5.3.1 (3) 函数的单调性(运用)

${\color{Red}{欢迎到学科网下载资料学习 }}$  

[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

函数单调性与导数

在某个区间\((a ,b)\)内,若\(f'(x)>0\),则函数\(y=f(x)\)在这个区间内单调递增;
\(f'(x)<0\) ,则函数\(y=f(x)\)在这个区间内单调递减.
解释
(1) 若函数\(y=f(x)\)在某个区间\((a ,b)\)内单调递增,则\(∀x∈(a ,b)\)\(f' (x)≥0\)(含等号)恒成立,但不存在一区间\((c ,d)⊆(a ,b)\)内使得\(f' (x)=0\)
假如存在一区间\((c ,d)⊆(a ,b)\)内使得\(f' (x)=0\),那原函数\(y=f(x)\)在区间\((c ,d)\)内恒等于一个常数,即\(f(x)=m\)(\(m\)是个常数),则原函数不可能在\((a ,b)\)内单调递增.
\(\qquad \qquad\)
函数\(y=f(x)\)在某个区间\((a ,b)\)内单调递减有类似结论!

(2)导函数“穿线图”与原函数“趋势图”
① 导函数“穿线图”关注导函数在各区间的正负,故特别注意函数与x轴的交点情况,
\(f'(x)=x\)\(f' (x)=e^x-1\)的“穿线图”视为一样的,它们在\((-∞,0)\)上为负,在\((0,+∞)\)上为正.
\(\qquad \qquad\)
② 原函数“趋势图”仅关注函数在各区间上的单调性,没顾及其最值或曲线形状等,
如由导函数\(f' (x)=x-1\)的“穿线图”易得原函数\(y=f(x)\)\((-∞,0)\)上递减,在\((0,+∞)\)上为递增,趋势图可如下图,

③ 后面涉及到函数单调性均可通过分析导函数“穿线图”得出原函数的单调性.
 

基本方法

【题型1】已知函数单调性求参数范围

【典题1】 若函数\(f(x)=x^3-3kx+1\)在区间\((1,+∞)\)上单调递增,则实数\(k\)的取值范围是(  )
 A.\((-∞,1)\) \(\qquad \qquad \qquad\) B.\((-∞,1]\) \(\qquad \qquad \qquad\) C.\([-1,+∞)\) \(\qquad \qquad \qquad\) D.\([1,+∞)\)
解析 因为\(f(x)=x^3-3kx+1\),所以\(f'(x)=3x^2-3k\)
\(k⩽0\)时,\(f'(x)⩾0\)恒成立,\(f(x)\)\(R\)单调递增,满足题意;
\(k>0\)时,令\(f'(x)=3x^2-3k⩾0\)
\(x \leqslant-\sqrt{k}\)\(x⩾\sqrt{k}\)
因为\(f(x)\)在区间\((1,+∞)\)上单调递增,
所以\(\sqrt{k}⩽1\),即\(0<k⩽1\)
综上所述,实数\(k\)的取值范围是\((-∞,1]\)
故选:\(B\)
点拨 \(f(x)\)\((a,b)\)上递增\(⇒f'(x)≥0\)\((a,b)\)上恒成立,等号是否成立有时需要检验; \(f(x)\)\((a,b)\)上递减\(⇒f'(x)≤0\)\((a,b)\)上恒成立,等号是否成立有时需要检验.
 

【巩固练习】

1.若函数\(f(x)=(x^2-4ax+2) e^x\)\(R\)上单调递增,则\(a\)的取值范围是\(\underline{\quad \quad}\).
 

2.已知函数\(f(x)=\sin ⁡ ⁡x+a\cos ⁡ ⁡x\)在区间\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)上是减函数,则实数\(a\)的取值范围为\(\underline{\quad \quad}\) .
 

3.已知函数\(f(x)=(x-a)\ln⁡ x\)\(a∈R\).若函数\(f(x)\)\((0,+∞)\)上为增函数,则\(a\)的取值范围\(\underline{\quad \quad}\) .
 

参考答案

  1. 答案 \(\left[-\dfrac{1}{2}, \dfrac{1}{2}\right]\)
    解析 对函数求导:\(f'(x)=(x^2-4ax+2x+2-4a)⋅e^x\)
    由已知有\(f'(x)≥0\)\(R\)上恒成立,
    又因为\(e^x>0\)恒成立,故仅需\(x^2+(2-4a)x+2-4a⩾0\)恒成立,
    \(△=(2-4a)^2-4(2-4a)⩽0\),解得\(-\dfrac{1}{2} ⁡ ⩽a⩽\dfrac{1}{2}\) ⁡ .

