5.3.2(2) 导数与函数的最值

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

函数\(y=f(x)\)\([a,b]\)上的最大值与最小值的步骤
(1)求函数\(y=f(x)\)\((a ,b)\)内的极值;
(2)将函数\(y=f(x)\)的各极值与端点处的函数值\(f(a)\)\(f(b)\)比较,其中最大的一个是最大值,最小的一个是最小值.
解释
(1) 极大值不一定是最大值,极小值不一定是最小值.
(2) 一般地,如果在区间\([a,b]\)上函数\(y=f(x)\)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
 

【例】 如下图,可知函数\(y=f(x)\)在区间\([a,b]\)上的极大值为\(f(x_1 )\)\(f(x_3 )\);极小值为\(f(x_2 )\)\(f(x_4 )\);最大值为\(f(b)\),最小值为\(f(x_4 )\).

 

基本方法

【题型1】 求函数的最值

【典题1】\(a∈R\),函数\(f(x)=x^3-x^2-x+a\)
  (1)求\(f(x)\)的极值;\(\qquad \qquad\) (2)若\(x∈[-1,2]\),求函数\(f(x)\)的值域.
解析 (1) \(f'(x)=3x^2-2x-1\),若\(f'(x)=0\),则\(x=-\dfrac{1}{3}\)\(1\)
\(x\)变化时,\(f'(x)\)\(f(x)\)变化情况如下表:

\(x\)
\(\left(-\infty,-\dfrac{1}{3}\right)\)
\(-\dfrac{1}{3}\)
\(\left(-\dfrac{1}{3}, 1\right)\)
\(1\)
\((1,+∞)\)
\(f'(x)\) \(+\) \(0\) \(-\) \(0\) \(+\)
\(f(x)\) \(\uparrow\) 极大值 \(\downarrow\) 极小值 \(\uparrow\)

所以\(f(x)\)的极大值是\(f\left(-\dfrac{1}{3}\right)=\dfrac{5}{27}+a\),极小值是\(f(1)=a-1\)
(2)因为\(x∈\left[-1,2\right]\),由(1)知, \(f\left(-\dfrac{1}{3}\right)=\dfrac{5}{27}+a\)
\(f(1)=a-1\)\(f(-1)=a-1\)\(f(2)=a+2\)
\(f(x)\)的值域为\(\left[a-1,a+2\right]\)
点拨 函数\(y=f(x)\)\(\left[a,b\right]\)上的最大值与最小值的步骤
(1)求函数\(y=f(x)\)\((a ,b)\)内的极值;
(2)将函数\(y=f(x)\)的各极值与端点处的函数值\(f(a)\)\(f(b)\)比较,其中最大的一个是最大值,最小的一个是最小值.
 

【典题2】 已知函数\(f(x)=e^x (x-a-1)\)
  (1)当\(a=0\)时,求曲线\(y=f(x)\)\((0,f(0))\)处的切线方程;
  (2)求\(f(x)\)的单调性;
  (3)求函数\(f(x)\)\(\left[0,1\right]\)上的最小值.
解析 (1)当\(a=0\)时,\(f(x)=e^x (x-1)\)\(f'(x)=e^x (x-1)+e^x=xe^x\)
切线的斜率为\(k=f'(0)=0\)
\(f(0)=-1\)
所以切线方程为\(y-f(0)=k(x-0)\),即\(y=-1\)
(2) \(f'(x)=e^x (x-a-1)+e^x=e^x (x-a)\)
\(x⩾a\)时,\(f'(x)⩾0\)\(f(x)\)单调递增,
\(x<a\)时,\(f'(x)<0\)\(f(x)\)单调递减,
所以\(f(x)\)的单调递增区间为\((a,+∞)\),单调递减区间为\((-∞,a)\)
(3)当\(a⩾1\)时,\(f(x)\)\((0,1)\)上单调递减,
所以\(f(x)_{\min }=f(1)=e a\)
\(a⩽0\)时,\(f(x)\)在 上单调递增,
所以\(f(x)_{\min }=f(0)=-a-1\)
\(0<a<1\)时,\(f(x)\)\((0,a)\)上单调递减,在\((a,+∞)\)上单调递增,
所以 \(f(x)_{\min }=f(a)=e^a(a-a-1)=-e^a\)
综上所述, \(f(x)_{\min }=\left\{\begin{array}{l} -a-1, a \leqslant 0 \\ -e^a, 0<a<1 \\ -a e, a \geqslant 1 \end{array}\right.\)
 

【巩固练习】

1.函数\(y=\dfrac{x}{2}+\cos x, x \in\left[0, \dfrac{\pi}{2}\right]\)的最大值为 (  )
 A.\(\dfrac{\sqrt{3}}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{\pi}{12}+\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{\pi}{6}+\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{\sqrt{3}}{2}\)
 

2.已知函数\(f(x)=e^x (2x^2-3x)\).则函数\(f(x)\)在区间\(\left[0,2\right]\)上的最大值为\(\underline{\quad \quad}\)
 

3.已知函数\(f(x)=x-\dfrac{a}{e^x}\)
  (1)当\(a=-1\)时,求函数\(f(x)\)的单调区间;
  (2)若函数\(f(x)\)\(\left[0,1\right]\)上的最小值为\(\dfrac{3}{2}\),求实数\(a\)的值.
 
 

参考答案

  1. 答案 \(B\)
    解析 \(f'(x)=\dfrac{1}{2}-\sin x\)
    \(f'(x)=0\),得\(x=\dfrac{\pi}{6}\)
    \(0≤x<\dfrac{\pi}{6}\)时,\(f'(x)>0\)\(f(x)\)单调递增,
    \(\dfrac{\pi}{6}<x≤\dfrac{\pi}{2}\)时,\(f'(x)<0\)\(f(x)\)单调递减,
    所以当\(x=\dfrac{\pi}{6}\)时,\(f(x)\)取得极大值,也是最大值,
    \(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{12}+\dfrac{\sqrt{3}}{2}\)
    故选:\(B\)

  2. 答案 \(2e^2\)
    解析 \(f(x)=e^x (2x^2-3x)\)
    \(f'(x)=e^x (2x^2+x-3)=e^x (2x+3)(x-1)\)\(x∈[0,2]\)
    所以\(f'(x)\)\(f(x)\)在区间\(\left[0,2\right]\)上随\(x\)变化的情况如下:

\(x\) \(0\)
\((0,1)\)
\(1\)
\((1,2)\)
\(2\)
\(f'(x)\) \(-\) \(0\) \(+\)
\(f(x)\) \(0\) \(\downarrow\) \(-e\) \(\uparrow\) \(2e^2\)

