1\)的中点,点\(H\)在四边形\(A_1 ADD_1\)的边及其内部运动,则\(H\)满足条件\(\underline{\quad \quad}\) 时,有\(BH∥\)平面\(MNP\)

 

6.如图是一几何体的平面展开图,其中\(ABCD\)为正方形,\(E\)\(F\)\(G\)\(B\)分别为\(PA\)\(PD\)\(PC\)\(PB\)的中点.在此几何体中,给出下面四个结论:
 ①平面\(EFGH∥\)平面\(ABCD\)\(\qquad \qquad\)②直线\(PA∥\)平面\(BDG\)
 ③直线\(EF∥\)平面\(PBC\)\(\qquad \qquad\) ④直线\(EF∥\)平面\(BDG\)
其中正确的序号是\(\underline{\quad \quad}\)
image.png
 

7.已知四棱锥\(P-ABCD\)中,底面\(ABCD\)为平行四边形,点\(M\)\(N\)\(Q\)分别在\(PA\)\(BD\)\(PD\)上,且\(PM∶MA=BN∶ND=PQ∶QD\).求证:平面\(MNQ∥\)平面\(PBC\)
 
 

8.正方体\(ABCD-A_1 B_1 C_1 D_1\)中.
  (1)求证:平面\(A_1 BD∥\)平面\(B_1 D_1 C\)
  (2)若\(E\)\(F\)分别是\(AA_1\)\(CC_1\)的中点,求证:平面\(EB_1 D_1∥\)平面\(FBD\)
image.png
 
 
 

9.如图所示,正方体\(ABCD-A_1 B_1 C_1 D_1\)中,侧面对角线\(AB_1\)\(BC_1\)上分别有两点\(E\)\(F\),且\(B_1 E=C_1 F\).
求证:\(EF∥\)平面\(ABCD\).
image.png
 
 
 

10.如图,在四棱锥\(P-ABCD\)中,\(\angle A B C=\angle A C D=90^{\circ}\)\(\angle B A C=\angle C A D=60^{\circ}\)\(PA⊥\)平面\(ABCD\)\(PA=2\)\(AB=1\).设\(M\)\(N\)分别为\(PD\)\(AD\)的中点.
  (1)求证:平面\(CMN∥\)平面\(PAB\)
  (2)求三棱锥\(P-ABM\)的体积.
image.png
 
 
 

参考答案

  1. 答案 \(D\)
    解析 ①若平面\(\alpha∥\)平面\(\beta\),则直线\(a∥\)平面\(\beta\);因为直线\(a\subset\alpha\),平面\(\alpha∥\)平面\(\beta\)
    \(\alpha\)内的每一条直线都平行平面\(\beta\).显然正确.
    ②若直线\(a∥\)平面\(\beta\),则平面\(\alpha∥\)平面\(\beta\);因为当平面\(\alpha\)与平面\(\beta\)相加时候,
    仍然可以存在直线\(a\subset\alpha\)使直线\(a∥\)平面\(\beta\).故错误.
    ③若直线\(a\)不平行于平面\(\beta\),则平面\(\alpha\)不平行于平面\(\beta\),平面内有一条直线不平行与令一个平面,
    两平面就不会平行.故显然正确.
    故选\(D\)

  2. 答案 \(B\)
    解析 连结\(A_1 C\)\(BC\),取\(A_1 C\)的中点\(Q\)\(A_1 B\)的中点\(P\)
    连结\(NQ\)\(PQ\)\(MN\)
    \(\because\)在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,棱长为\(a\)\(M\)\(N\)分别为\(A_1 B\)\(AC\)的中点,
    \(\therefore NQ∥CC_1\)\(PQ∥BC\)
    \(\because PQ\cap NQ=Q\)\(CC_1\cap BC=C\)\(PQ\)\(NQ\subset\)平面\(PMN\)\(CC_1\)\(BC\subset\)平面\(A_1 BC_1\)
    \(\therefore\)平面\(PNQ∥\)平面\(A_1 BC_1\)
    \(\because MN\subset\)平面\(PNQ\)\(\therefore MN∥\)平面\(BB_1 C_1 C\)
    故选:\(B\)
    image.png