  2. 答案 \([1,+∞)\)
    解析 由题意得\(f'(x)=\cos ⁡ ⁡x-a\sin ⁡ ⁡x⩽0\)在区间\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)上恒成立,
    所以 \(a \geqslant \dfrac{\cos x}{\sin x}=\dfrac{1}{\tan x}\)在区间\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)上恒成立,
    因为当\(x \in\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)时,\(0<\dfrac{1}{\tan x}<1\),所以\(a⩾1\)

  3. 答案 \(\left(-\infty,-e^{-2}\right]\)
    解析 函数\(f(x)=(x-a)\ln⁡ x\)\(a∈R\),则\(f^{\prime}(x)=\ln x+1-\dfrac{a}{x}\)
    函数\(f(x)\)\((0,+∞)\)上为增函数,转化为\(f'(x)⩾0\)\((0,+∞)\)上恒成立,
    \(a⩽x\ln⁡ x+x\)\((0,+∞)\)上恒成立,
    \(g(x)=x\ln⁡ x+x\)\(x∈(0,+∞)\),则\(g'(x)=\ln⁡ x+2\)
    \(g'(x)=0\)\(x=e^{-2}\),由\(g'(x)>0\)\(x>e^{-2}\),由\(g'(x)<0\)\(0<x<e^{-2}\)
    \(\therefore g(x)\)\((0,e^{-2})\)上单调递减,在\((e^{-2},+∞)\)上单调递增,
    \(\therefore\)\(x=e^{-2}\)时,\(g(x)\)取得极小值也是最小值,且\(g(e^{-2})=-e^{-2}\)
    \(\therefore a⩽-e^{-2}\)
    故实数\(a\)的取值范围为\((-∞,-e^{-2}]\).

 

【题型2】比较大小

【典题1】\(1<x<y<2\),则(  )
 A.\(e^x+3y<e^y+3x\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.\(e^x+3y>e^y+3x\)
 C.\(x^3+3y^2<y^3+3x^2\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) D.\(x^3+3y^2>y^3+3x^2\)
解析\(f(x)=e^x-3x\)\(x∈(1,2)\)
\(f'(x)=e^x-3\),由\(f'(x)=0\),可得\(x=\ln⁡ 3\)
所以当\(x∈(1,\ln⁡ 3)\)时,\(f'(x)<0\)\(f(x)\)单调递减,
\(x∈(\ln⁡ 3,2)\)时,\(f'(x)>0\)\(f(x)\)单调递增,
所以当\(1<x<y<\ln⁡ 3\)时,\(e^x-3x>e^y-3y\),即\(e^x+3y>e^y+3x\)
\(\ln⁡ 3<x<y<2\)时,\(e^x-3x<e^y-3y\)
\(e^x+3y<e^y+3x\),故\(A\)\(B\)错误;
\(g(x)=x^3-3x^2\)\(x∈(1,2)\)
\(f'(x)=3x^2-6x=3x(x-2)<0\)
所以\(g(x)\)\((1,2)\)上单调递减,
因为\(1<x<y<2\),所以\(x^3+3y^2>y^3+3x^2\),故\(C\)错误,\(D\)正确.
故选:\(D\)
点拨 需要根据不等式构造函数,再通过函数单调性判断大小.
 

【巩固练习】

1.若\(x, y \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\),且\(x\sin ⁡ x-y\sin ⁡ y>0\),则下列不等式一定成立的是(  )
 A.\(x<y\) \(\qquad \qquad \qquad \qquad\) B.\(x>y\) \(\qquad \qquad \qquad \qquad\) C.\(|x|<|y|\) \(\qquad \qquad \qquad \qquad\) D.\(|x|>|y|\)
 

2.若对于任意的\(0<x_1<x_2<a\),都有 \(\dfrac{\ln x_1}{x_1}-\dfrac{\ln x_2}{x_2}<\dfrac{1}{x_2}-\dfrac{1}{x_1}\),则\(a\)的最大值为(  )
 A.\(2e\) \(\qquad \qquad \qquad \qquad\) B.\(e\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{2}\)
 

3.若\(0<x_1<x_2<1\),则下列结论正确的是(  )
 A.\(\ln \dfrac{x_1}{x_2}<e^{x_1}-e^{x_2}\) \(\qquad \qquad \qquad \qquad\) B. \(\ln \dfrac{x_1}{x_2}>e^{x_1}-e^{x_2}\)
 C.\(\dfrac{x_1}{x_2}>\sqrt{e^{x_1-x_2}}\) \(\qquad \qquad \qquad \qquad \qquad\) D. \(\dfrac{x_1}{x_2}<\sqrt{e^{x_1-x_2}}\)
 

参考答案

  1. 答案 \(D\)
    解析\(f(x)=x\sin ⁡ x\)\(x \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\),则\(f(x)\)为偶函数,
    \(x>0\)时,\(f'(x)=\sin ⁡ x+x\cos ⁡ x>0\),即\(f(x)\)\(\left[0, \dfrac{1}{2} \pi\right]\)上单调递增,
    根据偶函数的对称性可知,\(f(x)\)\(\left[-\dfrac{1}{2} \pi, 0\right)\)上单调递减,距离对称轴越远,函数值越大,
    \(x\sin ⁡ x-y\sin ⁡ y>0\),可得\(x\sin ⁡ x>y\sin ⁡ y\),即\(f(x)>f(y)\)
    从而可得\(|x|>|y|\)
    故选:\(D\)

  2. 答案 \(C\)
    解析 \(\because \dfrac{\ln x_1}{x_1}-\dfrac{\ln x_2}{x_2}<\dfrac{1}{x_2}-\dfrac{1}{x_1}\)\(\therefore \dfrac{\ln x_1+1}{x_1}<\dfrac{\ln x_2+1}{x_2}\)
    据此可得函数\(f(x)=\dfrac{\ln x+1}{x}\)在定义域\((0,a)\)上单调递增,
    其导函数:\(f^{\prime}(x)=\dfrac{1-(\ln x+1)}{x^2}=-\dfrac{\ln x}{x^2} \geq 0\)\((0,a)\)上恒成立,
    据此可得:\(0<x≤1\)
    即实数\(a\)的最大值为\(1\)
    故选:\(C\)

