6.2.4 向量的数量积

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度2颗星!

基础知识

概念

如果两个非零向量\(\vec{a}\)\(\vec{b}\),它们的夹角为\(θ\),我们把数量\(|\vec{a}||\vec{b}| \cos \theta\)叫做\(\vec{a}\)\(\vec{b}\)的数量积(或内积),
记作:\(\vec{a} \cdot \vec{b}\),即 \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\).
image.png
解释
(1) 如果一个物体在力\(\vec{F}\)的作用下产生位移\(\vec{s}\),那么力所做的功\(W=\vec{F} \cdot \vec{s}=|\vec{F}||\vec{s}| \cos \theta\);
(2) 规定:零向量与任一向量的数量积是\(0\);
(3) 若\(\theta=\dfrac{\pi}{2}\),那我们说\(\vec{a}\)\(\vec{b}\)垂直,记作\(\vec{a} \perp \vec{b}\)
(4) 数量积是一个实数,不再是一个向量;
(5) 注意确定向量的夹角\(θ\),其中\(\vec{a}\)\(\vec{b}\)的夹角\(θ=40°\),而\(\vec{a}\)\(\vec{c}\)的夹角\(θ=180°-40°=140°\).
image.png image.png
 

【例】\(∆ABC\)是边长为\(2\)的等边三角形,求数量积\(\overrightarrow{A B} \cdot \overrightarrow{C A}\).
image.png
\(\overrightarrow{A B} \cdot \overrightarrow{C A}=|\overrightarrow{A B}||\overrightarrow{C A}| \cos 120^{\circ}=2 \times 2 \times\left(-\dfrac{\sqrt{3}}{2}\right)=-2 \sqrt{3}\).
 

投影

\(\vec{a}\)\(\vec{b}\)是非零向量,向量\(\vec{a}\)在向量\(\vec{b}\)上的投影: \(|\vec{a}| \cos \theta\),它是一个实数,但不一定大于\(0\).
 

数量积的性质

\(\vec{a}\)\(\vec{b}\)是非零向量,它们的夹角是\(θ\)\(\vec{e}\)是与\(\vec{b}\)方向相同的单位向量,则
(1) \(\vec{a} \cdot \vec{e}=\vec{e} \cdot \vec{a}=|\vec{a}| \cos \theta\)
(2) \(\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0\)
(3) 当\(\vec{a}\)\(\vec{b}\)同向时, \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|\);当\(\vec{a}\)\(\vec{b}\)反向时, \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|\).
特殊地, \(\vec{a}^2=|\vec{a}|^2\)\(|\vec{a}|=\sqrt{\vec{a}^2}\).
(4) \(|\vec{a} \cdot \vec{b}| \leqslant|\vec{a}||\vec{b}|\).
 

运算法则

对于向量 \(\vec{a}\)\(\vec{b}\)\(\vec{c}\)和实数\(λ\),有
  (1) \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\) ; (2) \((\lambda \vec{a}) \cdot \vec{b}=\lambda(\vec{a} \cdot \vec{b})=\vec{a} \cdot(\lambda \vec{b})\) ; (3) \((\vec{a}+\vec{b}) \cdot \vec{c}=\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}\).
但是\((\vec{a} \cdot \vec{b}) \vec{c}=\vec{a}(\vec{b} \cdot \vec{c})\)不一定成立.
(当向量\(\vec{a}\)\(\vec{c}\)不共线时,向量\(\vec{a}(\vec{b} \cdot \vec{c})\)与向量\((\vec{a} \cdot \vec{b}) \vec{c}\)肯定不共线,那怎么可能相等呢)
即向量的数量积满足交换律,分配率,但不满足结合律.
 

基本方法

【题型1】 求数量积

【典题1】 在边长为\(2\)的菱形\(ABCD\)中,若\(AC=2\),则 \(\overrightarrow{A B} \cdot \overrightarrow{C A}=\)\(\underline{\quad \quad}\)
解析 \(\overrightarrow{A B} \cdot \overrightarrow{C A}=-|\overrightarrow{A B}| \cdot|\overrightarrow{A C}| \cos \langle\overrightarrow{A B}, \overrightarrow{A C}\rangle=-\dfrac{1}{2}|\overrightarrow{A C}|^2=-2\)
点拨 根据数量积的定义\(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\)求解.
 

【典题2】 知平行四边形\(ABCD\)中, \(|\overrightarrow{A B}|=|\overrightarrow{A D}|=\overrightarrow{A B} \cdot \overrightarrow{A D}=2\),点\(E\)为边\(BC\)的中点,则\(\overrightarrow{A E} \cdot \overrightarrow{A C}\)的值为 \(\underline{\quad \quad}\)
image.png
解析 \(\because|\overrightarrow{A B}|=|\overrightarrow{A D}|=\overrightarrow{A B} \cdot \overrightarrow{A D}=2\)\(\therefore \overrightarrow{A B} \cdot \overrightarrow{A D}=4 \cos \angle B A D=2\)
\(\therefore \cos \angle B A D=\dfrac{1}{2}\)\(\therefore \angle B A D=\dfrac{\pi}{3}\)
\(∵\)\(E\)为边\(BC\)的中点,
\(\therefore \overrightarrow{A E} \cdot \overrightarrow{A C}=(\overrightarrow{A B}+\overrightarrow{B E}) \cdot(\overrightarrow{A B}+\overrightarrow{A D})=\left(\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{B C}\right) \cdot(\overrightarrow{A B}+\overrightarrow{A D})\)
\(=\left(\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\right) \cdot(\overrightarrow{A B}+\overrightarrow{A D})=\overrightarrow{A B}^2+\dfrac{3}{2} \overrightarrow{A B} \cdot \overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A D}^2\)
\(=4+\dfrac{3}{2} \times 2 \times 2 \cos \dfrac{\pi}{3}+\dfrac{1}{2} \times 4=9\)
点拨 直接用数量积的定义求\(\overrightarrow{A E} \cdot \overrightarrow{A C}\)显然不好求,则把\(\overrightarrow{A E} \cdot \overrightarrow{A C}\)转化为向量\(\overrightarrow{A B}\)\(\overrightarrow{A D}\)的数量积问题,因为已知条件中均与\(\overrightarrow{A B}\)\(\overrightarrow{A D}\)有关.
 

【典题3】 已知\(|\vec{a}|=4\)\(|\vec{b}|=8\)\(\vec{a}\)\(\vec{b}\)的夹角是\(120^∘\)
  (1)计算\(|\vec{a}+\vec{b}|\); (2)当\(k\)为何值时, \((\vec{a}+2 \vec{b}) \perp(k \vec{a}+\vec{b})\)
解析 (1) \(|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^2}=\sqrt{\vec{a}^2+\vec{b}^2+2 \vec{a} \cdot \vec{b}}=\sqrt{16+64-2 \times 4 \times 8 \times \dfrac{1}{2}}=4 \sqrt{3}\)
(2) \(\because(\vec{a}+2 \vec{b}) \perp(k \vec{a}+\vec{b})\)\(\therefore(\vec{a}+2 \vec{b}) \cdot(k \vec{a}+\vec{b})=0\)
\(\therefore k \vec{a}^2+(2 k-1) \vec{a} \cdot \vec{b}-2 \vec{b}^2=0\)
\(16 k-16(2 k-1)-2 \times 64=0\),解得\(k=-7\)
故当\(k=-7\)时,\((\vec{a}+2 \vec{b}) \perp(k \vec{a}+\vec{b})\)成立.
点拨 利用数量积的性质\(|\vec{a}|^2=\vec{a}^2\)求向量的模.
 

【巩固练习】

1.在\(△ABC\)中,\(AB=4\)\(AC=3\)\(∠A=60^∘\),则 \(\overrightarrow{B C} \cdot \overrightarrow{A C}=\)\(\underline{\quad \quad}\)
 
2.四边形\(ABCD\)中,\(AB//DC\)\(AB=3\)\(DC=2\)\(∠ABC=90^∘\),则 \((\overrightarrow{A C}+\overrightarrow{B D}) \cdot \overrightarrow{A B}=\)\(\underline{\quad \quad}\)
 
3.已知向量\(\vec{a}\)\(\vec{b}\)满足\(|\vec{a}|=|\vec{b}|=2\)\(|\vec{a}-\vec{b}|=2 \sqrt{3}\),则 \(\vec{a} \cdot \vec{b}=\) \(\underline{\quad \quad}\) .
 