所以\(f(x)\)\([0,2]\)单调递减区间为\([0,1)\),单调递增区间为\((1,2]\)
可知:当\(x=2\)时,\(f(x)\)取得最大值\(2e^2\)
故答案为\(2e^2\)

  1. 答案 (1) \(f(x)\)\((-∞,0)\)递减,在\((0,+∞)\)递增;(2) \(a=-\sqrt{e}\).
    解析 (1)\(f(x)\)的定义域是\(R\),且 \(f^{\prime}(x)=1+\dfrac{a}{e^x}=\dfrac{e^x+a}{e^x}\)
    \(a=-1\)时, \(f^{\prime}(x)=\dfrac{e^x-1}{e^x}\)
    \(f'(x)>0\),得\(x∈(0,+∞)\),由\(f'(x)<0\),得\(x∈(-∞,0)\)
    \(\therefore f(x)\)\((-∞,0)\)递减,在\((0,+∞)\)递增;
    (2)由(1)得 \(f^{\prime}(x)=\dfrac{e^x+a}{e^x}\)
    ①若\(a≥-1\),则\(e^x+a≥0\),即\(f'(x)≥0\)\(\left[0,1\right]\)上恒成立,
    \(f(x)\)\(\left[0,1\right]\)上是增函数,
    \(\therefore f(x)_{\min }=f(0)=-a=\dfrac{3}{2}\)\(\therefore a=-\dfrac{3}{2}\)(舍);
    ②若\(a≤-e\),则\(e^x+a≤0\),即\(f'(x)≤0\)\((0,1 ]\)恒成立,
    \(f(x)\)\(\left[0,1\right]\)递减, \(\therefore f(x)_{\min }=f(1)=1-\dfrac{a}{e}=\dfrac{3}{2}\)\(\therefore a=-\dfrac{e}{2}\)(舍);
    ③若\(-e<a<-1\),当\(0<x<\ln (-a)\)时,\(f'(x)<0\)
    \(\therefore f(x)\)\((0,\ln (-a))\)递减,
    \(\ln (-a)<x<1\)时,\(f'(x)>0\)
    \(\therefore f(x)\)\((\ln (-a),1)\)递增;
    \(\therefore f(x)_{min}=f(\ln ⁡(-a))=\ln ⁡(-a)+1=\dfrac{3}{2}\)
    \(\therefore a=-\sqrt{e}\)
    综上所述:\(a=-\sqrt{e}\)
     

【题型2】 证明不等式

【典题1】 证明:不等式\(\ln ⁡x≤x-1\).
证明\(f(x)=\ln ⁡x-x+1\)
\(\therefore\)函数定义域是\((0,+∞)\)\(f^{\prime}(x)=\dfrac{1}{x}-1=\dfrac{1-x}{x}\)
\(f'(x)=0\),得\(x=1\)
\(x>1\)时,\(f'(x)<0\)\(f(x)\)单调递减;
\(x<1\)时,\(f'(x)>0\)\(f(x)\)单调递增;
所以\(f(x)\)\(x=1\)处取到最大值\(f(1)=0\)
\(f(x)=\ln ⁡x-x+1≤0\),所以\(\ln ⁡x≤x-1\).
点拨 构造函数证明不等式恒成立.
 

【典题2】 已知函数\(f(x)=\dfrac{\ln x}{x}\)
  (1)求函数\(f(x)\)的单调区间;
  (2)已知\(a\)\(b∈R\)\(a>b>e\), (其中\(e\)是自然对数的底数), 求证: \(b^a>a^b\)
解析 (1)\(f(x)=\dfrac{\ln x}{x}\)\(\therefore f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
\(x>e\)时, \(f'(x)<0\)\(\therefore\)函数\(f(x)\)\((e,+∞)\)上是单调递减.
\(0<x<e\)时, \(f'(x)>0\)\(\therefore\)函数\(f(x)\)\((0,e)\)上是单调递增.
\(\therefore f(x)\)的增区间是\((0,e)\),减区间是\((e,+∞)\)
(2)证明: \(\because b^a>0\)\(a^b>0\)
要证: \(b^a>a^b\)
只要证: \(a\ln ⁡b>b\ln ⁡a\)
只要证\(\dfrac{\ln b}{b}>\dfrac{\ln a}{a}\).\((\because a>b>e)\)
由(1)得函数\(f(x)\)\((e,+∞)\)上是单调递减.
\(a>b>e\)时,有\(f(b)>f(a)\)\(\dfrac{\ln b}{b}>\dfrac{\ln a}{a}\)
\(\therefore b^a>a^b\).
点拨 类似\(b^a>a^b\)这样的指数式不等式,可两边去对数,化为对数式 \(\dfrac{\ln b}{b}>\dfrac{\ln a}{a}\),可构造函数 \(f(x)=\dfrac{\ln x}{x}\).
 

【巩固练习】

1.证明:不等式\(e^x-x-1≥0\)成立.
 
 

2.证明 \(\sin x>\dfrac{2 x}{\pi}\)\(x \in\left(0, \dfrac{\pi}{2}\right)\).
 

 

3.已知函数\(f(x)=xe^ax-e^x\)
  (1)当\(a=\dfrac{1}{2}\)时,判断\(f(x)\)\([0,+∞)\)的单调性;
  (2)设\(n∈N^*\),证明:\(\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}>\ln (n+1)\).
 
 

参考答案

  1. 证明\(f(x)=e^x-x-1\)\(\therefore f'(x)=e^x-1\)
    \(f'(x)=0\),得\(x=0\)
    \(x>0\)时,\(f'(x)>0\)\(f(x)\)单调递增;
    \(x<0\)时,\(f'(x)<0\)\(f(x)\)单调递减;
    所以\(f(x)\)\(x=0\)处取到最小值\(f(0)=0\)
    \(f(x)=e^x-x-1≥0\).

  2. 证明\(f(x)=\dfrac{\sin x}{x}\)\(x \in\left(0, \dfrac{\pi}{2}\right)\)
    \(f^{\prime}(x)=\dfrac{x \cdot \cos x-\sin x}{x^2}\)
    \(g(x)=x\cdot \cos ⁡x-\sin ⁡x\)
    \(g'(x)=\cos ⁡x-x\cdot \sin ⁡x-\cos ⁡x=-x\cdot \sin ⁡x\)
    \(x \in\left(0, \dfrac{\pi}{2}\right)\)时,\(g'(x)<0\),则\(g(x)\)\(\left(0, \dfrac{\pi}{2}\right)\)上递减,
    \(g(x)<g(0)=0\)
    即当 \(x \in\left(0, \dfrac{\pi}{2}\right)\)时,\(f'(x)<0\),所以\(f(x)\)\(\left(0, \dfrac{\pi}{2}\right)\)上递减,
    所以 \(f(x)>f\left(\dfrac{\pi}{2}\right)=\dfrac{2}{\pi}\)
    \(\dfrac{\sin x}{x}>\dfrac{2}{\pi} \Rightarrow \sin x>\dfrac{2 x}{\pi}\)\(x \in\left(0, \dfrac{\pi}{2}\right)\).