  3. 答案 \(D\)
    解析 对于\(A\):由\(\ln \dfrac{x_1}{x_2}<e^{x_1}-e^{x_2}\)
    \(\ln x_1-\ln x_2<e^{x_1}-e^{x_2}\),得:\(e^{x_1}-\ln x_1>e^{x_2}-\ln x_2\)
    \(f(x)=e^x-\ln x\),则\(f(x_1)>f(x_2)\)
    由函数\(f(x)=e^x-\ln x\),得:\(f'(x)=e^x-\dfrac{1}{x} ⁡\)\(f'(x)\)\((0,1)\)递增,
    \(f'(1)=e-1>0\)\(x→0\)时,\(f'(x)→-∞\)
    故存在\(x_0∈(0,1)\),使得\(f'(x_0)=0\)
    \(f(x)\)\((0,x_0)\)递减,在\((x_0,1)\)递增,
    ①若\(x_0<x_1<x_2<1\),则\(f(x_1 )<f(x_2 )\)
    ②若\(0<x_1<x_2<x_0\),则\(f(x_1 )>f(x_2 )\)
    ③若\(x_1<x_0<x_2\),则\(f(x_1 )\)\(f(x_2 )\)无法比较大小,故\(A\)错误;
    同理\(B\)错误;
    对于\(C\):令\(g(x)=x^2 e^x\)\((0<x<1)\)
    \(g'(x)=e^x (x^2+2x)>0\)
    \(g(x)\)\((0,1)\)递增,由\(0<x_1<x_2<1\),得\(g(x_1 )<g(x_2 )\)
    \(x_1^2 e^{x_1}<x_2^2 e^{x_2}\),即\(\left(\dfrac{x_1}{x_2}\right)^2<\dfrac{e^{x_2}}{e^{x_1}}\)
    \(\dfrac{x_1}{x_2}<\sqrt{e^{x_2-x_1}}\)
    \(C\)错误,\(D\)正确;
    故选:\(D\)
     

【题型3】比较数值大小

【典题1】\(a=\dfrac{\ln 4}{4}\)\(b=\dfrac{\ln 5.3}{5.3}\)\(c=\dfrac{\ln 6}{6}\),则\(a\)\(b\)\(c\)的大小是(  )
 A.\(a<b<c\) \(\qquad \qquad\) B.\(c<b<a\) \(\qquad \qquad\) C.\(c<a<b\) \(\qquad \qquad\) D.\(b<a<c\)
解析\(f(x)=\dfrac{\ln x}{x}\)\(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
\(f'(x)>0\),可得\(0<x<e\),令\(f'(x)<0\),可得\(x>e\)
所以\(f(x)\)\((0,e)\)上单调递增,在\((e,+∞)\)上单调递减,
因为\(e<4<5.3<6\)
所以\(f(4)>f(5.3)>f(6)\)
\(\dfrac{\ln 4}{4}>\dfrac{\ln 5.3}{5.3}>\dfrac{\ln 6}{6}\),即\(a>b>c\)
故选:\(B\)
点拨 需要数值的结构特点构造函数,再通过函数单调性判断大小.
 

【典题2】 已知 \(a=e^{0.1}-1\)\(b=\sin ⁡ ⁡0.1\)\(c=\ln ⁡1.1\),则(  )
 A.\(a<b<c\) \(\qquad \qquad\) B.\(b<c<a\) \(\qquad \qquad\) C.\(c<a<b\) \(\qquad \qquad\) D.\(c<b<a\)
解析\(f(x)=e^x-x-1\),则\(f'(x)=e^x-1\)
\(x∈(0,+∞)\)时,\(f'(x)>0\),故\(f(x)\)\((0,+∞)\)上是增函数,
\(f(0.1)>f(0)\),即 \(e^{0.1}-0.1-1>0\),故\(a=e^{0.1}-1>0.1\)
\(g(x)=\sin ⁡ ⁡x-x\),则\(g'(x)=\cos ⁡ ⁡x-1<0\)\((0,1)\)上恒成立,
\(g(x)=\sin ⁡ ⁡x-x\)\((0,1)\)上单调递减,
\(g(0.1)<g(0)\),即\(\sin ⁡ ⁡0.1-0.1<0\),即\(b=\sin ⁡ ⁡0.1<0.1\)
\(h(x)=\ln ⁡ (x+1)-\sin ⁡ ⁡x\)
\(h^{\prime}(x)=\dfrac{1}{x+1}-\cos x=\dfrac{1-(x+1) \cos x}{x+1}\)
\(m(x)=1-(x+1)\cos ⁡ ⁡x\)
\(m'(x)=-\cos ⁡ ⁡x+(x+1)\sin ⁡ ⁡x\)
易知\(m'(x)\)\(\left(0, \dfrac{\pi}{6}\right)\)上是增函数,
\(m^{\prime}\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{2}+\left(1+\dfrac{\pi}{6}\right) \dfrac{1}{2}=\dfrac{-6 \sqrt{3}+6+\pi}{12}<0\)
\(m'(x)<0\)\(\left(0, \dfrac{\pi}{6}\right)\)上恒成立,故\(m(x)\)\(\left(0, \dfrac{\pi}{6}\right)\)上是减函数,
\(\because m(0)=1-1=0\),故\(m(x)<0\)\(\left(0, \dfrac{\pi}{6}\right)\)上恒成立,
\(h'(x)<0\)\(\left(0, \dfrac{\pi}{6}\right)\)上恒成立,故\(h(x)\)\(\left(0, \dfrac{\pi}{6}\right)\)上是减函数,
\(h(0.1)<h(0)=0\),即\(\ln ⁡ 1.1-\sin ⁡ ⁡0.1<0\),即\(c<b\)
\(c<b<a\)
故选:\(D\)
 