4.已知向量\(\vec{a}\)\(\vec{b}\)满足\(|\vec{a}+\vec{b}|=|\vec{b}|\),且\(|\vec{a}|=2\),则\(\vec{a} \cdot \vec{b}=\)\(\underline{\quad \quad}\) .
 
5.已知平面向量\(\vec{a}\)\(\vec{b}\)的夹角为\(\dfrac{\pi}{3}\),且\(\vec{a} \cdot \vec{b}=1\),则 \(|\vec{a}+\vec{b}|\)的最小值为\(\underline{\quad \quad}\).
 
 
参考答案

  1. 答案 \(3\)
    解析\(△ABC\)中,\(AB=4\)\(AC=3\)\(∠A=60^∘\)
    \(\overrightarrow{B C} \cdot \overrightarrow{A C}=(\overrightarrow{A C}-\overrightarrow{A B}) \cdot \overrightarrow{A C}=\overrightarrow{A C}^2-\overrightarrow{A B} \cdot \overrightarrow{A C}=3^2-4 \times 3 \cos 60^{\circ}=3\)

  2. 答案 \(3\)
    解析 如图所示,
    四边形\(ABCD\)中,\(AB=3\)\(DC=2\)\(∠ABC=90^∘\)
    所以 \((\overrightarrow{A C}+\overrightarrow{B D}) \cdot \overrightarrow{A B}=(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{B C}+\overrightarrow{C D}) \cdot \overrightarrow{A B}\)
    \(=\overrightarrow{A B}^2+2 \overrightarrow{B C} \cdot \overrightarrow{A B}+\overrightarrow{C D} \cdot \overrightarrow{A B}=3^2+0-2 \times 3=3\)
    image.png

  3. 答案 \(-2\)
    解析 因为\(|\vec{a}|=|\vec{b}|=2\)\(|\vec{a}-\vec{b}|=2 \sqrt{3}\)
    所以\((\vec{a}-\vec{b})^2=\vec{a}^2-2 \vec{a} \cdot \vec{b}+\vec{b}^2=4-2 \vec{a} \cdot \vec{b}+4=12\)
    解得\(\vec{a} \cdot \vec{b}=-2\)

  4. 答案 \(-2\)
    解析 因为\(|\vec{a}+\vec{b}|=|\vec{b}|\),即有\(|\vec{a}+\vec{b}|^2=|\vec{b}|^2\)
    所以 \(\vec{a}^2+2 \vec{a} \cdot \vec{b}+\vec{b}^2=\vec{b}^2\),则 \(2 \vec{a} \cdot \vec{b}=-\vec{a}^2=-4\)
    所以\(\vec{a} \cdot \vec{b}=-2\)

  5. 答案 \(\sqrt{6}\)
    解析 \(∵\)平面向量\(\vec{a}\)\(\vec{b}\)的夹角为\(\dfrac{\pi}{3}\)
    \(\therefore \vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos 60^{\circ}=\dfrac{1}{2}|\vec{a}| \cdot|\vec{b}|=1\)
    \(\therefore|\vec{a}| \cdot|\vec{b}|=2\)
    \(|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^2}=\sqrt{\overrightarrow{a^2}+2 \vec{a} \cdot \vec{b}+\vec{b}^2} \geq \sqrt{2+2|\vec{a}||\vec{b}|}=\sqrt{6}\)
    当且仅当 \(|\vec{a}|=|\vec{b}|=\sqrt{2}\)时取等号,
    \(|\vec{a}+\vec{b}|\)的最小值为\(\sqrt{6}\).
     

【题型2】 求向量夹角

【典题1】 已知\(|\vec{a}|=1\)\(|\vec{b}|=2\)\(|2 \vec{a}-\vec{b}|=2 \sqrt{3}\)
  (1)求\(\vec{a}\)\(\vec{b}\)的夹角及\(|2 \vec{a}+\vec{b}|\)
  (2)当\(k \vec{a}-\vec{b}\)\(\vec{a}+2 \vec{b}\)的夹角为钝角时,求实数\(k\)的取值范围.
解析 (1)根据题意,设\(\vec{a}\)\(\vec{b}\)的夹角为\(θ\)
\(|2 \vec{a}-\vec{b}|=2 \sqrt{3}\),则有 \((2 \vec{a}-\vec{b})^2=4 \vec{a}^2+\vec{b}^2-4 \vec{a} \cdot \vec{b}=8-8 \cos \theta=12\)
解可得 \(\cos \theta=-\dfrac{1}{2}\)
又由\(0⩽θ⩽π\),则 \(\theta=\dfrac{2 \pi}{3}\)
\((2 \vec{a}+\vec{b})^2=4 \vec{a}^2+\vec{b}^2+4 \vec{a} \cdot \vec{b}=8-4=4\),则 \(|2 \vec{a}+\vec{b}|=2\)
(2)根据题意,当\(k \vec{a}-\vec{b}\)\(\vec{a}+2 \vec{b}\)的夹角为钝角时,
\((k \vec{a}-\vec{b}) \cdot(\vec{a}+2 \vec{b})<0\)\(k \vec{a}-\vec{b}\)\(\vec{a}+2 \vec{b}\)不共线,
则有 \((k \vec{a}-\vec{b}) \cdot(\vec{a}+2 \vec{b})=k \vec{a}^2-2 \vec{b}^2+(2 k-1) \vec{a} \cdot \vec{b}=-k-7<0\),解可得\(k>-7\)
\(k \vec{a}-\vec{b}\)\(\vec{a}+2 \vec{b}\)共线,设\(k \vec{a}-\vec{b}=t(\vec{a}+2 \vec{b})\),则有 \(\left\{\begin{array}{l} k=t \\ -1=2 t \end{array}\right.\),则有 \(k=-\dfrac{1}{2}\)
\(k \vec{a}-\vec{b}\)\(\vec{a}+2 \vec{b}\)不共线,必有 \(k \neq-\dfrac{1}{2}\)
\(k\)的取值范围为\(\left(-7,-\dfrac{1}{2}\right) \cup\left(-\dfrac{1}{2},+\infty\right)\)
点拨 \(\vec{a}\)\(\vec{b}\)的夹角为钝角等价于\(\vec{a} \cdot \vec{b}<0\)\(\vec{a}\)\(\vec{b}\)不共线.
 

【巩固练习】

1.若向量\(\vec{a}\)\(\vec{b}\)满足 \(|\vec{a}|=|\vec{b}|=1\),且 \((\vec{a}+\vec{b}) \cdot \vec{b}=\dfrac{3}{2}\),向量\(\vec{a}\)\(\vec{b}\)的夹角为\(\underline{\quad \quad}\) .
 

2.已知向量\(\vec{a}\)\(\vec{b}\)是两个非零向量,且\(|\vec{a}|=|\vec{b}|=|\vec{a}-\vec{b}|,\),则\(\vec{a}\)\(\vec{b}\)的夹角为\(\underline{\quad \quad}\) .
 

3.已知向量\(\vec{a}\)\(\vec{b}\)满足 \(|\vec{a}|=1\)\((\vec{a}-\vec{b}) \perp(3 \vec{a}-\vec{b})\),则\(\vec{a}\)\(\vec{b}\)的夹角的最大值为\(\underline{\quad \quad}\) .
 