  3. 答案 (1)\(f(x)\)\([0,+∞)\)上单调递减;(2) 略.
    解析 (1)解:当\(a=\dfrac{1}{2}\)时, \(f(x)=x e^{\frac{1}{2} x}-e^x\)
    \(f^{\prime}(x)=e^{\frac{1}{2} x}+\frac{1}{2} x e^{\frac{1}{2} x}-e^x=e^{\frac{1}{2} x}\left(1+\dfrac{1}{2} x-e^{\frac{1}{2} x}\right)\)
    \(g(x)=1+\dfrac{1}{2} x-e^{\frac{1}{2} x}\)\(x\in [0,+∞)\)
    \(g^{\prime}(x)=\dfrac{1}{2}-\dfrac{1}{2} e^{\frac{1}{2} x} \leq 0\)
    \(g(x)=1+\dfrac{1}{2} x-e^{\frac{1}{2} x}\)\(x\in [0,+∞)\)为减函数,
    \(g(0)=0\),则\(g(x)≤0\),即\(f'(x)≤0\)
    即当\(a=\dfrac{1}{2}\)时,\(f(x)\)\([0,+∞)\)上单调递减;
    (2)证明:由(1)可得: \(x e^{\frac{1}{2} x}-e^x \leq-1\),当且仅当\(x=0\)时取等号,
    \(t=e^x\)\(x>0\),则\(t>1\)
    \(\sqrt{t} \ln t<t-1\),即 \(\sqrt{t}-\dfrac{1}{\sqrt{t}}>\ln t\)
    \(t=\dfrac{n+1}{n}\),则 \(\sqrt{\dfrac{n+1}{n}}-\dfrac{1}{\sqrt{\dfrac{n+1}{n}}}>\ln \dfrac{n+1}{n}\)
    \(\dfrac{1}{\sqrt{n(n+1)}}=\dfrac{1}{\sqrt{n^2+n}}>\ln \dfrac{n+1}{n}\)
    \(\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}>\ln \dfrac{2}{1}+\ln \dfrac{3}{2}+\cdots+\ln \dfrac{n+1}{n}\)\(=\ln \left(\dfrac{2}{1} \times \dfrac{3}{2} \times \ldots \times \dfrac{n+1}{n}\right)=\ln ⁡(n+1)\)
    \(\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}>\ln (n+1)\).
     

【题型3】 函数的最值综合运用

【典题1】 已知函数\(f(x)=x^2-2 \ln x-m\)\(g(x)=\left(\dfrac{1}{2}\right)^x+m\)
  (1)存在\(x_1\in \left[1,4\right]\),对任意\(x_2\in \left[1,4\right]\),有不等式\(f(x_1 )⩽g(x_2 )\)成立,求实数\(m\)的取值范围;
  (2)如果存在\(x_1\)\(x_2\in \left[1,4\right]\),使得\(f(x_1 )-f(x_2 )⩾M\)成立,求满足条件的最大整数\(M\)
解析 (1)存在\(x_1\in \left[1,4\right]\),对任意\(x_2\in \left[1,4\right]\),有不等式\(f(x_1 )⩽g(x_2 )\)成立,
所以 \(f(x)_{\min } \leqslant g(x)_{\min }\),因为\(f(x)=x^2-2\ln ⁡x-m\)
所以 \(f^{\prime}(x)=2 x-\dfrac{2}{x}=\dfrac{2 x^2-2}{x}=\dfrac{2(x-1)(x+1)}{x} \geqslant 0\)对任意的\(x\in \left[1,4\right]\)恒成立,
所以函数\(y=f(x)\)在区间\(\left[1,4\right]\)上单调递增,
所以\(f(x)_{\min }=f(1)=1-m,\),函数 \(g(x)=\left(\dfrac{1}{2}\right)^x+m\)在区间\(\left[1,4\right]\)上的单调递减,
所以\(g(x)_{\min }=g(4)=m+\dfrac{1}{16}\)
所以 \(1-m \leqslant m+\dfrac{1}{16}\),解得 \(m \geqslant \dfrac{15}{32}\)
所以实数\(m\)的取值范围是\(\left[\dfrac{15}{32},+\infty\right)\)
(2)存在存在\(x_1\)\(x_2\in \left[1,4\right]\),使得\(f(x_1 )-f(x_2 )⩾M\)成立,
所以 \(M \leqslant\left[f\left(x_1\right)-f\left(x_2\right)\right]_{\text {max }}\),即 \(M \leqslant f(x)_{\text {max }}-f(x)_{\text {min }}\)
由(1)可知,函数\(y=f(x)\)在区间\(\left[1,4\right]\)上单调递增,
所以\(f(x)_{min}=f(1)=1-m\)\(f(x)_{max}=16-4\ln ⁡2-m\)
所以 \(M \leqslant f(x)_{\max }-f(x)_{\min }=15-4 \ln 2\)
所以满足条件的最大整数\(M\)的值为\(12\)
 

【巩固练习】

1.已知函数\(f(x)=x\ln x\)
  (1)求\(f(x)\)的最小值;
  (2)若对所有\(x≥1\)都有\(f(x)≥ax-1\),求实数\(a\)的取值范围.
 
 

2.己知函数\(f(x)=bx\ln x+3(b≠0)\)\(f'(e)=4\)\(g(x)= -x^2+ax\)
  (l)求函数\(f(x)\)的极值;
  (2)若对\(∀x\in (0,+∞)\)\(f(x)-g(x)≥0\)恒成立,求实数\(a\)的取值范围.
 