【巩固练习】

1.已知 \(a=\dfrac{\ln \sqrt{2}}{4}\)\(b=\dfrac{1}{e^2}\)\(c=\dfrac{\ln \pi}{2 \pi}\),则\(a\)\(b\)\(c\)的大小关系为(  )
 A.\(a<c<b\) \(\qquad \qquad\) B. \(b<a<c\) \(\qquad \qquad\) C. \(a<b<c\) \(\qquad \qquad\) D. \(c<a<b\)
 

2.已知\(a=\dfrac{3}{\ln 3}\)\(b=e\)\(c=\dfrac{e^2}{2}\)(\(e\)为然对数的底数),则\(a\)\(b\)\(c\)的大小关系为(  )
 A.\(c>a>b\) \(\qquad \qquad\) B.\(c>b>a\) \(\qquad \qquad\) C.\(a>c>b\) \(\qquad \qquad\) D.\(b>c>a\)
 

3.设\(a=e^{-1}\)\(b=\dfrac{1}{2} e^{-\frac{1}{2}}\)\(c=\ln ⁡ 2\),则\(a\)\(b\)\(c\)的大小关系为(  )
 A.\(b<c<a\) \(\qquad \qquad\) B.\(a<b<c\) \(\qquad \qquad\) C. \(b<a<c\) \(\qquad \qquad\) D. \(c<a<b\)
 

4.设 \(a=\dfrac{10}{11}\)\(b=\dfrac{1}{e^{0.1}}\)\(c=0.9\),则(  )
 A.\(c<b<a\) \(\qquad \qquad\) B.\(c<a<b\) \(\qquad \qquad\) C.\(b<c<a\) \(\qquad \qquad\) D.\(a<c<b\)
 

参考答案

  1. 答案 \(C\)
    解析 因为\(a=\dfrac{\ln \sqrt{2}}{4}=\dfrac{\ln 2}{8}=\dfrac{2 \ln 2}{16}=\dfrac{\ln 4}{16}\)\(b=\dfrac{1}{e^2}=\dfrac{\ln e}{e^2}\)\(c=\dfrac{\ln \pi}{2 \pi}=\dfrac{\ln \sqrt{\pi}}{\pi}\)
    所以构造函数 \(f(x)=\dfrac{\ln x}{x^2}\)
    \(f^{\prime}(x)=\dfrac{x-2 x \ln x}{x^4}=\dfrac{1-2 \ln x}{x^3}\)
    \(f'(x)>0\)\(0<x<\sqrt{e}\);令\(f'(x)<0\)\(x>\sqrt{e}\)
    所以函数\(f(x)\)\((0,\sqrt{e})\)上单调递增,在\((\sqrt{e},+∞)\)上单调递减,
    因为\(\sqrt{e}<\sqrt{\pi}<e<4\)
    所以\(f(\sqrt{\pi})>f(e)>f(4)\),即\(c>b>a\).
    故选:\(C\)

  2. 答案 \(A\)
    解析 \(\because a=\dfrac{3}{\ln 3}\)\(b=e=\dfrac{e}{\ln e}\)\(c=\dfrac{e^2}{2}=\dfrac{e^2}{\ln e^2}\)
    \(\therefore\)\(f(x)=\dfrac{x}{\ln x}\),则 \(f^{\prime}(x)=\dfrac{\ln x-1}{(\ln x)^2}\)
    \(\therefore\)\(x∈(e,+∞)\)时,\(f'(x)>0\)
    \(\therefore f(x)\)\([e,+∞)\)上是增函数,
    \(a=\dfrac{3}{\ln 3}=f(3)\)\(b=e=\dfrac{e}{\ln e}=f(\mathrm{e})\)\(c=\dfrac{e^2}{2}=\dfrac{e^2}{\ln e^2}=f\left(e^2\right)\)
    \(e<3<e^2\),则\(c>a>b\)
    故选:\(A\)

  3. 答案 \(C\)
    解析\(\text { 没 } f(x)=x e^{-x}\) ,则 \(f^{\prime}(x)=(1-x) e^{-x}\)
    \(x≤1\)时,\(f'(x)≥0\)\(f(x)\)单调递增,
    \(x>1\)时,\(f'(x)<0\)\(f(x)\)单调递减,
    \(\therefore f(1)>f(\dfrac{1}{2} ⁡ )\),即\(a>b\)
    \(\because c=\ln 2>\ln \sqrt{e}=\dfrac{1}{2}>\dfrac{1}{e}=a\)\(\therefore b<a<c\)
    故选:\(C\)