参考答案

  1. 答案 \(60^∘\)
    解析\((\vec{a}+\vec{b}) \cdot \vec{b}=\dfrac{3}{2}\),则 \(\vec{a} \cdot \vec{b}+\vec{b}^2=\dfrac{3}{2}\)
    \(|\vec{a}|=|\vec{b}|=1\),则 \(\vec{a} \cdot \vec{b}=\dfrac{1}{2}\)
    \(\cos \langle\vec{a}, \vec{b}\rangle=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\dfrac{1}{2}\)
    \(\langle\vec{a}, \vec{b}\rangle \in\left[0^{\circ}, 180^{\circ}\right]\),则 \(\langle\vec{a}, \vec{b}\rangle=60^{\circ}\)
  2. 答案 \(\dfrac{\pi}{3}\)
    解析\(<\vec{a}, \vec{b}>=\theta\),且设 \(|\vec{a}|=|\vec{b}|=|\vec{a}-\vec{b}|=1\)
    所以 \((\vec{a}-\vec{b})^2=\vec{a}^2-2 \vec{a} \cdot \vec{b}+\vec{b}^2=1\)
    \(1-2 \vec{a} \cdot \vec{b}+1=1\),得 \(\vec{a} \cdot \vec{b}=\dfrac{1}{2}\)
    所以 \(\cos \theta=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\dfrac{1}{2}\)
    \(\because \theta \in[0, \pi ]\)\(\therefore \theta=\dfrac{\pi}{3}\)
  3. 答案 \(30°\)
    解析 \(\because|\vec{a}|=1\)\((\vec{a}-\vec{b}) \perp(3 \vec{a}-\vec{b})\)
    \(\therefore(\vec{a}-\vec{b}) \cdot(3 \vec{a}-\vec{b})=3 \vec{a}^2+\vec{b}^2-4 \vec{a} \cdot \vec{b}=3+\vec{b}^2-4 \vec{a} \cdot \vec{b}=0\)
    \(\therefore \vec{a} \cdot \vec{b}=\dfrac{|\vec{b}|^2+3}{4}\)
    \(\therefore \cos \langle\vec{a}, \vec{b}\rangle=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\dfrac{|\vec{b}|^2+3}{4|\vec{b}|}=\dfrac{|\vec{b}|+\dfrac{3}{|\vec{b}|}}{4} \geq \dfrac{\sqrt{3}}{2}\),且 \(0^{\circ} \leq\langle\vec{a}, \vec{b}\rangle \leq 180^{\circ}\)
    \(\therefore \cos \langle\vec{a}, \vec{b}\rangle=\dfrac{\sqrt{3}}{2}\)时,\(\vec{a}\)\(\vec{b}\)的夹角最大为\(30°\)
     

【题型3】数量积的综合运用

【典题1】 已知\(O\)\(△ABC\)所在平面内一点,向量 \(\overrightarrow{O P_1}\)\(\overrightarrow{O P_2}\)\(\overrightarrow{O P_3}\)满足条件\(\overrightarrow{O P_1}+\overrightarrow{O P_2}+\overrightarrow{O P_3}=\overrightarrow{0}\),且 \(\left|\overrightarrow{O P_1}\right|=\left|\overrightarrow{O P_2}\right|=\left|\overrightarrow{O P_3}\right|=1\),则\(\triangle P_1 P_2 P_3\)是(  )
 A.等腰三角形 \(\qquad \qquad \qquad\) B.直角三角形 \(\qquad \qquad \qquad\) C.等腰直角三角形 \(\qquad \qquad \qquad\) D.等边三角形
解析 \(∵\overrightarrow{O P_1}+\overrightarrow{O P_2}+\overrightarrow{O P_3}=\overrightarrow{0}\)\(\therefore \overrightarrow{O P_1}+\overrightarrow{O P_2}=-\overrightarrow{O P_3}\)
\(\therefore\left(\overrightarrow{O P}_1+\overrightarrow{O P}_2\right)^2=\left(-\overrightarrow{O P}_3\right)^2\)\(\therefore \overrightarrow{O P}_1^2+2 \overrightarrow{O P}_1 \cdot \overrightarrow{O P}_2+{\overrightarrow{O P_2}}^2={\overrightarrow{O P_3}}^2\)
\(\because\left|\overrightarrow{O P_1}\right|=\left|\overrightarrow{O P_2}\right|=\left|\overrightarrow{O P_3}\right|=1\)
\(\therefore\left|\overrightarrow{O P_1}\right|^2+\left|\overrightarrow{O P_2}\right|^2=\left|\overrightarrow{O P_3}\right|^2=1\)\(\therefore \overrightarrow{O P_1} \cdot \overrightarrow{O P_2}=-\dfrac{1}{2}\)
\(\therefore\left|\overrightarrow{P_1 P_2}\right|^2=\left|\overrightarrow{O P_2}-\overrightarrow{O P_1}\right|^2={\overrightarrow{O P_2}}^2-\overrightarrow{O P}_1 \cdot \overrightarrow{O P}_2+\overrightarrow{O P}_1^2=3\)
\(\therefore\left|\overrightarrow{P_1 P_2}\right|=\sqrt{3}\)
同理 \(\left|\overrightarrow{P_1 P_3}\right|=\left|\overrightarrow{P_2 P_3}\right|=\sqrt{3}\)\(\therefore \Delta P_1 P_2 P_3\)是等边三角形,
故选:\(D\)
 

【典题2】 已知\(P\)\(△ABC\)所在平面内的一点, \(\overrightarrow{B P}=2 \overrightarrow{P C}\)\(|\overrightarrow{A P}|=4\),若点\(Q\)在线段\(AP\)上运动,则 \(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})\)的最小值为(  )
 A. \(-9 \sqrt{2}\) \(\qquad \qquad \qquad \qquad\) B.\(-12\) \(\qquad \qquad \qquad \qquad\) C. \(-3 \sqrt{2}\) \(\qquad \qquad \qquad \qquad\) D.\(-4\)
解析 由题意,画图如下,
image.png
根据题意及图,可知 \(\overrightarrow{B P}=\overrightarrow{Q P}-\overrightarrow{Q B}\)\(\overrightarrow{P C}=\overrightarrow{Q C}-\overrightarrow{Q P}\)
\(\because \overrightarrow{B P}=2 \overrightarrow{P C}\)\(\therefore \overrightarrow{Q P}-\overrightarrow{Q B}=2(\overrightarrow{Q C}-\overrightarrow{Q P})\)
整理,得 \(\overrightarrow{Q B}+2 \overrightarrow{Q C}=3 \overrightarrow{Q P}\)
\(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})=\overrightarrow{Q A} \cdot 3 \overrightarrow{Q P}=-3| \overrightarrow{Q A}|\cdot| \overrightarrow{Q P}|=-3| \overrightarrow{Q A} \mid \cdot(4-|\overrightarrow{Q A}|)\)
\(=3\left(|\overrightarrow{Q A}|^2-4|\overrightarrow{Q A}|\right)\)
\(|\overrightarrow{Q A}|=m\),很明显 \(m \in[0,4]\)
\(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})=3\left(|\overrightarrow{Q A}|^2-4|\overrightarrow{Q A}|\right)=3\left(m^2-4 m\right)=3(m-2)^2-12\)
根据二次函数的性质,可知:
\(m=2\)时, \(\overrightarrow{Q A} \cdot(\overrightarrow{Q B}+2 \overrightarrow{Q C})\)取得最小值为\(-12\)
故选:\(B\)
 

【巩固练习】

1.在四边形\(ABCD\)中,若 \(\overrightarrow{A B}=\overrightarrow{D C}\),且 \(|\overrightarrow{A B}-\overrightarrow{A D}|=|\overrightarrow{A B}+\overrightarrow{A D}|\),则该四边形一定是 (  )
 A.正方形 \(\qquad \qquad \qquad \qquad\) B.菱形 \(\qquad \qquad \qquad \qquad\) C.矩形 \(\qquad \qquad \qquad \qquad\) D.等腰梯形
 

2.\(△ABC\)所在平面内,满足 \(\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\overrightarrow{0}\)\(|\overrightarrow{N A}|=|\overrightarrow{N B}|=|\overrightarrow{N C}|\)\(\overrightarrow{P A} \cdot \overrightarrow{P B}=\overrightarrow{P B} \cdot \overrightarrow{P C}=\overrightarrow{P C} \cdot \overrightarrow{P A}\),则\(M\)\(N\)\(P\)依次是\(△ABC\)的(  )
 A.重心,外心,内心 \(\qquad \qquad \qquad \qquad\) B.重心,外心,垂心
 C.外心,重心,内心 \(\qquad \qquad \qquad \qquad\) D.外心,重心,垂心
 