 

参考答案

  1. 答案 (1) \(-\dfrac{1}{e}\);(2) \(a≤1\).
    解析 (1)函数的定义域\((0,+∞)\)
    \(f'(x)=\ln x+1\),令\(f'(x)>0\)\(x>\dfrac{1}{e}\),此时\(f(x)\)递增,
    \(f'(x)<0\)\(0<x<\dfrac{1}{e}\),此时\(f(x)\)递减,\(f(x)\)最小值为\(-\dfrac{1}{e}\)
    (2)方法一 分离参数法
    由题意得\(a≤\ln x+\dfrac{1}{x}\),令\(g(x)=\ln x+\dfrac{1}{x}\)
    \(x≥1\)时, \(g^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{x^2}=\dfrac{x-1}{x^2} \geq 0\)
    所以\(g(x)\)递增,\(g(x)\)的最小值为\(g(1)=1\)
    所以\(a≤1\)
    方法二 直接构造函数法
    对所有\(x≥1\)都有\(f(x)≥ax-1\)等价于\(x\ln x-ax+1≥0\)
    \(h(x)=x\ln x-ax+1\),则\(h'(x)=\ln x+1-a\)
    \(h'(x)=0\)解得 \(x=e^{a-1}\)
    \(0<x<e^{a-1}\)时,\(h'(x)<0\)\(h(x)\)递减;
    \(x>e^{a-1}\)时,\(h'(x)>0\)\(h(x)\)递增;
    \(\therefore h(x)≥h(e^{a-1} )=e^{a-1} (a-1)-ae^{a-1}+1=1-e^{a-1}\)
    若要满足题意,则\(1-e^{a-1}≥0\),解得\(a≤1\).

  2. 答案 (1) 极小值\(3-\dfrac{2}{e}\),无极大值;(2) \(a≤4\).
    解析 (1)\(f'(x)=b(\ln x+1)\)
    \(f'(e)=4\)\(2b=4\),解得\(b=2\)
    所以\(f(x)=2x\ln x+3\)\(f'(x)=2(\ln x+1)\)
    \(f'(x)=0\)\(x=\dfrac{1}{e}\)
    \(x<\dfrac{1}{e}\)时,\(f'(x)<0\);当\(x>\dfrac{1}{e}\)时,\(f'(x)>0\)
    所以函数\(f(x)\)的极小值\(f\left(\dfrac{1}{e}\right)=3-\dfrac{2}{e}\),无极大值.
    (2) 对\(∀x\in (0,+∞)\)\(2x\ln x+3+x^2-ax≥0\)恒成立
    等价于对\(∀x\in (0,+∞)\)\(a \leq 2 \ln x+x+\dfrac{3}{x}\)恒成立
    \(g(x)=2 \ln x+x+\dfrac{3}{x}\)
    \(g^{\prime}(x)=\dfrac{2}{x}+1-\dfrac{3}{x^2}=\dfrac{x^2+2 x-3}{x^2}=\dfrac{(x-1)(x+3)}{x^2}\)
    所以当\(x<1\)时,\(g'(x)<0\);当\(x>1\)时,\(g'(x)>0\)
    所以\(g(x)≥g(1)=4\)
    所以\(a≤4\).
     

分层练习

【A组---基础题】

1.函数\(y=x^3+x^2-x+1\)在区间\(\left[-2,1\right]\)上的最小值为(  )
 A. \(\dfrac{22}{27}\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(-1\) \(\qquad \qquad \qquad \qquad\) D.\(-4\)
 

2.若函数\(f(x)=\ln ⁡x-ax\)在区间\((0,+∞)\)上的最大值为\(0\),则\(f(e)=\) (  )
 A.\(0\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{e}\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(e\)
 

3.函数\(f(x)=ax-\ln ⁡x⩾0(a\in R)\)恒成立的一个必要不充分条件是(  )
 A. \(a \in\left[\dfrac{1}{e},+\infty\right)\) \(\qquad\) B. \(a∈[0,+∞)\) \(\qquad\) C.\(a\in [1,+∞)\) \(\qquad\) D.\(a\in (-∞,e ]\)
 

4.函数\(y=x+2\cos x\)在区间 \(\left[0, \dfrac{\pi}{2}\right]\)上的最大值是\(\underline{\quad \quad}\),最小值是\(\underline{\quad \quad}\)
 

5.若函数\(f(x)=\dfrac{x^3}{3}+x^2-2\)在区间\((a-4,a)\)上存在最小值,则\(a\)的取值范围是\(\underline{\quad \quad}\)
 

6.已知函数\(f(x)=x^3-3x^2-9x\)
  (1)求函数\(f(x)\)在点\((0,0)\)处的切线方程;
  (2)求函数\(f(x)\)在区间\(\left[-2,2\right]\)的最大值和最小值.
 
 

7.已知函数\(f(x)=x\ln x\)\(g(x)=-x^2+ax-3\)
  (1)求函数\(f(x)\)的图象在点\((1,0)\)处的切线方程;
  (2)若对\(∀x\in (0,+∞)\)\(2f(x)≥g(x)\)恒成立,求实数\(a\)的取值范围.
 
 

8.已知函数\(f(x)=x-1-\ln x\)
  (1)求证:\(f(x)≥0\)
  (2)求证:对于任意正整数\(n\)\(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2^2}\right) \cdots\left(1+\dfrac{1}{2^n}\right)<e\)
 
 

9.已知函数\(f(x)=e^x-a(x+1)\)
  (1)若\(f(x)≥0\)恒成立,求\(a\)的取值范围;
  (2)证明:当\(a=0\)时,曲线\(y=f(x)(x>0)\)总在曲线\(y=2+\ln ⁡x\)的上方.
 
 

参考答案

  1. 答案 \(C\)
    解析 \(y'=3x^2+2x-1=(3x-1)(x+1)\)
    \(y'>0\),解得:\(x>\dfrac{1}{3}\)\(x<-1\),令\(y'<0\),解得:\(-1<x<\dfrac{1}{3}\)
    \(\therefore\)函数在\([-2,-1)\)递增,在\(\left(-1, \dfrac{1}{3}\right)\)递减,在\(\left(\dfrac{1}{3}, 1\right]\)递增,
    \(\therefore x=-1\)时,取极大值,极大值是\(2\)\(x=\dfrac{1}{3}\)时,函数取极小值,极小值是\(\dfrac{22}{27}\)
    \(x=-2\)时,\(y=-1\)\(x=1\)时,\(y=2\)
    故函数的最小值是\(-1\)
    故选:\(C\)