  4. 答案 \(A\)
    解析\(f(x)=e^x-(x+1)\),则\(f'(x)=e^x-1\)
    \(x>0\)时,\(f'(x)>0\),当\(x<0\)时,\(f'(x)<0\)
    \(\therefore\)\(x=0\)时,\(f(x)\)取得最小值,即\(f(x)⩾f(0)=0\)
    \(\therefore e^x⩾x+1\)\(\therefore e^{0.1}>0.1+1=1.1\)
    \(\therefore \dfrac{1}{e^{0.1}}<\dfrac{1}{1.1}=\dfrac{10}{11}\),即\(b<a\)
    \(\therefore \dfrac{1}{e^{0.1}}=e^{-0.1}>-0.1+1=0.9\),即\(b>c\)
    综上,可得\(c<b<a\)
    故选:\(A\)
     

分层练习

【A组---基础题】

1.已知函数\(f(x)=(x^2-4x+a) e^x\)在区间\([-2,3]\)上单调递减,则实数\(a\)的取值范围是(  )
 A.\((-∞,-4]\) \(\qquad \qquad\) B.\((-∞,5]\) \(\qquad \qquad\) C.\((-∞,1]\) \(\qquad \qquad\) D.\((-∞,-8]\)
 

2.已知\(a=\dfrac{\ln 3}{3}\)\(b=\dfrac{1}{e}\)\(c=\dfrac{\ln 5}{5}\),则以下不等式正确的是(  )
 A.\(c>b>a\) \(\qquad \qquad\) B.\(a>b>c\) \(\qquad \qquad\) C.\(b>a>c\) \(\qquad \ \qquad\) D.\(b>c>a\)
 

3.已知\(a=\dfrac{1}{e}\)\(b=\dfrac{\ln 5}{5}\)\(c=\dfrac{2}{5}\),则\(a\)\(b\)\(c\)的大小关系为(  )
 A.\(b<c<a\)\(\qquad \qquad\) B.\(c<a<b\) \(\qquad \qquad\) C.\(c<b<a\) \(\qquad \qquad\) D.\(b<a<c\)
 

4.下列不等式正确的是(  )
 A.\(\dfrac{\ln 2}{2}>\dfrac{\ln 4}{4}\) \(\qquad \qquad\) B.\(\dfrac{2 \ln 3}{3}>\ln 2\) \(\qquad \qquad\) C.\(e\ln ⁡ 10>10\) \(\qquad \qquad\) D. \(2^{\sqrt{6}}>6\)
 

5.设\(a=e^{0.5}\)\(b=\dfrac{3}{e}\)\(c=\ln ⁡ 3\),其中\(e\)为自然对数的底数,则\(a\)\(b\)\(c\)的大小关系是(  )
 A.\(c<a<b\) \(\qquad \qquad\) B. \(b<c<a\) \(\qquad \qquad\) C. \(a<c<b\) \(\qquad \qquad\) D. \(c<b<a\)
 

6.已知\(a=\ln \sqrt[3]{3}\)\(b=e^{-1}\)\(c=\ln ⁡ (e+1)-1\),则(  )
 A.\(a<b<c\) \(\qquad \qquad\) B. \(c<a<b\) \(\qquad \qquad\) C. \(a<c<b\) \(\qquad \qquad\) D. \(b<c<a\)
 

7.若\(\ln x-\ln y<\dfrac{1}{\ln x}-\dfrac{1}{\ln y}(x>1, y>1)\),则(  )
 A. \(e^{y-x}>1\) \(\qquad \qquad\) B. \(e^{y-x}<1\) \(\qquad \qquad\) C. \(e^{y-x-1}>1\) \(\qquad \qquad\) D. \(e^{y-x-1}<1\)
 

8.若\(\alpha, \beta \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\),且\(α\sin ⁡ α-β\sin ⁡ β>\cos ⁡ α-\cos ⁡ β\),则下列结论中必定成立的是(  )
 A.\(α>β\) \(\qquad \qquad \qquad\) B.\(α>-β\) \(\qquad \qquad \qquad\) C.\(α<β\) \(\qquad \qquad \qquad\) D.\(|α|>|β|\)
 

9.已知 \(0<\alpha<\beta<\dfrac{\pi}{2}\),则下列不等式中恒成立的是(  )
 A.\(α^α<β^β\)\(\qquad \qquad \qquad\) B.\(α^α≤β^β\) \(\qquad \qquad \qquad\) C.\(α^β>β^α\) \(\qquad \qquad \qquad\) D.\(α^β<β^α\)
 

10.已知函数\(f(x)=\dfrac{1}{2} ⁡ x^2+2ax-\ln ⁡ x\),若\(f(x)\)在区间\([1,3]\)上单调递增,则实数\(a\)的范围为\(\underline{\quad \quad}\) .
 