3.如图,已知等腰梯形\(ABCD\)中,\(AB=2DC=4\)\(A D=B C=\sqrt{3}\)\(E\)\(DC\)的中点,\(F\)是线段\(BC\)上的动点,则 \(\overrightarrow{E F} \cdot \overrightarrow{B F}\)最小值是\(\underline{\quad \quad}\).
image.png
 

4.已知\(△ABC\)中,\(∠C\)是直角,\(CA=CB\),点\(D\)\(CB\)的中点,\(E\)\(AB\)上一点.
  (1)设\(\overrightarrow{C A}=\vec{a}\)\(\overrightarrow{C D}=\vec{b}\),当 \(\overrightarrow{A E}=\dfrac{1}{2} \overrightarrow{A B}\),请用\(\vec{a}\)\(\vec{b}\)来表示 \(\overrightarrow{A B}\)\(\overrightarrow{C E}\)
  (2)当\(\overrightarrow{A E}=2 \overrightarrow{E B}\)时,求证:\(AD⊥CE\)
image.png
 
 

参考答案

  1. 答案 \(C\)
    解析 根据题意,在四边形\(ABCD\)中,若 \(\overrightarrow{A B}=\overrightarrow{D C}\)
    \(AB//DC\)\(AB=DC\),四边形为平行四边形,
    又由 \(|\overrightarrow{A B}-\overrightarrow{A D}|=|\overrightarrow{A B}+\overrightarrow{A D}|\)
    则有\(|\overrightarrow{A B}-\overrightarrow{A D}|^2=|\overrightarrow{A B}+\overrightarrow{A D}|^2\),变形可得 \(\overrightarrow{A B} \cdot \overrightarrow{A D}=0\)
    则有 \(\overrightarrow{A B} \perp \overrightarrow{A D}\),即\(AB\)\(AD\)垂直,则该四边形一定是矩形,
    故选:\(C\)

  2. 答案 \(B\)
    解析 \(\because \overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\overrightarrow{0}\)\(\therefore \overrightarrow{M A}+\overrightarrow{M B}=-\overrightarrow{M C}\)
    \(AB\)的中点\(D\),则 \(\overrightarrow{M A}+\overrightarrow{M B}=2 \overrightarrow{M D}\)
    \(∴C\)\(M\)\(D\)三点共线,即\(M\)\(△ABC\)的中线\(CD\)上的点,且\(MC=2MD\)
    \(∴M\)\(△ABC\)的重心.
    \(\because|\overrightarrow{N A}|=|\overrightarrow{N B}|=|\overrightarrow{N C}|\)
    \(\therefore|N A|=|N B|=|N C|\)\(∴N\)\(△ABC\)的外心;
    \(\because \overrightarrow{P A} \cdot \overrightarrow{P B}=\overrightarrow{P B} \cdot \overrightarrow{P C}\)\(\therefore \overrightarrow{P B} \cdot(\overrightarrow{P A}-\overrightarrow{P C})=0\)
    \(\overrightarrow{P B} \cdot \overrightarrow{C A}=0\)\(∴PB⊥AC\)
    同理可得:\(PA⊥BC\)\(PC⊥AB\)
    \(∴P\)\(△ABC\)的垂心;
    故选:\(B\)
    image.png

  3. 答案 \(-\dfrac{4}{3}\)
    解析 由等腰梯形的知识可知 \(\cos B=\dfrac{\sqrt{3}}{3}\)
    \(BF=x\),则 \(C F=\sqrt{3}-x\)
    \(\therefore \overrightarrow{E F} \cdot \overrightarrow{B F}=(\overrightarrow{E C}+\overrightarrow{C F}) \cdot \overrightarrow{B F}=\overrightarrow{E C} \cdot \overrightarrow{B F}+\overrightarrow{C F} \cdot \overrightarrow{B F}\)
    \(=1 \cdot x\left(-\dfrac{\sqrt{3}}{3}\right)+(\sqrt{3}-x) \cdot x \cdot(-1)=x^2-\dfrac{4}{3} \sqrt{3} x\)
    \(\because 0 \leq x \leq \sqrt{3}\)
    \(∴\)\(x=\dfrac{2}{3} \sqrt{3}\)时, \(\overrightarrow{E F} \cdot \overrightarrow{B F}\)取得最小值,最小值为 \(\left(\dfrac{2}{3} \sqrt{3}\right)^2-\dfrac{2}{3} \sqrt{3} \times \dfrac{4}{3} \sqrt{3}=-\dfrac{4}{3}\)
    故答案为:\(-\dfrac{4}{3}\)

  4. 答案 (1) \(\overrightarrow{C E}=\dfrac{1}{2} \vec{a}+\vec{b}\),(2)略.
    解析 (1) \(\because \overrightarrow{C A}=\vec{a}\)\(\overrightarrow{C D}=\vec{b}\),点\(D\)\(CB\)的中点, \(\therefore \overrightarrow{C B}=2 \vec{b}\)
    \(\therefore \overrightarrow{A B}=\overrightarrow{C B}-\overrightarrow{C A}=2 \vec{b}-\vec{a}\)
    \(\because \overrightarrow{A E}=\dfrac{1}{2} \overrightarrow{A B}\)\(\therefore \overrightarrow{C E}=\overrightarrow{C A}+\overrightarrow{A E}=\overrightarrow{C A}+\dfrac{1}{2} \overrightarrow{A B}=\vec{a}+\dfrac{1}{2}(2 \vec{b}-\vec{a})=\dfrac{1}{2} \vec{a}+\vec{b}\)
    证明:(2)设 \(\overrightarrow{C A}=\vec{a}\)\(\overrightarrow{C D}=\vec{b}\),则 \(\overrightarrow{C B}=2 \vec{b}\)
    \(\because \overrightarrow{A E}=2 \overrightarrow{E B}\)
    \(\therefore \overrightarrow{C E}=\overrightarrow{C A}+\overrightarrow{A E}=\overrightarrow{C A}+\dfrac{2}{3} \overrightarrow{A B}=\overrightarrow{C A}+\dfrac{2}{3}(\overrightarrow{C B}-\overrightarrow{C A})=\dfrac{1}{3}(\vec{a}+4 \vec{b})\)
    \(\overrightarrow{A D}=\overrightarrow{A C}+\overrightarrow{C D}=-\vec{a}+\vec{b}\)
    \(∵△ABC\)中,\(∠C\)是直角,\(CA=CB\)
    \(\therefore|\vec{a}|=2 \vec{b} \mid\)\(\vec{a} \cdot \vec{b}=0\)
    \(\therefore \overrightarrow{A D} \cdot \overrightarrow{C E}=\dfrac{1}{3}(\vec{a}+4 \vec{b}) \cdot(-\vec{a}+\vec{b})=\dfrac{1}{3}\left(4 \vec{b}^2-\vec{a}^2\right)=0\)
    \(∴AD⊥CE\)
     

分层练习

【A组---基础题】

1.在四边形\(ABCD\)中,若\(\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{A D}\)\(\overrightarrow{A C} \cdot(\overrightarrow{A B}-\overrightarrow{A D})=0\),则(  )
 A.四边形\(ABCD\)是矩形 \(\qquad \qquad \qquad \qquad\) B.四边形\(ABCD\)是菱形
 C.四边形\(ABCD\)是正方形 \(\qquad \qquad \qquad \qquad\) D.四边形\(ABCD\)是平行四边形
 

2.已知向量\(\vec{a}\)\(\vec{b}\)满足 \(|\vec{a}|=1\)\(|\vec{b}|=2\)\(|\vec{a}+2 \vec{b}|=\sqrt{21}\),那么向量\(\vec{a}\)\(\vec{b}\)的夹角为(  )
 A. \(\dfrac{\pi}{6}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{\pi}{4}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{\pi}{3}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{2 \pi}{3}\)
 