  2. 答案 \(B\)
    解析 \(f^{\prime}(x)=\dfrac{1}{x}-a=\dfrac{1-a x}{x}\)\(x>0\)
    \(a⩽0\)时,在\((0,+∞)\)\(f'(x)>0\)\(f(x)\)单调递增,
    所以\(f(x)\)没有最大值,不合题意,
    \(a>0\)时,令\(f'(x)=0\),得\(x=\dfrac{1}{a}\)
    所以在 \(\left(0, \dfrac{1}{a}\right)\)上,\(f'(x)>0\)\(f(x)\)单调递增,
    \(\left(\dfrac{1}{a},+\infty\right)\)上,\(f'(x)<0\)\(f(x)\)单调递减,
    所以\(f(x)_{\max }=f\left(\dfrac{1}{a}\right)=\ln \dfrac{1}{a}-a \times \dfrac{1}{a}=\ln \dfrac{1}{a}-1=0\)
    所以\(\dfrac{1}{a}=e\),所以\(a=\dfrac{1}{e}\)
    故选:\(B\)

  3. 答案 \(B\)
    解析 根据题意,函数\(f(x)=ax-\ln ⁡x\),其定义域为\((0,+∞)\)
    \(f(x)=ax-\ln ⁡x⩾0(a\in R)\)恒成立,必有 \(a \geqslant \dfrac{\ln x}{x}\)
    \(g(x)=\dfrac{\ln x}{x}\),其导数 \(g^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    在区间\((0,e)\)上, \(g^{\prime}(x)=\dfrac{1-\ln x}{x^2}>0\),则\(g(x)\)\((0,e)\)上单调递增,
    \((e,+∞)\)上,\(g^{\prime}(x)=\dfrac{1-\ln x}{x^2}<0\) ,则\(g(x)\)\((e,+∞)\)上单调递减,
    \(g(x)_{max}=g(e)=\dfrac{1}{e}\)
    \(a \geqslant \dfrac{\ln x}{x}\)恒成立,必有\(a⩾\dfrac{1}{e}\)
    依次分析选项:
    对于\(A\)\(a \in\left[\dfrac{1}{e},+\infty\right)\)\(f(x)=ax-\ln ⁡x⩾0\)恒成立的充分必要条件,不符合题意,
    对于\(B\)\(a \in[0,+\infty)\)\(f(x)=ax-\ln ⁡x⩾0\)恒成立的一个必要不充分,符合题意,
    对于\(C\)\(a\in [1,+∞)\)\(f(x)=ax-\ln ⁡x⩾0\)恒成立的一个充分不必要,不符合题意,
    对于\(D\)\(a\in (-∞,e ]\)\(f(x)=ax-\ln ⁡x⩾0\)恒成立的既不充分也不必要条件,不符合题意,
    故选:\(B\)

  4. 答案 \(\dfrac{\pi}{6}+\sqrt{3}\)\(\dfrac{\pi}{2}\)
    解析 由题意,可知:
    \(x\in \left[0,\dfrac{\pi}{2}\right]\)时,\(y'=1-2\sin x\)
    ①当\(y'=0\)时,即\(1-2\sin x=0\)\(\sin x=\dfrac{1}{2}\)\(x=\dfrac{\pi}{6}\)时,函数取极值\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{6}+\sqrt{3}\)
    ②当\(y'>0\)时,即\(1-2\sin x>0\)\(\sin x<\dfrac{1}{2}\)\(0≤x<\dfrac{\pi}{6}\)时,函数\(f(x)\)单调递增.
    ③当\(y'<0\)时,即\(1-2\sin x<0\)\(\sin x>\dfrac{1}{2}\)\(\dfrac{\pi}{6}<x≤\dfrac{\pi}{2}\)时,函数\(f(x)\)单调递减.
    \(\because f(0)=2\)\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{6}+\sqrt{3}\)\(f\left(\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\)
    \(\therefore f(x)\)在区间\(\left[0,\dfrac{\pi}{2}\right]\)上的图象大致如下:
    image.png
    则由图象可知:
    在区间\(\left[0,\dfrac{\pi}{2}\right]\)上,当\(x=\dfrac{\pi}{6}\)时,\(f(x)\)取最大值\(\dfrac{\pi}{6}+\sqrt{3}\)
    \(x=\dfrac{\pi}{2}\)时,\(f(x)\)取最小值\(\dfrac{\pi}{2}\)
    故答案为:\(\dfrac{\pi}{6}+\sqrt{3}\)\(\dfrac{\pi}{2}\)

  5. 答案 \([1,4)\)
    解析 \(f^{\prime}(x)=x^2+2 x=x(x+2)\)
    \(f'(x)>0\),解得:\(x>0\)\(x<-2\)
    \(f'(x)<0\),解得:\(-2<x<0\)
    \(f(x)\)\((-∞,-2)\)递增,在\((-2,0)\)递减,在\((0,+∞)\)递增,
    \(f(x)_{\text {min }}=f(x)_{\text {极小值 }}=f(0) \text {, }\)
    \(f(x)\)在区间\((a-4,a)\)上存在最小值,
    \(f(a-4)≥f(0)\)
    \(\dfrac{1}{3}(a-4)^3+(a-4)^2-2 \geq-2\),解得:\(a≥1\)①,
    \(a-4<0<a\),解得:\(0<a<4\)②,
    综合①②得:\(1≤a<4\).

  6. 答案 (1) \(y=-9x\);(2)\(f(x)_{max}=5\)\(f(x)_{min}=-22\).
    解析 (1) \(f'(x)=3x^2-6x-9\),则\(f'(0)=-9\)
    所以函数在点\((0,0)\)处的切线方程为\(y=-9x\)
    (2)由(1)得\(f'(x)=3x^2-6x-9=3(x-3)(x+1)\)
    \(f'(x)=0\),得\(x=3\),或\(x=-1\)
    \(f'(x)>0\),得\(x<-1\)\(x>3\);令\(f'(x)<0\),得\(-1<x<3\)
    所以\(f(x)\)\([-2,-1)\)上单调递增,在\((-1,2 ]\)上单调递减,
    因为\(f(-2)=-2\)\(f(2)=-22\)\(f(-1)=5\)
    所以\(f(x)_{max}=5\)\(f(x)_{min}=-22\)

  7. 答案 (1) \(y=x-1\);(2)\((-∞,4 ]\).
    解析 (1)\(\because f'(x)=1+\ln x\)\(\therefore f'(1)=1=k\)
    故切线方程是:\(y=x-1\)
    (2)由题意,不等式化为\(ax≤2x\ln x+x^2+3\),因为\(x>0\)
    所以 \(a \leq 2 \ln x+x+\dfrac{3}{x}\),当\(x>0\)时恒成立.
    \(h(x)=2 \ln x+x+\dfrac{3}{x}\)
    \(h^{\prime}(x)=\dfrac{2}{x}-\dfrac{3}{x^2}+1=\dfrac{(x+3)(x-1)}{x^2}\)
    \(0<x<1\)时,\(h'(x)<0\)\(x>1\)时,\(h'(x)>0\)
    所以\(h(x)\)\((0,1)\)上递减,在\((1,+∞)\)上递增.
    \(h(x)_{min}=h(1)=2\ln 1+1+3=4\).所以\(a≤4\)
    故所求\(a\)的范围是\((-∞,4 ]\)