参考答案

  1. 答案 \(A\)
    解析 因为函数\(f(x)=(x^2-4x+a) e^x\)\([-2,3]\)上单调递减,
    所以\(f'(x)=(x^2-2x+a-4) e^x⩽0\)\([-2,3]\)上恒成立,
    \(x^2-2x+a-4⩽0\)\([-2,3]\)上恒成立,
    \(a \leqslant\left(-x^2+2 x+4\right)_{\text {min }}\)
    \(-x^2+2x+4\)的最小值为\(-4\),所以\(a⩽-4\)
    故选:\(A\)

  2. 答案 \(C\)
    解析\(f(x)=\dfrac{\ln x}{x}\),则 \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    \(x>e\)时,\(f'(x)<0\),函数单调递减,
    因为\(5>3>e\),所以\(f(5)<f(3)<f(e)\)
    \(\dfrac{\ln 5}{5}<\dfrac{\ln 3}{3}<\dfrac{\ln e}{e}\),即\(b>a>c\)
    故选:\(C\)

  3. 答案 \(D\)
    解析 \(\because a-c=\dfrac{1}{e}-\dfrac{2}{5}=\dfrac{5-2 e}{5 e}<0\)\(\therefore a<c\)
    \(f(x)=\dfrac{\ln x}{x}\),则\(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    故当\(x∈(e,+∞)\)时, \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}<0\)
    \(f(x)\)\([e,+∞)\)上是减函数,
    \(a=\dfrac{1}{e}=f(\mathrm{e})\)\(b=\dfrac{\ln 5}{5}=f(5)\)
    \(b<a\),故\(b<a<c\)
    故选:\(D\)

  4. 答案 \(B\)
    解析 因为 \(\dfrac{\ln 4}{4}=\dfrac{2 \ln 2}{4}=\dfrac{\ln 2}{2}\)\(A\)错误;
    \(2\ln ⁡ 3=\ln ⁡ 9\)\(3\ln ⁡ 2=\ln ⁡ 8\)\(\ln ⁡ 9>\ln ⁡ 8\),故\(2\ln ⁡ 3>3\ln ⁡ 2\)
    所以 \(\dfrac{2 \ln 3}{3}>\ln 2\)\(B\)正确;
    \(f(x)=\dfrac{\ln x}{x}\),则 \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    易得,当\(0<x<e\)时,\(f'(x)>0\),函数单调递增,
    \(x>e\)时,\(f'(x)<0\),函数单调递减,
    \(f(10)<f(e)\)
    所以 \(\dfrac{\ln 10}{10}<\dfrac{1}{e}\),即\(e\ln ⁡ 10<10\)\(C\)错误;
    根据二次函数与幂函数性质可知,当\(2<x<4\)时,\(2^x<x^2\)
    所以 \(2^{\sqrt{6}}<\sqrt{6}^2=6\)\(D\)错误.
    故选:\(B\)

  5. 答案 \(D\)
    解析 易知\(a=e^{0.5}>\left(\dfrac{9}{4}\right)^{0.5}=1.5\)\(b=\dfrac{3}{e}<\dfrac{3}{2}=1.5\)\(c=\ln 3<\ln \sqrt{e^3}=1.5\)
    \(f(x)=\ln x-\dfrac{x}{e}\),则\(f^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{e}\)
    故当\(x∈(e,+∞)\)时,\(f'(x)<0\)
    \(f(x)\)\((e,+∞)\)上是减函数,
    \(f(e)=0\),故\(f(3)<0\)
    \(\ln 3-\dfrac{3}{e}<0\),即 \(\ln 3<\dfrac{3}{e}\)
    \(c<b<a\)
    故选:\(D\)

  6. 答案 \(B\)
    解析\(f(x)=\dfrac{\ln x}{x}(x \geq e)\)
    \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}<0\),即\(f(x)\)\([e,+∞)\)上单调递减,
    所以\(a=\ln \sqrt[3]{3}=\dfrac{1}{3} \ln 3=f(3)\)\(b=e^{-1}=\dfrac{1}{e}=f(e)\),所以\(a<b\)
    因为\(c=\ln (e+1)-1=\ln \dfrac{e+1}{e}=\ln \left(1+\dfrac{1}{e}\right)\)
    因为\(\sqrt[3]{3}>1+\dfrac{1}{e}\),所以 \(\ln \sqrt[3]{3}>\ln \left(1+\dfrac{1}{e}\right)\),即\(a>c\)
    综上,\(b>a>c\).
    故选:\(B\)

  7. 答案 \(A\)
    解析 依题意, \(\ln x-\dfrac{1}{\ln x}<\ln y-\dfrac{1}{\ln y}\)
    \(f(t)=t-\dfrac{1}{t}\),则 \(f^{\prime}(t)=1+\dfrac{1}{t^2}>0\)
    \(\therefore\)函数\(f(t)\)\(R\)上单调递增,
    \(\because \ln x-\dfrac{1}{\ln x}<\ln y-\dfrac{1}{\ln y}\),即 \(f(\ln x)<f(\ln y)\)
    \(\therefore \ln x<\ln y\)
    \(\therefore 1<x<y\)
    \(\therefore y-x>0\)
    \(\therefore e^{y-x}>e^0=1\)
    故选:\(A\)