  3. 答案 \(A\)
    解析\(DG\)的中点为\(M\),连结\(AM\),如图所示,
    因为\(EF∥DG\),且\(DG=2EF\),所以\(DM∥EF\)\(DM=EF\)
    所以四边形\(DEFM\)是平行四边形,
    所以\(DE∥FM\),且\(DE=FM\)
    因为平面\(ABC∥\)平面\(DEFG\),平面\(ABC\cap\)平面\(ADEB=AB\),平面\(ADEB\cap\)平面\(DEFG=DE\)
    所以\(AB∥DE\),所以\(AB∥FM\)
    \(AB=DE\),所以\(AB=FM\)
    所以四边形\(ABFM\)是平行四边形,即\(BF∥AM\)
    \(BF \not \subset\)平面\(ACGD\)\(AM\subset\)平面\(ACGD\)
    所以\(BF∥\)平面\(ACGD\).故选项\(A\)正确,
    而根据已知条件只能推出上面的关系,无法判断\(CF\)与平面\(ABED\)是否平行,故选项\(B\)错误;
    没有任何关系可以推导\(BC∥FG\),故选项\(C\)错误;
    没有条件可以判断平面\(ABED\)与平面\(CGF\)是否平行,故选项\(D\)错误.
    故选:\(A\)
    image.png

  4. 答案 \(A\)
    解析\(CD\)\(SC\)的中点\(M\)\(N\),连接\(MN\)\(ME\)\(NE\)
    \(\because E\)\(BC\)的中点,
    \(\therefore EM∥BD\)\(EN∥SB\)
    \(\because EM\)\(EN \not \subset\)\(SBD\)\(BD\)\(SB\subset\)\(SBD\)
    \(\therefore EM∥\)\(SBD\)\(EN∥\)\(SBD\)
    \(\because EM\cap EN=E\)\(EM\)\(EN\subset\)平面\(EMN\)
    \(\therefore\)\(EMN∥\)\(SBD\)
    \(\therefore\)\(P\)\(MN\)上移动时,\(PE\subset\)\(EMN\)
    此时保持\(PE∥\)平面\(SBD\)
    故选:\(A\)
    image.png

  5. 答案 \(H\in\)线段\(AD_1\)
    解析 连接\(CD_1\)\(B_1 D_1\)\(B_1 C\)\(A_1 B\)\(A_1 D\)\(BD\)
    \(\because\)在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)\(N\)\(P\)分别是\(C_1 C\)\(C_1 B_1\)\(C_1 D_1\)的中点,
    \(H\)在四边形\(A_1 ADD_1\)的边及其内部运动,
    \(\therefore PN∥B_1 D_1\)\(PM∥D_1 C\)\(MN∥B_1 C\)
    \(BD∥B_1 D_1\)\(A_1 B∥D_1 C\)\(A_1 D∥B_1 C\)
    \(\therefore PN∥BD\)\(PM∥A_1 B\)\(MN∥A_1 D\)
    \(\because PN\cap PM=P\)\(A_1 B\cap BD=B\)
    \(\therefore\)平面\(A_1 BD∥\)平面\(PMN\)
    \(\therefore H\)满足条件\(H\in\) 线段\(AD_1\)时,有\(BH∥\)平面\(MNP\)
    image.png

  6. 答案 ①②③
    解析 作出立体图形如图所示,连接\(E\)\(F\)\(G\)\(H\)四点构成平面\(EFGH\)
    对于①,因为\(E\)\(F\)分别是\(PA\)\(PD\)的中点,所以\(EF∥AD\)
    \(EF \not \subset\)平面\(ABCD\)\(AD\subset\)平面\(ABCD\),所以\(EF∥\)平面\(ABCD\)
    同理\(EH∥\)平面\(ABDC\),又\(EH\cap EF=E\)\(EF\)\(EH\subset\)平面\(EFGH\)
    所以平面\(EFGH∥\)平面\(ABCD\),故①正确;
    对于②,连接\(AC\)\(BD\)交于点\(M\),连接\(DG\)\(BG\),则\(M\)\(AC\)\(BD\)的中点,
    所以\(MG∥PA\),又\(MG\subset\)平面\(BDG\)\(PA \not \subset\)平面\(BDG\)
    所以\(PA∥\)平面\(BDG\),故②正确;
    对于③,由①中的分析可知\(EF∥AD\)\(AD∥BC\),所以\(EF∥BC\)
    因为\(EF \not \subset\)平面\(PBC\)\(BC\subset\)平面\(PBC\)
    所以\(EF∥\)平面\(PBC\),故③正确;
    对于④,根据③中的分析可知,\(EF∥BC\),再结合图形可得,\(BC\cap BD=B\)
    则直线\(EF\)与平面\(BDG\)不平行,故④错误.
    故答案为:①②③.
    image.png