  8. 答案 (1) 略;(2)略 .
    解析 证明:(1) \(f^{\prime}(x)=1-\dfrac{1}{x}=\dfrac{x-1}{x}\)
    \(x>1\)\(f'(x)>0\)\(f(x)\)单调增,
    \(0<x<1\)\(f'(x)<0\)\(f(x)\)单调减,
    所以 \(f(x)\)的最小值为\(f(1)=0\)
    (2)由(1)知\(\ln x≤x-1\)
    \(x=1+\dfrac{1}{2^n }\)\(\ln (1+\dfrac{1}{2^n })<\dfrac{1}{2^n }\)
    所以\(\ln \left(1+\dfrac{1}{2}\right)+\ln \left(1+\dfrac{1}{2^2}\right)+\cdots \ln \left(1+\dfrac{1}{2^2}\right)<\dfrac{1}{2^1}+\dfrac{1}{2^2}+\cdots \dfrac{1}{2^n}\)\(=\dfrac{\dfrac{1}{2}\left(1-\left(\dfrac{1}{2}\right)^n\right)}{1-\dfrac{1}{2}}=1-\left(\dfrac{1}{2}\right)^n<1\)
    所以 \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2^2}\right) \cdots\left(1+\dfrac{1}{2^n}\right)<e\)

  9. 答案 (1)\((0,1 ]\);(2) 略.
    解析 (1)\(f'(x)=e^x-a(x\in R)\)
    \(a=0\)时,\(f(x)=e^x>0\)符合题意,
    \(a<0\)时,取\(x_0=-1+\dfrac{1}{a}\)
    \(f(x_0 )=e^{-1+\frac{1}{a}}-a(-1+\frac{1}{a}+1)=e^{-1+\frac{1}{a}}-1<0\),不符合题意,
    ③当\(a>0\)时,令\(f'(x)=0\),得\(x=\ln ⁡a\)
    所以在\((-∞,\ln ⁡a)\)上,\(f'(x)<0\)\(f(x)\)单调递减,
    \((\ln ⁡a,+∞)\)上,\(f'(x)>0\)\(f(x)\)单调递增,
    所以\(f(x)_{\min }=f(\ln a)=a-a(1+\ln a)=-a \ln a\)
    \(f(x)≥0\)恒成立,则\(f(x)\)的最小值大于等于\(0\),即\(-a \ln ⁡a≥0\)
    因为\(a>0\),所以\(0<a⩽1\)
    综上所述,\(a\)的取值范围为\((0,1 ]\)
    (2)证明:
    \(a=0\)时,令\(h(x)=f(x)-(2+\ln ⁡x)=e^x-\ln ⁡x-2(x>0)\)
    所以\(h'(x)=e^x-\dfrac{1}{x}\)\((0,+∞)\)上单调递增,
    \(h'\left(\dfrac{1}{2}\right)=e^{\frac{1}{2}}-2<0\)\(h'(1)=e-1>0\)
    所以存在\(x_0\in (0,+∞)\),使得\(h'(x_0 )=e^{x_0}-\dfrac{1}{x}_0 =0\)
    \(e^{x_0}=\dfrac{1}{x}_0\),且\(\dfrac{1}{2}<x_0<1\)
    所以在\((0,x_0 )\)上,\(g'(x)<0\)\(g(x)\)单调递减,
    \((x_0,+∞)\)上,\(g'(x)>0\)\(g(x)\)单调递增,
    所以\(h(x)_{min}=h(x_0 )=e^{x_0}-\ln ⁡x_0-2=\dfrac{1}{x}_0 +x_0-2\)
    因为\(x_0 \in\left(\dfrac{1}{2}, 1\right)\)
    所以\(h\left(x_0\right)=\dfrac{1}{x_0}+x_0-2>2 \sqrt{\dfrac{1}{x_0} \cdot x_0}-2=0\)
    所以当\(a=0\)时,\(f(x)>2+\ln ⁡x(x>0)\)
    所以当\(a=0\)时,曲线\(y=f(x)(x>0)\)总在曲线\(y=2+\ln ⁡x\)的上方.
     

【B组---提高题】

1.(多选)下列不等式中恒成立的有(  )
 A.\(\ln (x+1) \geq \dfrac{x}{x+1}\)\(x>-1\) \(\qquad \qquad \qquad\) B.\(\ln x \leq \dfrac{1}{2}\left(x-\dfrac{1}{x}\right)\)\(x>0\)
 C.\(e^x≥x+1\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) D.\(\cos x≥1-\dfrac{1}{2} x^2\)
 

2.(多选)设 \(f(x)=\dfrac{\sin x}{x^a}\)\(x \in\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\)的最大值为\(M\),则(  )
 A.当\(a=-1\)时,\(M>\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad\) B.当\(a=1\)时,\(M<1\)
 C.当\(a=2\)时,\(M<\sqrt{3}\) \(\qquad \qquad \qquad \qquad\) D.当\(a=3\)时,\(M<2\sqrt{3}\)
 

3.已知函数\(f(x)=ax^2\)\(g(x)=x\ln ⁡x\)
  (1)若\(f(x)⩾g(x)\)恒成立,求实数\(a\)的取值范围;
  (2)若\(a=1\)\(G(x)=f(x)-g(x)-1\),且\(mn>1\),证明:\(G(m)+G(n)>0\)
 
 

