4.3.2 等比数列的综合应用

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

等比数列的定义

如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,
这个常数叫做等比数列的公比,记为\(q\).
代数形式: \(\dfrac{a_n}{a_{n-1}}=q\)\(( q\)是常数,\(n≥2)\)\(\dfrac{a_{n+1}}{a_n}=q\)\(( q\)是常数,\(n∈ N^* )\)
 

等比中项

\(a\)\(b\)\(c\)成等比数列,则\(b\)\(a\)\(c\)的等差中项,则\(b^2=ac\)
 

证明一个数列是等比数列的方法

① 定义法: \(\dfrac{a_n}{a_{n-1}}=q\)\(( q\)是常数,\(n≥2)⇒\{a_n\}\)是等比数列;
② 中项法:\(a_{n+1}^2=a_n a_{n+2} (a_n≠ 0 ,n∈ N^*)⇒\{a_n\}\)是等比数列;
③ 通项公式法:若数列的通项公式是形如\(a_n=k\cdot q^n\) \((k ,q\)是不为\(0\)常数\()\), 则数列\(\{a_n \}\)是等比数列.
④ 前\(n\)项和法:若数列的前\(n\)项和是形如\(S_n=k\cdot q^n-k\)\((k ,q\)是常数且\(k≠0\)\(q≠0\)\(1)\),则数列\(\{a_n \}\)是等比数列.
 

通项公式

等比数列\(\{a_n \}\)的首项为\(a_1\),公比为\(q\),则 \(a_n=a_1 q^{n-1}\).(由定义与累乘法可得)
 

前n项和

等比数列\(\{a_n \}\)的首项为\(a_1\),公比为\(q\),则其前\(n\)项和为 \(S_n= \begin{cases}n a_1 & (q=1) \\ \dfrac{a_1\left(1-q^n\right)}{1-q} & (q \neq 1)\end{cases}\)
(由错位相减法可证)
使用时注意公比是否等于\(1\),若不确定,使用时需要分类讨论.
 

基本性质

\((\)其中\(m ,n ,p ,t∈N^*)\)
\(\{a_n \}\)是首项为\(a_1\), 公比为\(q\)的等比数列,那么
(1) 若\(m+n=p+t\), 则\(a_m a_n=a_p a_t\)
(2) \(a_n=a_m q^{n-m}\)
(3) \(q^{n-m}=\dfrac{a_n}{a_m}\)
(4) 数列\(\{λa_n\}\)\((λ\)是不为零的常数\()\)仍是公比为\(q\)的等比数列;若数列\(\{b_n\}\)是公比为\(t\)的等比数列,
则数列\(\{a_n b_n\}\)是公比为\(q\cdot t\)的等比数列;
(5)下标成等差数列且公差为\(m\)的项\(a_k\)\(a_{k+m}\)\(a_{k+2m}\)\(…\)\((k ,m∈N^*)\)组成公比为\(q^m\)的等比数列;
(6)若\(q≠-1\),则\(S_n\)\(S_{2n}-S_n\)\(S_{3n}-S_{2n}\)\(…\)成等比数列;(\(∵q=-1\)\(n\)是偶数时,\(S_n=0\))
 

基本方法

【题型1】 等比数列的基本运算

【典题1】 若公比为\(2\)的等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),且\(a_2\)\(9\)\(a_5\)成等差数列,则\(S_{20}=\) (  )
 A. \(2^{22}-1\) \(\qquad \qquad \qquad\) B. \(2^{21}-1\) \(\qquad \qquad \qquad\) C. \(2^{20}-1\) \(\qquad \qquad \qquad\) D. \(2^{19}-1\)
解析 设等比数列\(\{a_n \}\)的首项为\(a_1\),已知公比\(q=2\),且\(a_2\)\(9\)\(a_5\)成等差数列,
\(18=a_2+a_5=2a_1+16a_1\),解得\(a_1=1\)
\(\therefore S_{20}=\dfrac{1 \times\left(1-2^{20}\right)}{1-2}=2^{20}-1\)
故选:\(C\)
 

【典题2】 已知数列\(\{a_n \}\)是公差不为零的等差数列,\(\{b_n \}\)为等比数列,且\(a_1=b_1=1\)\(a_2=b_2\)\(a_4=b_3\)
\(c_n=a_n+b_n\),则数列\(\{c_n \}\)的前\(10\)项和为\(\underline{\quad \quad}\) .
解析 设等差数列\(\{a_n \}\)的公差为\(d≠0\),等比数列\(\{b_n\}\)的公比为\(q\)
\(\because a_1=b_1=1\)\(a_2=b_2\)\(a_4=b_3\)
\(\therefore 1+d=q\)\(1+3d=q^2\)\(d≠0\),解得\(d=1\)\(q=2\)
\(\therefore a_n=1+n-1=n\)\(b_n=2^{n-1}\)
\(\therefore c_n=a_n+b_n=n+2^{n-1}\)
则数列\(\{c_n \}\)的前\(10\)项和\(\dfrac{10 \times(1+10)}{2}+\dfrac{2^{10}-1}{2-1}=1078\)
 