  7. 证明 \(\because PM∶MA=BN∶ND=PQ∶QD\)\(\therefore MQ∥AD\)\(NQ∥BP\)
    \(\because BP\subset\)平面\(PBC\)\(NQ \not \subset\)平面\(PBC\)
    \(\therefore NQ∥\)平面\(PBC\).又底面\(ABCD\)为平行四边形,\(\therefore BC∥AD\)
    \(\therefore MQ∥BC\)\(\because BC\subset\)平面\(PBC\)\(MQ \not \subset\)平面\(PBC\)
    \(\therefore MQ∥\)平面\(PBC\)
    \(MQ\cap NQ=Q\),根据平面与平面平行的判定定 理,得平面\(MNQ∥\)平面\(PBC\)

  8. 证明 (1)由\(B_1 B//DD_1\),得四边形\(BB_1 D_1 D\)是平行四边形,\(\therefore B_1 D_1//BD\)
    \(BD \not \subset\)平面\(B_1 D_1 C\)\(B_1 D_1\subset\)平面\(B_1 D_1 C\)
    \(\therefore BD∥\)平面\(B_1 D_1 C\)
    同理\(A_1 D∥\)平面\(B_1 D_1 C\)
    \(A_1 D\cap BD=D\)\(\therefore\)平面\(A_1 BD∥\)平面\(B_1 CD\)
    (2)由\(BD∥B_1 D_1\),得\(BD∥\)平面\(EB_1 D_1\).取\(BB_1\)中点\(G\)\(\therefore AE∥B_1 G\)
    从而得\(B_1 E∥AG\),同理\(GF∥AD\)\(\therefore AG∥DF\)\(\therefore B_1 E∥DF\)
    \(\therefore DF∥\)平面\(EB_1 D_1\)
    \(\therefore\)平面\(EB_1 D_1∥\)平面\(FBD\)

  9. 证明\(E\)\(EG∥AB\)\(BB_1\)\(G\)
    image.png
    连接\(GF\),则 \(\dfrac{B_1 E}{B_1 A}=\dfrac{B_1 G}{B_1 B}\)
    \(\because B_1 E=C_1 F\)\(B_1 A=C_1 B\)
    \(\therefore \dfrac{C_1 F}{C_1 B}=\dfrac{B_1 G}{B_1 B}\)\(\therefore FG∥B_1 C_1∥BC\)
    \(EG\cap FG=G\)\(AB\cap BC=B\)
    \(\therefore\)平面\(EFG∥\)平面\(ABCD\),而\(EF\subset\)平面\(EFG\)
    \(\therefore EF∥\)平面\(ABCD\).

  10. 答案 (1)略 (2) \(\dfrac{\sqrt{3}}{3}\)
    解析 (1)\(\because M\)\(N\)分别为\(PD\)\(AD\)的中点,
    \(\therefore MN∥PA\)
    \(\because MN \not \subset\)平面\(PAB\)\(PA\subset\)平面\(PAB\)
    \(\therefore MN∥\)平面\(PAB\)
    \(Rt△ACD\)中,\(∠CAD=60°\)\(CN=AN\)\(\therefore ∠ACN=60°\)
    \(\because ∠BAC=60°\)\(\therefore CN∥AB\)
    \(\because CN \not \subset\)平面\(PAB\)\(AB\subset\)平面\(PAB\)\(\therefore CN∥\)平面\(PAB\)
    \(\because CN\cap MN=N\)\(\therefore\)平面\(CMN∥\)平面\(PAB\)
    (2)由(1)知,平面\(CMN∥\)平面\(PAB\)
    \(\therefore\)\(M\)到平面\(PAB\)的距离等于点\(C\)到平面\(PAB\)的距离.
    由已知,\(AB=1\)\(∠ABC=90°\)\(∠BAC=60°\)\(\therefore BC=\sqrt{3}\)
    \(\therefore\) 三棱锥\(P-ABM\)的体积:
    \(V=V_{M-P A B}=V_{C-P A B}=V_{P-A B C}=\dfrac{1}{3} \times \dfrac{1}{2} \times 1 \times \sqrt{3} \times 2=\dfrac{\sqrt{3}}{3}\)
    image.png
     

【B组---提高题】

1.如图,已知平面\(\alpha\)\(\beta\)\(\gamma\),且\(\alpha∥\beta∥\gamma\),直线\(a\)\(b\)分别与平面\(\alpha\)\(\beta\)\(\gamma\)交于点\(A\)\(B\)\(C\)\(D\)\(E\)\(F\),若\(AB=1\)\(BC=2\)\(DF=9\),则\(EF=\)\(\underline{\quad \quad}\)
image.png
 