参考答案

  1. 答案 \(ACD\)
    解析 选项\(A\),设 \(f(x)=\ln (x+1)-\dfrac{x}{x+1}(x>-1)\)
    \(f^{\prime}(x)=\dfrac{1}{x+1}-\dfrac{1}{(x+1)^2}=\dfrac{x}{(x+1)^2}\)
    \(-1<x<0\)时,\(f'(x)<0\)\(f(x)\)单调递减;
    \(x>0\)时,\(f'(x)>0\)\(f(x)\)单调递增.
    \(\therefore f(x)_{min}=f(0)=0\),即\(f(x)≥0\)\((-1,+∞)\)上恒成立,
    \(\therefore \ln (x+1) \geq \dfrac{x}{x+1}(x>-1)\)恒成立,即\(A\)正确;
    选项\(B\),设 \(g(x)=\ln x-\dfrac{1}{2}\left(x-\dfrac{1}{x}\right)(x>0)\)
    \(g^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{2}\left(1+\dfrac{1}{x^2}\right)=-\dfrac{(x-1)^2}{2 x^2} \leq 0\)恒成立,
    \(\therefore g(x)\)\((0,+∞)\)上单调递减,
    \(g(1)=0\)\(\therefore g(x)≤0\)\((0,+∞)\)上不可能恒成立,
    \(\therefore \ln x \leq \dfrac{1}{2}\left(x-\dfrac{1}{x}\right)(x>0)\)不恒成立,即\(B\)错误;
    选项\(C\),设\(h(x)=e^x-x-1\),则\(h'(x)=e^x-1\)
    \(h'(x)=0\),解得\(x=0\)
    \(x<0\)时,\(h'(x)<0\)\(h(x)\)单调递减;
    \(x>0\)时,\(h'(x)>0\)\(h(x)\)单调递增.
    \(\therefore h(x)_{min}=h(0)=0\),即\(h(x)≥0\)\(R\)上恒成立,
    \(\therefore e^x≥x+1\)恒成立,即\(C\)正确;
    选项\(D\),设\(t(x)=\cos x-1+\dfrac{1}{2} x^2\)
    \(t'(x)=-\sin x+x\)
    \(m(x)=t'(x)=-\sin x+x\)
    \(m'(x)=-\cos x+1≥0\)恒成立,即\(m(x)\)\(R\)上单调递增,
    \(m(0)=0\)
    \(\therefore\)\(x<0\)时,\(m(x)<0\)\(t'(x)<0\)\(t(x)\)单调递减;
    \(x>0\)时,\(m(x)>0\)\(t'(x)>0\)\(t(x)\)单调递增.
    \(\therefore t(x)_{min}=t(0)=0\),即\(t(x)≥0\)\(R\)上恒成立,
    \(\therefore \cos x≥1-\dfrac{1}{2} x^2\)恒成立,即\(D\)正确.
    故选:\(ACD\)

  2. 答案 \(AB\)
    解析 对于\(A\):当\(a=-1\)时,\(f(x)=x\sin x\)
    \(f'(x)=\sin x+x\cos x>0\)\(x \in\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\)
    \(f(x)\)\(\left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递增,
    \(M=f\left(\dfrac{\pi}{3}\right)=\dfrac{\pi}{3} \sin \dfrac{\pi}{3}=\dfrac{\sqrt{3} \pi}{6}>\dfrac{\sqrt{3}}{2}\),故\(A\)正确;
    对于\(B\)\(a=1\)时, \(f(x)=\dfrac{\sin x}{x}\)
    \(f^{\prime}(x)=\dfrac{x \cos x-\sin x}{x^2}\)
    \(h(x)=x\cos x-\sin x\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)
    \(h'(x)=\cos x-x\sin x-\cos x=-x\sin x<0\)
    \(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(h\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{6} \times \dfrac{\sqrt{3}}{2}-\dfrac{1}{2}<0\)
    \(f'(x)<0\)\(f(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(M=f\left(\dfrac{\pi}{6}\right)=\dfrac{\frac{1}{2}}{\frac{\pi}{6}}=\dfrac{3}{\pi}<1\),故\(B\)正确;
    对于\(C\)\(a=2\)时, \(f(x)=\dfrac{\sin x}{x^2}\)
    \(f^{\prime}(x)=\dfrac{x \cos x-2 \sin x}{x^3}\)
    \(h(x)=x\cos x-2\sin x\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)
    \(h'(x)=\cos x-x\sin x-2\cos x=-\cos x-x\sin x<0\)
    \(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(h\left(\dfrac{\pi}{6}\right)<0\)\(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(h\left(\dfrac{\pi}{6}\right)<0\),即\(f'(x)<0\)\(f(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(M=f\left(\dfrac{\pi}{6}\right)=\dfrac{\frac{1}{2}}{\frac{\pi^2}{36}}=\dfrac{18}{\pi^2}>\sqrt{3}\),故\(C\)错误;
    对于\(D\)\(a=3\)时, \(f(x)=\dfrac{\sin x}{x^3}\)
    \(f^{\prime}(x)=\dfrac{x \cos x-3 \sin x}{x^4}\)
    \(h(x)=x\cos x-3\sin x\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)
    \(h'(x)=\cos x-x\sin x-3\cos x=-2\cos x-x\sin x<0\)
    \(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(h\left(\dfrac{\pi}{6}\right)<0\)\(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(h\left(\dfrac{\pi}{6}\right)<0\),即\(f'(x)<0\)\(f(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)递减,
    \(M=f\left(\dfrac{\pi}{6}\right)=\dfrac{108}{\pi^3}>\sqrt{3}\),故\(D\)错误;
    故选:\(AB\)