【巩固练习】

1.设正项等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(2S_3=3a_2+8a_1\),则公比\(q=\)(  )
 A.\(2\)\(\qquad \qquad \qquad \qquad\) B.\(-\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(2\)\(-\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(2\)\(-\dfrac{3}{2}\)
 

2.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),且\(2S_3\)\(3S_5\)\(4S_6\)成等差数列,则数列\(\{a_n \}\)的公比q=$(  )
 A.\(1\)\(\dfrac{1}{2}\) \(\qquad \qquad\) B.\(-1\)\(-\dfrac{1}{2}\) \(\qquad \qquad\) C.\(-1\)\(2\) \(\qquad \qquad\) D.\(1\)\(-2\)
 

3.设正项等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(2S_3=3a_2+8a_1\)\(S_8=2S_7+2\),则\(a_2=\)(  )
 A.\(4\) \(\qquad \qquad \qquad \qquad\) B.\(3\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(1\)
 

参考答案

  1. 答案 \(A\)
    解析 \(2S_3=3a_2+8a_1\),有\(2(a_1+a_2+a_3 )=3a_2+8a_1\),即\(2a_3-a_2-6a_1=0\)
    由等比数列的通项公式得\(2a_1 q^2-a_1 q-6a_1=0\)
    \(2q^2-q-6=0\),解得\(q=2\)\(q=-\dfrac{3}{2}\)
    由数列为正项等比数列, \(\therefore q=2\)
    故选:\(A\)

  2. 答案 \(B\)
    解析 \(\because2S_3\)\(3S_5\)\(4S_6\)成等差数列,\(\therefore 6S_5=2S_3+4S_6\)
    \(6(a_1+a_2+a_3+a_4+a_5 )=2(a_1+a_2+a_3 )+4(a_1+a_2+a_3+a_4+a_5+a_6 )\)
    整理得\(6a_4+6a_5=4a_4+4a_5+4a_6\),即\(4a_6-2a_5-2a_4=0\)
    \(\because a_4≠0\)\(\therefore 2q^2-q-1=0\),解得\(q=1\)\(-\dfrac{1}{2}\)
    故选:\(B\)

  3. 答案 \(A\)
    解析 设正项等比数列\(\{a_n \}\)的公比为\(q\)
    \(\because 2S_3=3a_2+8a_1\)
    \(\therefore 2(a_1+a_2+a_3 )=3a_2+8a_1\),即\(6a_1+a_2-2a_3=0\)
    \(\therefore 6a_1+a_1 q-2a_1 q^2=0\)
    \(\because a_1>0\)
    \(\therefore 6+q-2q^2=0\),解得\(q=2\)\(q=-\dfrac{3}{2}\)(舍去),\(\therefore q=2\)
    \(\because S_8=2S_7+2\)\(\therefore S_7+a_8=2S_7+2\)\(\therefore a_8=S_7+2\)
    \(\therefore a_1 q^7=\dfrac{a_1\left(1-q^7\right)}{1-q}+2\)
    \(\because q=2\), 解得\(a_1=2\)
    \(\therefore 128a_1=127a_1+2\),解得\(a_1=2\)
    \(\therefore a_2=a_1 q=4\)
    故选:\(A\)
     

【题型2】 等比数列的基本性质的运用

【典题1】 (多选)在递增的等比数列\(\{a_n \}\)中,\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,若\(a_1 a_4=32\)\(a_2+a_3=12\)
则下列说法正确的是(  )
 A.\(q=1\) \(\qquad \qquad\) B.数列\(\{S_n+2\}\)是等比数列\(\qquad \qquad\) C.\(S_8=510\) \(\qquad \qquad\) D.数列\(\{\lg ⁡a_n \}\)是公差为\(2\)的等差数列
解析 由题意,根据等比中项的性质,可得\(a_2 a_3=a_1 a_4=32>0\)\(a_2+a_3=12>0\)
\(a_2>0\)\(a_3>0\)
根据根与系数的关系,可知\(a_2\)\(a_3\)是一元二次方程\(x^2-12x+32=0\)的两个根.
解得\(a_2=4\)\(a_3=8\),或\(a_2=8\)\(a_3=4\)
\(\because\)等比数列\(\{a_n \}\)是递增数列,\(\therefore q>1\)
\(\therefore a_2=4\)\(a_3=8\)满足题意.
\(\therefore q=2\)\(a_1=\dfrac{a_2}{q}=2\).故选项\(A\)不正确.
\(a_n=a_1⋅q^{n-1}=2^n\)
\(\because S_n=\dfrac{2\left(1-2^n\right)}{1-2}=2^{n+1}-2\)\(\therefore S_n+2=2^{n+1}=4 \cdot 2^{n-1}\)
\(\therefore\)数列\(\{S_n+2\}\)是以\(4\)为首项,\(2\)为公比的等比数列.故选项\(B\)正确.
\(S_8=2^{8+1}-2=512-2=510\).故选项\(C\)正确.
\(\because \lg ⁡a_n=\lg ⁡2^n=n\lg ⁡2\)
\(\therefore\) 数列\(\{\lg ⁡a_n \}\)是公差为\(\lg ⁡2\)的等差数列.故选项\(D\)不正确.
故选:\(BC\)
 