  8. 答案 \(D\)
    解析 不等式\(α\sin ⁡ α-β\sin ⁡ β>\cos ⁡ α-\cos ⁡ β\),可整理为\(α\sin ⁡ α-\cos ⁡ α>β\sin ⁡ β-\cos ⁡ β\)
    \(f(x)=x\sin ⁡ x-\cos ⁡ x\)\(x \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\)
    上述不等式等价于\(f(α)>f(β)\)
    \(\because f(-x)=(-x)\sin ⁡ (-x)-\cos ⁡ (-x)=x\sin ⁡ x-\cos ⁡ x=f(x)\)
    \(\therefore f(x)\)为偶函数.
    \(f'(x)=2\sin ⁡ x+x\cos ⁡ x\)
    \(\therefore\)\(0<x≤\dfrac{\pi}{2} ⁡\)时,\(\sin ⁡ x>0\)\(x\cos ⁡ x≥0\)\(\therefore f'(x)>0\)
    \(\therefore f(x)\)\(\left(0, \dfrac{\pi}{2}\right]\)上单调递增,在 \(\left[-\dfrac{\pi}{2}, 0\right)\)上单调递减.
    结合\(f(x)\)的单调性和奇偶性可作出函数\(f(x)\)的大致草图如下:
    image.png
    \(\because f(α)>f(β)\)\(\therefore |α|>|β|\)
    故选:\(D\)

  9. 答案 \(D\)
    解析 构造函数 \(f(x)=\dfrac{\ln x}{x}\),则 \(f^{\prime}(x)=\dfrac{1-\ln x}{x}\)
    \(f'(x)>0\),解得\(0<x<e\),令\(f'(x)<0\),解得\(x>e\)
    \(\therefore\)函数\(f(x)\)在(0,e)上单调递增,在(e,+∞)上单调递减,
    \(\therefore\)函数\(f(x)\)\(\left(0, \dfrac{\pi}{2}\right)\)上单调递增,
    \(\therefore f(α)<f(β)\),即 \(\dfrac{\ln \alpha}{\alpha}<\dfrac{\ln \beta}{\beta}\)
    \(\therefore β\ln α<α\ln β\),即\(\ln α^β<\ln β^α\)
    \(\therefore α^β<β^α\)
    故选:\(D\)

  10. 答案 \([0,+∞)\)
    解析 由题意知,\(f'(x)=x+2a-\dfrac{1}{x} ⁡ ⩾0\)\([1,3]\)上恒成立,
    \(2a⩾\dfrac{1}{x} ⁡ -x\)
    又函数\(y=\dfrac{1}{x} ⁡ -x\)\([1,3]\)上单调递减,
    所以当\(x=1\)时,函数\(y\)取得最大值,为\(0\)
    所以\(2a≥0\),即\(a≥0\)
     

【B组---提高题】

1.若\(x,y∈(0,+∞)\)\(x+\ln ⁡ x=e^y+\sin ⁡ ⁡y\),则(  )
 A.\(\ln ⁡ (x-y)<0\) \(\qquad \qquad\) B.\(\ln ⁡ (y-x)>0\) \(\qquad \qquad\) C.\(x<e^y\) \(\qquad \qquad\) D.\(y<\ln ⁡ x\)
 

2.已知\(a=8^{10}\)\(b=9^9\)\(c=10^8\),则\(a\)\(b\)\(c\)的大小关系为(  )
 A.\(b>c>a\) \(\qquad \qquad\) B.\(b>a>c\) \(\qquad \qquad\) C.\(a>c>b\) \(\qquad \qquad\) D.\(a>b>c\)
 

参考答案

  1. 答案 \(C\)
    解析\(f(x)=x-\sin ⁡ ⁡x(x>0)\),则\(f'(x)=1-\cos ⁡ ⁡x⩾0\)(不恒为零),
    \(f(x)\)\((0,+∞)\)上为增函数,故\(f(x)>f(0)=0\)
    所以\(x>\sin ⁡ ⁡x\),故\(y>\sin ⁡ ⁡y\)\((0,+∞)\)上恒成立,
    所以\(x+\ln ⁡ x<e^y+y=e^y+\ln ⁡ e^y\)
    \(g(x)=x+\ln ⁡ x\)\((0,+∞)\)上的增函数,
    \(x<e^y\),即\(\ln ⁡ x<y\)
    所以\(C\)成立,\(D\)错误.
    \(x=e\),考虑\(1+e=e^y+\sin ⁡ ⁡y\)的解,若\(y⩾e+1\)
    \(e^y⩾e^{e+1}>5>e+2⩾1+e-\sin ⁡ ⁡y\),矛盾,
    \(y<e+1\),即\(y-x<1\)
    此时\(\ln ⁡ (y-x)<0\),故\(B\)错误.
    \(y=1\),考虑\(x+\ln ⁡ x=e+\sin ⁡ ⁡1\)
    \(x⩽2\),则\(x+\ln ⁡x⩽2+\ln ⁡2<3<e+\dfrac{1}{2}<e+\sin ⁡1\),矛盾,
    \(x>2\),此时\(x-y>1\),此时\(\ln ⁡ (x-y)>0\),故\(A\)错误,
    故选:\(C\)