  3. 答案 (1) \(\left[\dfrac{1}{e},+∞\right)\);(2)略.
    解析 (1) \(f(x)=ax^2\)\(g(x)=x\ln ⁡x\)\(x\in (0,+∞)\)
    \(f(x)⩾g(x)\)恒成立 \(\Leftrightarrow a \geqslant \dfrac{\ln x}{x}\)\(x\in (0,+∞)\)
    \(u(x)=\dfrac{\ln x}{x}\)\(x\in (0,+∞)\)
    \(u^{\prime}(x)=\dfrac{1-\ln x}{x^2}\),令 \(u^{\prime}(x)=\dfrac{1-\ln x}{x^2}=0\),解得\(x=e\)
    可得\(x\in (0,e)\)时,\(u'(x)>0\),函数\(u(x)\)单调递增;
    \(x\in (e,+∞)\)时,\(u'(x)<0\),函数\(u(x)\)单调递减.
    可得\(x=e\)时,函数\(u(x)\)取得极大值即最大值,\(u(e)=\dfrac{1}{e}\)
    \(\therefore a⩾\dfrac{1}{e}\)
    \(\therefore\)实数\(a\)的取值范围是\(\left[\dfrac{1}{e},+∞\right)\)
    (2)证明:若\(a=1\)
    \(G(x)=f(x)-g(x)-1=x^2-x\ln ⁡x-1\)\(x\in (0,+∞)\)
    \(G'(x)=2x-\ln ⁡x-1=H(x)\)\(H^{\prime}(x)=2-\dfrac{1}{x}=\dfrac{2 x-1}{x}\)
    \(\therefore x=\dfrac{1}{2}\)时,函数\(H(x)\)取得极小值即最小值,
    \(\therefore G'(x)=H(x)⩾H\left(\dfrac{1}{2}\right)=1-\ln ⁡\dfrac{1}{2}-1=\ln ⁡2>0\)
    \(\therefore\)函数\(G(x)\)\(x\in (0,+∞)\)上单调递增,\(G(1)=0\)
    不妨设\(n⩽m\)
    \(mn>1\),若\(m>n⩾1\)时,则\(G(m)+G(n)>0\)成立.
    \(m>1⩾n>0\)时,\(\because mn>1\)\(\therefore m>\dfrac{1}{n}>1\)
    \(G(m)+G(n)>G\left(\dfrac{1}{n}\right)+G(n)\)
    要证明\(G(m)+G(n)>0\),只要证明\(G\left(\dfrac{1}{n}\right)+G(n) \geqslant 0\)即可.
    \(F(x)=G(x)+G\left(\dfrac{1}{x}\right)=x^2-x \ln x-1+\dfrac{1}{x^2}-\dfrac{1}{x} \ln \dfrac{1}{x}-1\)
    \(=\left(x-\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x}-x\right) \ln x=\dfrac{\left(1-x^2\right)\left(1-x^2+x \ln x\right)}{x^2}\)\(x\in (0,1)\)
    \(h(x)=1-x^2+x\ln ⁡x\)\(x\in (0,1)\)\(h(1)=0\)
    \(h'(x)=-2x+\ln ⁡x+1\)\(h^{\prime \prime}(x)=-2+\dfrac{1}{x}=\dfrac{1-2 x}{x}\)
    可得\(x=\dfrac{1}{2}\)时,函数\(h'(x)\)取得极大值即最大值,\(h^{\prime}\left(\dfrac{1}{2}\right)=-1+\ln \dfrac{1}{2}+1=-\ln 2<0\)
    \(\therefore h(x)=1-x^2+x\ln ⁡x\)\(x\in (0,1)\)上单调递减,
    \(\therefore h(x)>h(1)=0\)
    \(\therefore F(x)>F(1)=0\)\(x\in (0,1)\)
    \(\therefore G(m)+G(n)>0\)成立.
    综上可得:\(mn>1\)\(G(m)+G(n)>0\)成立.
     

【C组---拓展题】

1.已知函数\(f(x)=x+a\ln x+\dfrac{1}{e^x} -x^a (a<0)\),若\(f(x)≥0\)\(x\in [2,+∞)\)上恒成立,则实数\(a\)的取值范围为\(\underline{\quad \quad}\)
 

2.已知\(f(x)=x\ln ⁡x-\dfrac{1}{2} mx^2-x\)\(m\in R\).若\(f(x)\)有两个极值点\(x_1\)\(x_2\),且\(x_1<x_2\),求证:\(x_1 x_2>e^2\) (\(e\)为自然对数的底数).
 
 

参考答案

  1. 答案 \([-e,+∞)\)
    解析\(f(x)≥0\)\(x\in [2,+∞)\)上恒成立,
    \(\ln x^a-x^a \geq \ln e^{-x}-e^{-x}\)\(x\in [2,+∞)\)上恒成立,
    易知当\(x\in [2,+∞)\)\(a<0\)时,\(0<x^a<1\)\(0<e^{-x}<1\)
    令函数\(g(t)=\ln t-t(0<t<1)\)
    \(a=\dfrac{1}{t}-1>0\)\(g(t)\)单调递增,
    故有 \(x^a \geq e^{-x}\)
    \(a \geq \log _x e^{-x}=-\dfrac{x}{\ln x}\)\(x\in [2,+∞)\)上恒成立,
    \(F(x)=-\dfrac{x}{\ln x}(x \geq 2)\)
    \(F^{\prime}(x)=\dfrac{1-\ln x}{(\ln x)^2}\)
    易得\(F(x)\)\([2,e)\)上单调递增,在\([e,+∞)\)上单调递减,
    \(F(x)_{max}=F(e)=-e\)
    \(a≥-e\)
    即实数\(a\)的取值范围是\([-e,+∞)\)
    故答案为:\([-e,+∞)\)

  2. 证明 欲证\(x_1 x_2>e^2\),需证\(\ln ⁡x_1+\ln ⁡x_2>2\)
    \(f(x)\)有两个极值点\(x_1\)\(x_2\),即函数\(f'(x)\)有两个零点.
    \(f'(x)=\ln ⁡x-mx\),所以\(x_1\)\(x_2\)是方程\(f'(x)=0\)的两个不同实根.
    于是,有\(\left\{\begin{array}{l} \ln x_1-m x_1=0 \\ \ln x_2-m x_2=0 \end{array}\right.\),解得 \(m=\dfrac{\ln x_1+\ln x_2}{x_1+x_2}\)
    另一方面,由 \(\left\{\begin{array}{l} \ln x_1-m x_1=0 \\ \ln x_2-m x_2=0 \end{array}\right.\),得\(\ln x_2-\ln x_1=m\left(x_2-x_1\right)\)
    从而可得\(\dfrac{\ln x_2-\ln x_1}{x_2-x_1}=\dfrac{\ln x_1+\ln x_2}{x_1+x_2}\)
    于是, \(\ln x_1+\ln x_2=\dfrac{\left(\ln x_2-\ln x_1\right)\left(x_2+x_1\right)}{x_2-x_1}=\dfrac{\left(1+\dfrac{x_2}{x_1}\right) \ln \dfrac{x_2}{x_1}}{\dfrac{x_2}{x_1}-1}\)
    \(0<x_1<x_2\),设 \(z=\dfrac{x_2}{x_1}\),则\(t>1\)
    因此\(\ln x_1+\ln x_2=\dfrac{(1+t) \ln t}{t-1}\)\(t>1\)
    要证\(\ln ⁡x_1+\ln ⁡x_2>2\),即证 \(\dfrac{(t+1) \ln t}{t-1}>2\)\(t>1\)
    即当\(t>1\)时,有 \(\ln t>\dfrac{2(t-1)}{t+1}\)
    设函数 \(h(t)=\ln t-\dfrac{2(t-1)}{t+1}\)\(t≥1\)
    \(h^{\prime}(t)=\dfrac{1}{t}-\dfrac{2(t+1)-2(t-1)}{(t+1)^2}=\dfrac{(t-1)^2}{t(t+1)^2} \geq 0\)
    所以\(h(t)\)\((1,+∞)\)上的增函数.注意到\(h(1)=0\)
    因此\(h(t)≥h(1)=0\)
    于是,当\(t>1\)时,有 \(\ln t>\dfrac{2(t-1)}{t+1}\)
    所以有\(\ln ⁡x_1+\ln ⁡x_2>2\)成立,\(x_1 x_2>e^2\)

 

posted @ 2022-12-06 20:48  贵哥讲数学  阅读(125)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