3.如图,在梯形\(ABCD\)中,\(AB∥CD\)\(AB=4\)\(AD=3\)\(CD=2\)\(\overrightarrow{A M}=2 \overrightarrow{M D}\)\(\overrightarrow{A C} \cdot \overrightarrow{B M}=-3\),则 \(\overrightarrow{A B} \cdot \overrightarrow{A D}=\)(  )
image.png
 A. \(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) C . \(-\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) D. \(-\dfrac{1}{2}\)
 

4.设\(θ\)为两个非零向量\(\vec{a}\)\(\vec{b}\)的夹角,已知当实数\(t\)变化时 \(|\vec{a}+t \vec{b}|\)的最小值为\(2\),则(  )
 A.若\(θ\)确定,则\(|\vec{a}|\)唯一确定 \(\qquad \qquad \qquad \qquad\) B.若\(θ\)确定,则\(|\vec{b}|\)唯一确定
 C.若\(|\vec{a}|\)确定,则\(θ\)唯一确定 \(\qquad \qquad \qquad \qquad\) D.若\(|\vec{b}|\)确定,则\(θ\)唯一确定
 

5.(多选)设\(\vec{a}\)\(\vec{b}\)是两个非零向量.则下列命题为假命题的是(  )
 A.若\(|\vec{a}+\vec{b}|=|\vec{a}|-|\vec{b}|\),则\(\vec{a} \perp \vec{b}\)
 B.若\(\vec{a} \perp \vec{b}\),则\(|\vec{a}+\vec{b}|=|\vec{a}|-|\vec{b}|\)
 C.若\(|\vec{a}+\vec{b}|=|\vec{a}|-|\vec{b}|\),则存在实数\(λ\),使得 \(\vec{b}=\lambda \vec{a}\)
 D.若存在实数\(λ\),使得\(\vec{b}=\lambda \vec{a}\),则\(|\vec{a}+\vec{b}|=|\vec{a}|-|\vec{b}|\)
 

6.菱形\(ABCD\)的边长为\(2\),且\(∠DAB=60^∘\),则\(\overrightarrow{A B} \cdot \overrightarrow{B C}=\) \(\underline{\quad \quad}\) .
 

7.已知\(|\vec{a}|=2\)\(|\vec{b}|=1\)\(\vec{a}\)\(\vec{b}\)的夹角为\(\dfrac{\pi}{3}\),那么\(|\vec{a}-\vec{b}|=\) \(\underline{\quad \quad}\) .  
 

8.已知正方形\(ABCD\)的边长为\(1\).当每个 \(\lambda_i(i=1,2,3,4,5,6)\)取遍\(±1\)时, \(\left|\lambda_1 \overrightarrow{A B}+\lambda_2 \overrightarrow{B C}+\lambda_3 \overrightarrow{C D}+\lambda_4 \overrightarrow{D A}+\lambda_5 \overrightarrow{A C}+\lambda_6 \overrightarrow{B D}\right|\)的最小值是\(\underline{\quad \quad}\),最大值是\(\underline{\quad \quad}\)
 

9.如图,在矩形\(ABCD\)中,\(AB=2BC=2\),动点\(M\)在以点\(C\)为圆心且与\(BD\)相切的圆上,则\(\overrightarrow{A M} \cdot \overrightarrow{B D}\)的最大值是\(\underline{\quad \quad}\)
image.png
 
 

10.已知非零向量\(\vec{a}\)\(\vec{b}\)满足\(\vec{a} \cdot \vec{b}=3\)\(|\vec{b}|=2\),且 \(\vec{a} \cdot(\vec{a}-3 \vec{b})=0\)
  (1)求\(|\vec{a} |\)
  (2)求向量\(\vec{a}\)\(\vec{b}\)的夹角\(θ\)
  (3)求\(|\vec{a}+\vec{b}|\)的值.
 
 

11.如图,在正方形\(ABCD\)中,点\(E\)\(BC\)边上中点,点\(F\)在边\(CD\)上且满足\(\overrightarrow{C F}=x \overrightarrow{C D}\)
  (1)若\(x=\dfrac{1}{3}\),设\(\overrightarrow{E F}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A D}\),求\(λ+μ\)的值;
  (2)若\(AB=2\),当 \(\overrightarrow{A E} \cdot \overrightarrow{B F}=1\)时,求\(x\)的值.
image.png
 
 

参考答案

  1. 答案 \(B\)
    解析 四边形\(ABCD\)中,若\(\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{A D}\),则四边形\(ABCD\)是平行四边形;
    \(\overrightarrow{A C} \cdot(\overrightarrow{A B}-\overrightarrow{A D})=0\),即 \(\overrightarrow{A C} \cdot \overrightarrow{D B}=0\)
    所以\(\overrightarrow{A C} \perp \overrightarrow{D B}\),平行四边形\(ABCD\)是菱形.
    故选:\(B\)

  2. 答案 \(C\)
    解析 \(∵|\vec{a}|=1\)\(|\vec{b}|=2\)\(|\vec{a}+2 \vec{b}|=\sqrt{21}\),,
    \(\therefore(\vec{a}+2 \vec{b})^2=\vec{a}^2+4 \overrightarrow{b^2}+4 \vec{a} \cdot \vec{b}=1+16+4 \vec{a} \cdot \vec{b}=21\)
    \(\therefore \vec{a} \cdot \vec{b}=1\)
    \(\therefore \cos \langle\vec{a}, \vec{b}\rangle=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\dfrac{1}{2}\),且 \(0 \leq<\vec{a}, \vec{b}>\leq \pi\)
    \(∴\vec{a}\)\(\vec{b}\)的夹角为\(\dfrac{\pi}{3}\)
    故选:\(C\)

  3. 答案 \(B\)
    解析 \(∵\)在梯形\(ABCD\)中,\(AB∥CD\)\(AB=4\)\(AD=3\)\(CD=2\)\(\overrightarrow{A M}=2 \overrightarrow{M D}\)
    \(\therefore \overrightarrow{A C} \cdot \overrightarrow{B M}=(\overrightarrow{A D}+\overrightarrow{D C}) \cdot(\overrightarrow{B A}+\overrightarrow{A M})=\left(\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}\right) \cdot\left(-\overrightarrow{A B}+\dfrac{2}{3} \overrightarrow{A D}\right)\)
    \(=\dfrac{2}{3} \overrightarrow{A D^2}-\dfrac{1}{2} \overrightarrow{A B^2}-\dfrac{2}{3} \overrightarrow{A D} \cdot \overrightarrow{A B}=-3\)
    \(\therefore \dfrac{2}{3} \times 3^2-\dfrac{1}{2} \times 4^2-\dfrac{2}{3} \overrightarrow{A B} \cdot \overrightarrow{A D}=-3\)
    \(\overrightarrow{A B} \cdot \overrightarrow{A D}=\dfrac{3}{2}\)
    故选:\(B\)

  4. 答案 \(A\)
    解析\(f(t)=|\vec{a}+t \vec{b}|^2=\vec{a}^2+2 t \cdot \vec{a} \cdot \vec{b}+t^2 \cdot \vec{b}^2\)
    \(\therefore \Delta=4(\vec{a} \cdot \vec{b})^2-4 \vec{a}^2 \cdot \vec{b}^2=4 \vec{a}^2 \cdot \vec{b}^2(\cos \theta-1) \leq 0\)恒成立,
    当且仅当\(t=-\dfrac{2 \vec{a} \cdot \vec{b}}{2 \times \overrightarrow{b^2}}=-\dfrac{|\vec{a}|}{|\vec{b}|} \cos \theta\)时,\(f(t)\)取得最小值\(2\)
    \(\therefore\left(-\dfrac{|\vec{a}|}{|\vec{b}|} \cos \theta\right)^2+\vec{b}^2+2\left(-\dfrac{|\vec{a}|}{|\vec{b}|} \cos \theta\right) \cdot \vec{a} \cdot \vec{b}+\vec{a}^2=2\),化简 \(\vec{a}^2 \sin ^2 \theta=2\)
    \(∴θ\)确定,则\(|\vec{a}|\)唯一确定
    故选:\(A\)