  2. 答案 \(D\)
    解析\(f(x)=(18-x)\ln ⁡ x\)
    \(f^{\prime}(x)=-\ln x+\dfrac{18}{x}-1\)\(x⩾8\)时单调递减,
    \(f^{\prime}(8)=\dfrac{5}{4}-\ln 8<\dfrac{5}{4}-\ln e^2<0\)
    所以\(f'(x)<0\)\(x⩾8\)时恒成立,
    \(f(x)\)\(x⩾8\)时单调递减,所以\(f(8)>f(9)>f(10)\)
    所以\(10\ln ⁡ 8>9\ln ⁡ 9>8\ln ⁡ 10\),故 \(8^{10}>9^9>10^8\)
    \(a>b>c\)
    故选:\(D\)
     

【C组---拓展题】

1.若 \(x+\dfrac{3}{2} y-2=e^x+3 \ln \dfrac{y}{2}\),其中\(x>2\)\(y>2\),则(  )
 A.\(e^x<y\) \(\qquad \qquad\) B.\(2x>y\) \(\qquad \qquad\) C. \(4 e^{\frac{x}{2}}>y\) \(\qquad \qquad\) D.\(2e^x>y\)
 

2.若实数\(a\)\(b\)满足 \(2 \ln a+\ln (2 b) \geq \dfrac{a^2}{2}+4 b-2\),则(  )
 A.\(a+b=\sqrt{2}+\dfrac{1}{4}\)\(\qquad \qquad\) B.\(a-2b=\sqrt{2}-\dfrac{1}{4} ⁡\) \(\qquad \qquad\) C.\(a^2+b>3\) \(\qquad \qquad\) D.\(a^2-4b<1\)
 

参考答案

  1. 答案 \(D\)
    解析 因为 \(x+\dfrac{3}{2} y-2=e^x+3 \ln \dfrac{y}{2}\)
    所以 \(e^x-x=\dfrac{3}{2} y-2-3 \ln \dfrac{y}{2}=2\left(\dfrac{y}{2}-1-\ln \dfrac{y}{2}\right)+\dfrac{y}{2}-\ln \dfrac{y}{2}\)
    \(f(x)=x-1-\ln ⁡ x\),则 \(f^{\prime}(x)=1-\dfrac{1}{x}=\dfrac{x-1}{x}\)
    \(x>1\)时,\(f'(x)>0\)\(f(x)\)为增函数,
    所以\(f(x)>f(1)=0\)
    因为\(y>2\),所以 \(\dfrac{y}{2}-1-\ln \dfrac{y}{2}>0\)
    所以 \(e^x-x>\dfrac{y}{2}-\ln \dfrac{y}{2}=e^{\ln \dfrac{y}{2}}-\ln \dfrac{y}{2}\)\(x>2\)\(\ln \dfrac{y}{2}>0\)
    \(g(x)=e^x-x\),则\(g'(x)=e^x-1\)
    \(x>0\)时,\(g'(x)>0\)\(g(x)\)单调递增,
    所以 \(\text { 以 } e^x-x>\dfrac{y}{2}-\ln \dfrac{y}{2}=e^{\ln \dfrac{y}{2}}-\ln \dfrac{y}{2}\),等价于 \(x>\ln \dfrac{y}{2}\)
    所以 \(e^x>\dfrac{y}{2}\),即\(2e^x>y\)
    故选:\(D\)

  2. 答案 \(A\)
    解析 根据题意,若实数\(a\)\(b\)满足 \(2 \ln a+\ln (2 b) \geq \dfrac{a^2}{2}+4 b-2\)
    \(a>0\)\(b>0\)
    又由 \(\dfrac{a^2}{2}+4 b-2 \geq 2 \times \sqrt{\dfrac{a^2}{2} \times 4 b}-2=2 \sqrt{2 a^2 b}-2\),当且仅当\(a^2=8b\)时等号成立,
    则有 \(2 \ln a+\ln (2 b) \geq 2 \sqrt{2 a^2 b}-2\),变形可得 \(\ln \left(2 a^2 b\right)-2 \sqrt{2 a^2 b}+2 \geq 0\)
    \(g(x)=\ln x-2 \sqrt{x}+2\)
    则其导数 \(g^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{\sqrt{x}}=\dfrac{1-\sqrt{x}}{x}\)
    \(0<x≤1\)时,\(g'(x)≥0\),则\(g(x)\)在区间\((0,1]\)上为增函数,
    \(x≥1\)时,\(g'(x)≤0\),则\(g(x)\)在区间\([1,+∞)\)上为减函数,
    则有\(g(x)≤g(1)=0\)
    \(\ln \left(2 a^2 b\right)-2 \sqrt{2 a^2 b}+2 \geq 0\)
    \(g(2a^2 b)≥0\),必有\(2a^2 b=1\)
    \(a^2=8b\),所以\(a=\sqrt{2}\)\(b=\dfrac{1}{4} ⁡\)
    据此分析选项:对于\(A\)\(a+b=\sqrt{2}+\dfrac{1}{4} ⁡\)\(A\)正确;
    对于\(B\)\(a-2b=\sqrt{2}-\dfrac{1}{2} ⁡\)\(B\)错误;
    对于\(C\)\(a^2+b=\dfrac{9}{4}\)\(C\)错误;
    对于\(D\)\(a^2-4b=1\)\(D\)错误;
    故选:\(A\)

 

posted @ 2022-12-06 20:22  贵哥讲数学  阅读(180)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