2.如图,在棱长为\(2\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)\(A_1 B_1\)的中点,点\(P\)是侧面\(CDD_1 C_1\)上的动点,且\(MP∥\)截面\(AB_1 C\),则线段\(MP\)长度的取值范围是\(\underline{\quad \quad}\)
image.png
 
 

参考答案

  1. 答案 \(6\)
    解析 \(\because AB=1\)\(BC=2\)\(DF=9\)
    \(A\)\(B\)\(C\)\(D\)\(E\)\(F\)六点共面
    由面面平行的性质定理可得\(AB∥CD∥EF\)
    根据平行线分线段成比例定理可得:\(\dfrac{B C}{A C}=\dfrac{E F}{D F}=\dfrac{2}{3}=\dfrac{E F}{9}\)
    \(\therefore EF=6\)
    \(A\)\(B\)\(C\)\(D\)\(E\)\(F\)六点不共面,
    连接\(AF\),交\(\beta\)\(M\),连接\(BM\)\(EM\)\(BE\)
    \(\because \beta∥\gamma\),平面\(ACF\)分别交\(\beta\)\(\gamma\)\(BM\)\(CF\)
    \(\therefore BM∥CF\)\(\therefore \dfrac{B C}{A C}=\dfrac{M F}{A F}\)
    同理 \(\dfrac{M F}{A F}=\dfrac{E F}{D F}\)
    \(\therefore \dfrac{B C}{A C}=\dfrac{E F}{D F}=\dfrac{2}{3}=\dfrac{E F}{9}\)\(\therefore EF=6\)
    综上所述:\(EF=6\)
    故答案为:\(6\)

  2. 答案 \([\sqrt{6},2\sqrt{2}]\)
    解析\(CD\)的中点\(N\)\(CC_1\)的中点\(R\)\(B_1 C_1\)的中点\(H\)
    \(MN∥B_1 C∥HR\)\(MH∥AC\)
    故平面\(MNRH∥\)平面\(AB_1 C\)
    \(MP\subset\)平面\(MNRH\),线段\(MP\)扫过的图形是\(△MNR\)
    \(AB=2\),则\(MN=2\sqrt{2}\)\(NR=\sqrt{2}\)\(MR=\sqrt{6}\)
    \(\therefore M N^2=N R^2+M R^2\)
    \(\therefore ∠MRN\)是直角,
    \(\therefore\)线段\(MP\)长度的取值范围是:\([MR,MN]\),即:\([\sqrt{6},2\sqrt{2}]\)
     

【C组---拓展题】

1.已知正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱长为\(2\)\(P\)为正方形\(ABCD\)内的一动点(包含边界),\(E\)\(F\)分别是棱\(AA_1\)、棱\(A_1 D_1\)的中点.若\(D_1 P∥\)平面\(BEF\),则\(AP\)的取值范围是\(\underline{\quad \quad}\)
 
 

参考答案

  1. 答案 \([0, \sqrt{5}]\)
    解析 连接\(BC_1\)\(AD_1\),则\(EF∥AD_1∥BC_1\)
    \(EF\subset\)平面\(BEF\)
    \(AD_1∥\)平面\(BEF\)
    \(M\)\(BC\)的中点,连接\(AM\)\(D_1 M\)
    由于\(F\)分别是棱\(A_1 D_1\)的中点,故\(D_1 F=BM\)\(D_1 F∥BM\)
    则四边形\(D_1 FBM\)为平行四边形,故\(D_1 M∥FB\)
    \(FB\subset\)平面\(BEF\),故\(D_1 M∥\)平面\(BEF\)
    \(AD_1\cap D_1 M=D_1\)\(AD_1\)\(D_1 M\subset\)平面\(D_1 AM\)
    故平面\(D_1 AM∥\)平面\(BEF\)
    由于\(D_1 P∥\)平面\(BEF\),故\(D_1 P\subset\)平面\(D_1 AM\)
    又因为\(P\)为正方形\(ABCD\)内的一动点,且平面\(D_1 AM\cap\)平面\(ABCD=AM\)
    \(AM\)即为动点\(P\)的轨迹,
    \(A M=\sqrt{2^2+1^2}=\sqrt{5}\)
    \(AP\)的取值范围是 \([0, \sqrt{5}]\)
    image.png
posted @ 2023-05-05 23:09  贵哥讲数学  阅读(203)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