  5. 答案 \(ABD\)
    解析 对于\(A\),若\(|\vec{a}+\vec{b}|=|\vec{a}|-|\vec{b}|\),则 \(|\vec{a}|^2+|\vec{b}|^2+2 \vec{a} \cdot \vec{b}=|\vec{a}|^2+|\vec{b}|^2-2|\vec{a}||\vec{b}|\)
    \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}| \neq 0\)\(\vec{a}\)\(\vec{b}\)不垂直,所以\(A\)不正确;
    对于\(B\),由\(A\)解析可知, \(|\vec{a}+\vec{b}| \neq|\vec{a}|-|\vec{b}|\),所以\(B\)不正确;
    对于\(C\),若 \(|\vec{a}+\vec{b}| =|\vec{a}|-|\vec{b}|\),则\(|\vec{a}|^2+|\vec{b}|^2+2 \vec{a} \cdot \vec{b}=|\vec{a}|^2+|\vec{b}|^2-2|\vec{a}||\vec{b}|\)
    \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|\),则 \(\cos \theta=-1\),则\(\vec{a}\)\(\vec{b}\)反向,
    因此存在实数\(λ\),使得 \(\vec{b}=\lambda \vec{a}\),所以\(C\)正确.
    对于\(D\),若存在实数\(λ\),则 \(\vec{a} \cdot \vec{b}=\lambda|\vec{a}|^2\)\(-|\vec{a}||\vec{b}|=-|\lambda||\vec{a}|^2\),由于\(λ\)不能等于\(0\)
    因此\(|\vec{a} \cdot \vec{b} \neq-| \vec{a}|| \vec{b} \mid\),则\(|\vec{a}+\vec{b}| \neq|\vec{a}|-|\vec{b}|\),所以\(D\)不正确.
    故选:\(ABD\)

  6. 答案 \(2\)
    解析 \(\overrightarrow{A B} \cdot \overrightarrow{B C}=|\overrightarrow{A B} \| \overrightarrow{A C}| \cos <\overrightarrow{A B}, \overrightarrow{A C}>=2 \times 2 \times \cos 60^{\circ}=4 \times \dfrac{1}{2}=2\)

  7. 答案 \(\sqrt{3}\)
    解析 由题意,可得\(\vec{a} \cdot \vec{b}=2 \times 1 \times \cos \dfrac{\pi}{3}=1\)
    \(|\vec{a}-\vec{b}|=\sqrt{(\vec{a}-\vec{b})^2}=\sqrt{\vec{a}^2-2 \vec{a} \cdot \vec{b}+\vec{b}^2}=\sqrt{4-2+1}=\sqrt{3}\).

  8. 答案 \(0\)\(2 \sqrt{5}\)
    解析 正方形\(ABCD\)的边长为\(1\)
    可得 \(\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A C}\)\(\overrightarrow{B D}=\overrightarrow{A D}-\overrightarrow{A B}\)\(\overrightarrow{A B} \cdot \overrightarrow{A D}=0\)
    \(\left|\lambda_1 \overrightarrow{A B}+\lambda_2 \overrightarrow{B C}+\lambda_3 \overrightarrow{C D}+\lambda_4 \overrightarrow{D A}+\lambda_5 \overrightarrow{A C}+\lambda_6 \overrightarrow{B D}\right|\)
    \(=\left|\lambda_1 \overrightarrow{A B}+\lambda_2 \overrightarrow{A D}-\lambda_3 \overrightarrow{A B}-\lambda_4 \overrightarrow{A D}+\lambda_5 \overrightarrow{A B}+\lambda_5 \overrightarrow{A D}+\lambda_6 \overrightarrow{A D}-\lambda_6 \overrightarrow{A B}\right|\)
    \(=\left|\left(\lambda_1-\lambda_3+\lambda_5-\lambda_6\right) \overrightarrow{A B}+\left(\lambda_2-\lambda_4+\lambda_5+\lambda_6\right) \overrightarrow{A D}\right|\)
    \(=\sqrt{\left(\lambda_1-\lambda_3+\lambda_5-\lambda_6\right)^2+\left(\lambda_2-\lambda_4+\lambda_5+\lambda_6\right)^2}\)
    由于\(λ_i (i=1,2,3,4,5,6)\)取遍\(±1\)
    可得 \(\lambda_1-\lambda_3+\lambda_5-\lambda_6=0\)\(\lambda_2-\lambda_4+\lambda_5+\lambda_6=0\)
    可取 \(\lambda_5=\lambda_6=1\)\(\lambda_1=\lambda_3=1\)\(\lambda_2=-1\)\(\lambda_4=1\)
    可得所求最小值为\(0\)
    \(\lambda_1-\lambda_3+\lambda_5-\lambda_6\)\(\lambda_2-\lambda_4+\lambda_5+\lambda_6\)的最大值为\(4\)
    可取 \(\lambda_2=1\)\(\lambda_4=-1\)\(\lambda_5=\lambda_6=1\)\(\lambda_1=1\)\(\lambda_3=-1\)
    可得所求最大值为\(2 \sqrt{5}\)
    故答案为:\(0\)\(2 \sqrt{5}\)
    image.png

  9. 答案 \(2\)
    解析 因为在矩形\(ABCD\)中,\(AB=2BC=2\),动点\(M\)在以点\(C\)为圆心且与\(BD\)相切的圆上,
    \(|\overrightarrow{A C}|=|\overrightarrow{B D}|=\sqrt{5}\)
    \(C\)\(BD\)的距离为\(d\),则有 \(d=\dfrac{1 \times 2}{\sqrt{5}}=\dfrac{2 \sqrt{5}}{5}\)
    \(\overrightarrow{A M} \cdot \overrightarrow{B D}=(\overrightarrow{A C}+\overrightarrow{C M}) \cdot \overrightarrow{B D}=\overrightarrow{A C} \cdot \overrightarrow{B D}+\overrightarrow{C M} \cdot \overrightarrow{B D}\)
    其中 \(\overrightarrow{A C} \cdot \overrightarrow{B D}=(\overrightarrow{A B}+\overrightarrow{B C}) \cdot(\overrightarrow{B C}+\overrightarrow{C D})=-3\)\(\overrightarrow{C M} \cdot \overrightarrow{B D} \leq|\overrightarrow{C M}| \cdot|\overrightarrow{B D}|=2\)
    当且仅当\(\overrightarrow{C M}\)\(\overrightarrow{BD}\)同向时,等号成立.

  10. 答案 (1) \(3\);(2) \(60^∘\);(3) \(\sqrt{19}\).
    解析 (1)因为\(\vec{a} \cdot(\vec{a}-3 \vec{b})=0\),所以 \(\vec{a}^2-3 \vec{a} \cdot \vec{b}=0\)\(|\vec{a}|^2-3 \vec{a} \cdot \vec{b}=0\)
    所以\(|\vec{a}|^2=9\),所以 \(|\vec{a}|=3\)
    (2) \(\cos \theta=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}=\dfrac{3}{2 \times 3}=\dfrac{1}{2}\),又因为 \(0 \leqslant \theta \leqslant \pi\),所以 \(\theta=60^{\circ}\)
    (3) \(|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^2}=\sqrt{\vec{a}^2+2 \vec{a} \cdot \vec{b}+\vec{b}^2}=\sqrt{|\vec{a}|^2+2 \vec{a} \cdot \vec{b}+|\vec{b}|^2}\)
    \(=\sqrt{4+6+9}=\sqrt{19}\)

  11. 答案 (1) \(\dfrac{1}{6}\);(2) \(\dfrac{1}{4}\).
    解析 (1)由题意可得, \(\overrightarrow{E F}=\overrightarrow{E C}+\overrightarrow{C F}=\dfrac{1}{2} \overrightarrow{B C}+\dfrac{1}{3} \overrightarrow{C D}=\dfrac{1}{2} \overrightarrow{A D}-\dfrac{1}{3} \overrightarrow{A B}\)
    \(\because \overrightarrow{E F}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A D}\)\(\therefore \mu=\dfrac{1}{2}\)\(\lambda=-\dfrac{1}{3}\)\(\therefore \lambda+\mu=\dfrac{1}{6}\)
    (2)由题意可得, \(\overrightarrow{A E}=\overrightarrow{A B}+\overrightarrow{B E}=\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\)
    \(\overrightarrow{B F}=\overrightarrow{C F}-\overrightarrow{C B}=x \overrightarrow{C D}-\overrightarrow{C B}=\overrightarrow{A D}-x \overrightarrow{A B}\),且\(\overrightarrow{A B} \cdot \overrightarrow{A D}=0\)
    \(\overrightarrow{A E} \cdot \overrightarrow{B F}=\left(\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\right) \cdot(\overrightarrow{A D}-x \overrightarrow{A B})=\dfrac{1}{2} \overrightarrow{A D}^2-x \overrightarrow{A B}^2=2-4 x=1\)
    解得 \(x=\dfrac{1}{4}\)
     
     

【B组---提高题】

1.已知向量\(\vec{a}\)\(\vec{b}\)满足 \(|\vec{a}|=|\vec{b}|=1\),且对任意\(t∈R\)都有 \(|\vec{a}+\vec{b}| \leq|\vec{a}-t \vec{b}|\),则\(\vec{a}\)\(\vec{b}\)的夹角为(  )
 A.\(\dfrac{ \pi}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{ \pi}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{2 \pi}{3}\) \(\qquad \qquad \qquad \qquad\) D.\(\pi\)
 

2.在\(△ABC\)中,\(AB=8\)\(AC=6\)\(∠A=60°\)\(M\)\(△ABC\)的外心,若 \(\overrightarrow{A M}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}\)\(λ\)\(μ∈R\),则\(4λ+3μ=\)(  )
 A. \(\dfrac{3}{4}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{5}{3}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{7}{3}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{8}{3}\)
 

3.如图,在平面四边形\(ABCD\)中,已知\(AD=6\)\(BC=8\)\(E\)\(F\)\(AB\)\(CD\)的中点,\(P\)\(Q\)为对角线\(AC\)\(BD\)的中点,则 \(\overrightarrow{P Q} \cdot \overrightarrow{E F}\)值为\(\underline{\quad \quad}\)
image.png
 

参考答案

  1. 答案 \(D\)
    解析\(|\vec{a}+\vec{b}| \leq|\vec{a}-t \vec{b}|\),可得 \((\bar{a}+\bar{b})^2 \leq(\bar{a}-t \bar{b})^2\)
    \(\bar{a}^2+2 \bar{a} \cdot \bar{b}+\bar{b}^2 \leq \bar{a}^2-2 \bar{a} \cdot \bar{b} t+t^2 \bar{b}^2\)
    \(\vec{a}\)\(\vec{b}\)的夹角为\(θ\),可得 \(t^2-2 \cos \theta \cdot t-2 \cos \theta-1 \geq 0\)
    对任意\(t∈R\)都成立,
    \(\therefore \triangle=4 \cos ^2 \theta+4(2 \cos \theta+1) \leq 0\) ,即 \(\cos \theta \leq-1\)
    可得\(θ=π\)
    故选:\(D\)

  2. 答案 \(C\)
    解析 如图,取线段\(AB\)的中点\(E\),连接\(ME\),则 \(\overrightarrow{A M}=\overrightarrow{A E}+\overrightarrow{E M}\),且\(EM⊥AB\)
    \(\therefore \overrightarrow{A M} \cdot \overrightarrow{A B}=(\overrightarrow{A E}+\overrightarrow{E M}) \cdot \overrightarrow{A B}=\overrightarrow{A E} \cdot \overrightarrow{A B}+\overrightarrow{E M} \cdot \overrightarrow{A B}=\dfrac{1}{2} \overrightarrow{A B}^2\)
    同理可得, \(\overrightarrow{A M} \cdot \overrightarrow{A C}=\dfrac{1}{2} \overrightarrow{A C}^2\)
    \(\overrightarrow{A B} \cdot \overrightarrow{A C}=8 \times 6 \times \cos 60^{\circ}=24\)
    \(\left\{\begin{array}{l} \overrightarrow{A M} \cdot \overrightarrow{A B}=\dfrac{1}{2} \overrightarrow{A B}^2 \\ \overrightarrow{A M} \cdot \overrightarrow{A C}=\dfrac{1}{2} \overrightarrow{A C}^2 \end{array}\right.\),可得 \(\left\{\begin{array}{l} (\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}) \cdot \overrightarrow{A B}=32 \\ (\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}) \cdot \overrightarrow{A C}=18 \end{array}\right.\)
    \(\left\{\begin{array}{l} 64 \lambda+24 \mu=32 \\ 24 \lambda+36 \mu=18 \end{array}\right.\),解得 \(\left\{\begin{array}{l} \lambda=\dfrac{5}{12} \\ \mu=\dfrac{2}{9} \end{array}\right.\)
    \(\therefore 4 \lambda+3 \mu=4 \times \dfrac{5}{12}+3 \times \dfrac{2}{9}=\dfrac{7}{3}\)
    故选 \(C\)

    image.png

  3. 答案 \(-7\)
    解析 如图,连接\(FP\)\(FQ\)\(EP\)\(EQ\)
    \(∵E\)\(F\)\(AB\)\(CD\)的中点,\(P\)\(Q\)为对角线\(AC\)\(BD\)的中点,
    \(∴\)四边形\(EPFQ\)为平行四边形,
    \(\therefore \overrightarrow{P Q}=\overrightarrow{P F}+\overrightarrow{P E}=\dfrac{1}{2}(\overrightarrow{A D}+\overrightarrow{B C}), \overrightarrow{E F}=\overrightarrow{P F}-\overrightarrow{P E}=\dfrac{1}{2}(\overrightarrow{A D}-\overrightarrow{B C})\), 且\(AD=6\)\(BC=8\)
    \(\therefore \overrightarrow{P Q} \cdot \overrightarrow{E F}=\dfrac{1}{4}(\overrightarrow{A D}+\overrightarrow{B C}) \cdot(\overrightarrow{A D}-\overrightarrow{B C})=\dfrac{1}{4}\left(\overrightarrow{A D}^2-\overrightarrow{B C}^2\right)=\dfrac{1}{4} \times(36-64)=-7\).
    image.png

【C组---拓展题】

1.已知 \(\vec{e}\)为单位向量,平面向量\(\vec{a}\)\(\vec{b}\)满足 \(|\vec{a}+\vec{e}|=|\vec{b}-\vec{e}|=1\)\(\vec{a} \cdot \vec{b}\)的取值范围是\(\underline{\quad \quad}\)
 

2.如图,在\(△ABC\)中,\(AB=2\)\(AC=1\)\(D\)\(E\)分别是直线\(AB\)\(AC\)上的点, \(\overrightarrow{A E}=2 \overrightarrow{B E}\)\(\overrightarrow{C D}=4 \overrightarrow{A C}\),且 \(\overrightarrow{B D} \cdot \overrightarrow{C E}=-2\),则\(∠BAC=\)\(\underline{\quad \quad}\).若\(P\)是线段\(DE\)上的一个动点,则 \(\overrightarrow{B P} \cdot \overrightarrow{C P}\)的最小值为\(\underline{\quad \quad}\)
image.png
 

3.在平面四边形\(ABCD\)中,\(AB=6\)\(CD=2\)\(AD=2\)\(P\)\(BC\)中点,若 \(\overrightarrow{A C} \cdot\left(\overrightarrow{A D}-\dfrac{1}{3} \overrightarrow{A B}\right)=0\)\(\overrightarrow{A C} \cdot \overrightarrow{A B}=15\),则 \(\overrightarrow{A P} \cdot \overrightarrow{A D}=\)\(\underline{\quad \quad}\)
 

参考答案

  1. 答案 \(\left[-4, \dfrac{1}{2}\right]\)
    解析 取单位向量 \(\vec{e}=\overrightarrow{O C}\),以点\(C\)为圆心,\(1\)为半径作圆,在圆周上任取两点\(A\)\(B\)
    \(\vec{a}=\overrightarrow{A O}\)\(\vec{b}=\overrightarrow{O B}\),如图所示;设 \(|\vec{a}|=x\),则\(x∈[0,2]\)
    作圆\(C\)的垂直于\(OA\)的切线分别交直线\(OA\)\(B_1\)\(B_2\)两点,
    易得 \(\vec{a} \cdot \vec{b} \geq \overrightarrow{A O} \cdot \overrightarrow{O B_1}=-x\left(1+\dfrac{x}{2}\right)=-\dfrac{x^2}{2}-x, x \in[0,2]\)
    所以 \(\vec{a} \cdot \vec{b} \geq-4\),当且仅当\(x=2\)时等号成立;
    \(\vec{a} \cdot \vec{b} \leq \overrightarrow{A O} \cdot \overrightarrow{O B}_2=x\left(1-\dfrac{x}{2}\right)=\dfrac{1}{2} x(2-x) \leq \dfrac{1}{2} \cdot\left(\dfrac{x+2-x}{2}\right)^2=\dfrac{1}{2}\)
    当且仅当\(x=1\)时等号成立,即 \(\vec{a} \cdot \vec{b} \leq \dfrac{1}{2}\)
    综上知, \(\vec{a} \cdot \vec{b}\)的取值范围是 \(\left[-4, \dfrac{1}{2}\right]\)
    故答案为: \(\left[-4, \dfrac{1}{2}\right]\)

    image.png

  2. 答案 \(\dfrac{37}{7}\)
    解析 \(\because \overrightarrow{A E}=2 \overrightarrow{B E}\)\(\overrightarrow{C D}=4 \overrightarrow{A C}\)\(\therefore \overrightarrow{A E}=2 \overrightarrow{A B}\)\(\overrightarrow{A D}=5 \overrightarrow{A C}\)
    \(\because \overrightarrow{B D} \cdot \overrightarrow{C E}=-2\)
    \(\therefore(\overrightarrow{A D}-\overrightarrow{A B})(\overrightarrow{A E}-\overrightarrow{A C})=(5 \overrightarrow{A C}-\overrightarrow{A B})(2 \overrightarrow{A B}-\overrightarrow{A C})=11 \overrightarrow{A B} \cdot \overrightarrow{A C}-5 \overrightarrow{A C^2}-2 \overrightarrow{A B^2}\)
    \(=11 \times 2 \times 1 \times \cos \angle B A C-5 \times 1-2 \times 4=22 \cos \angle B A C-13=-2\)
    解得 \(\cos \angle B A C=\dfrac{1}{2}\)
    \(\because \angle B A C \in(0, \pi)\)\(\therefore \angle B A C=\dfrac{\pi}{3}\)
    \(\overrightarrow{E P}=\lambda \overrightarrow{E D}, \lambda \in[0,1]\)
    \(\therefore \overrightarrow{B P} \cdot \overrightarrow{C P}=(\overrightarrow{B E}+\overrightarrow{E P})(\overrightarrow{C D}+\overrightarrow{D P})\)\(=\left[\dfrac{1}{2} \overrightarrow{A E}+\lambda(\overrightarrow{A D}-\overrightarrow{A E})\right]\left[\dfrac{4}{5} \overrightarrow{A D}+(1-\lambda)(\overrightarrow{A E}-\overrightarrow{A D})\right]\)
    \(=\left(\dfrac{1}{2}-\lambda\right)(1-\lambda) \overrightarrow{A E^2}+\lambda\left(\lambda-\dfrac{1}{5}\right) \overrightarrow{A D^2}+\left(\dfrac{17}{10} \lambda-\dfrac{1}{10}-2 \lambda^2\right) \overrightarrow{A D} \cdot \overrightarrow{A E}\)
    \(=16\left(\dfrac{1}{2}-\lambda\right)(1-\lambda)+25 \lambda\left(\lambda-\dfrac{1}{5}\right)+\left(\dfrac{17}{10} \lambda-\dfrac{1}{10}-2 \lambda^2\right) \times 5 \times 4 \times \cos \dfrac{\pi}{3}\)
    \(=21 \lambda^2-12 \lambda+7=21\left(\lambda-\dfrac{6}{21}\right)^2+\dfrac{37}{7}\)
    \(∴\)\(\lambda=\dfrac{6}{21}\)时, \(\overrightarrow{B P} \cdot \overrightarrow{C P}\)有最小值,为 \(\dfrac{37}{7}\)
    故答案为:\(\dfrac{37}{7}\)

  3. 答案 \(4\)
    解析 如图所示,在\(AB\)上取点\(E\),使\(\overrightarrow{A E}=\dfrac{1}{3} \overrightarrow{A B}\),连接\(DE\)
    \(A E=\dfrac{1}{3} A B=2\)
    \(\because \overrightarrow{A C} \cdot\left(\overrightarrow{A D}-\dfrac{1}{3} \overrightarrow{A B}\right)=0\)\(\therefore \overrightarrow{A C} \cdot(\overrightarrow{A D}-\overrightarrow{A E})=\overrightarrow{A C} \cdot \overrightarrow{E D}=0\),即\(AC⊥ED\)
    \(AD=CD\)\(∴DE\)垂直平分\(AC\)\(∴DE\)\(∠ADC\)的平分线.
    \(\because \overrightarrow{A C} \cdot\left(\overrightarrow{A D}-\dfrac{1}{3} \overrightarrow{A B}\right)=0\)
    \(\therefore(\overrightarrow{A D}+\overrightarrow{D C}) \cdot \overrightarrow{A D}-\dfrac{1}{3} \overrightarrow{A C} \cdot \overrightarrow{A B}=0\)化简得 \(\overrightarrow{A D} \cdot \overrightarrow{D C}=1\)
    \(\overrightarrow{A D} \cdot \overrightarrow{D C}=|\overrightarrow{A D}| \cdot|\overrightarrow{D C}| \cdot \cos (\pi-\angle A D C)\)\(\therefore \cos \angle A D C=-\dfrac{1}{4}\)
    \(\therefore \cos ^2 \angle A D E=\dfrac{\cos \angle A D C+1}{2}=\dfrac{-\dfrac{1}{4}+1}{2}=\dfrac{3}{8}\)
    \(\because \angle A D E=\dfrac{1}{2} \angle A D C<90^{\circ}\)
    \(\therefore \cos \angle A D E=\dfrac{\sqrt{6}}{4}=\cos \angle A E D(\because A D=A E=2, \therefore \angle A D E=\angle A E D)\)
    \(△ADE\)中, \(A D^2=A E^2+D E^2-2 \cdot A E \cdot D E \cdot \cos \angle A E D\)
    \(4=4+D E^2-2 \times 2 \times D E \times \dfrac{\sqrt{6}}{4}\)\(\therefore D E=\sqrt{6}\)
    \(∵P\)\(BC\)的中点,
    \(\therefore \overrightarrow{A P} \cdot \overrightarrow{A D}=\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C}) \cdot(\overrightarrow{A E}+\overrightarrow{E D})=\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C}) \cdot\left(\dfrac{1}{3} \overrightarrow{A B}+\overrightarrow{E D}\right)\)
    \(=\dfrac{1}{2}\left(\dfrac{1}{3} \overrightarrow{A B^2}+\overrightarrow{A B} \cdot \overrightarrow{E D}+\dfrac{1}{3} \overrightarrow{A C} \cdot \overrightarrow{A B}+\overrightarrow{A C} \cdot \overrightarrow{E D}\right)\)
    \(=\dfrac{1}{2}\left[\dfrac{1}{3} \times 6^2+6 \times \sqrt{6} \times\left(-\dfrac{\sqrt{6}}{4}\right)+\dfrac{1}{3} \times 15+0\right]=4\)
    image.png

posted @ 2023-05-04 10:30  贵哥讲数学  阅读(165)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