【典题2】 等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\)\(a_4-a_2=6\)\(a_5-a_3=12\),当 \(\dfrac{T_n}{\left(S_n+1\right)^{\frac{7}{2}}}\)最小时,\(n\)的值为(  )
 A.\(3\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C.\(5\) \(\qquad \qquad \qquad \qquad\) D.\(6\)
解析 等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\)\(a_4-a_2=6\)\(a_5-a_3=12\)
\(q≠1\)时,\(a_2 (q^2-1)=6\)\(a_2 q^3-a_2 q=12\)
两式相除得\(q=2\)
\(q=2\)代入\(a_2 (q^2-1)=6\),解得\(a_2=2\)
\(\therefore a_1=1\)\(\therefore S_n=\dfrac{1-2^n}{1-2}=2^n-1\)
\(T_n=1×2×2^2×2^3×⋯×2^{n-1}=2^{\frac{n(n-1)}{2}}\)
\(\therefore \dfrac{T_n}{\left(S_n+1\right)^{\frac{7}{2}}}=\dfrac{2^{\frac{n(n-1)}{2}}}{2^{\frac{7 n}{2}}}=2^{\frac{n^2-8 n}{2}}\)
\(\therefore n=4\)时, \(\dfrac{n^2-8 n}{2}\)取得最小值,即当 \(\dfrac{T_n}{\left(S_n+1\right)^{\frac{7}{2}}}\)最小时,\(n\)的值为\(4\)
故选:\(B\)
 

【巩固练习】

1.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(a_1+2a_2=0\)\(S_3=\dfrac{3}{4}\),且\(a⩽S_n⩽a+2\),则实数\(a\)的取值范围是(  )
 A.\([-1,0]\) \(\qquad \qquad \qquad\) B.\(\left[-1,\dfrac{1}{2}\right]\) \(\qquad \qquad \qquad\) C.\(\left[\dfrac{1}{2},1\right]\) \(\qquad \qquad \qquad\) D.\(\left[0,1\right]\)
 

2.公比为\(q\)的等比数列\(\{a_n \}\),其前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\),满足\(a_1>1\)\(a_{2021}\cdot a_{2022}>1\)\(\dfrac{a_{2021}-1}{a_{2022}-1}<0\).则下列结论正确的是(  )
 A.\(q<0\) \(\qquad \qquad\) B.\(a_{2021}\cdot a_{2023}>1\) \(\qquad \qquad\)C.\(S_n\)的最大值为\(S_{2023}\) \(\qquad \qquad\) D.\(T_n\)的最大值为\(T_{2021}\)
 

3.(多选)已知数列\(\{a_n \}\)是公比为\(q\)的等比数列,其前\(n\)项和为\(S_n\),则下列结论正确的是(  )
 A.若数列\(\{a_n \}\)是正项等比数列,则数列\(\{\lg ⁡a_n \}\)是等差数列
 B.若\(a_3=\dfrac{3}{2}\)\(S_3=\dfrac{9}{2}\),则\(q=-\dfrac{1}{2}\)
 C.若\(a_3=1\)\(a_7=16\),则\(a_5=4\)
 D.若 \(S_6-S_4=6(S_4-S_2 )\),则\(q^2=6\)
 

4.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),公比\(q>0\)\(a_1=1\)\(a_{12}=9 a_{10}\),若数列\(\{t+S_n \}\)为等比数列,则实数\(t=\)\(\underline{\quad \quad}\)
 

5.已知等比数列\(\{a_n \}\)\(a_n>0\)\(a_1=256\)\(S_3=448\)\(T_n\)为数列\(\{a_n \}\)的前\(n\)项乘积,则当\(T_n\)取得最大值时,\(n=\)\(\underline{\quad \quad}\)
 

参考答案

  1. 答案 \(B\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\)\(\because a_1+2a_2=0\)\(S_3=\dfrac{3}{4}\)
    \(\therefore a_1 (1+2q)=0\)\(a_1 (1+q+q^2 )=\dfrac{3}{4}\),解得:\(a_1=1\)\(q=-\dfrac{1}{2}\)
    \(\therefore S_n=\dfrac{1-\left(-\dfrac{1}{2}\right)^n}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}\left[1-\left(-\dfrac{1}{2}\right)^n\right]\)
    \(n=1\)时,\(S_n\)取最大值\(1\),当\(n=2\)时,\(S_n\)取最小值\(\dfrac{1}{2}\)
    \(\therefore\left\{\begin{array}{l} a \leqslant \dfrac{1}{2} \\ a+2 \geqslant 1 \end{array}\right.\)\(\therefore -1⩽a⩽\dfrac{1}{2}\)
    故选:\(B\)

  2. 答案 \(D\)
    解析 等比数列\(\{a_n \}\)中,\(a_1>1\)\(a_{2021}\cdot a_{2022}>1\)\(\dfrac{a_{2021}-1}{a_{2022}-1}<0\)
    所以\(a_{2021}>1\)\(0<a_{2022}<1\)\(0<q<1\)\(A\)错误;
    故当\(n=2021\)时,\(T_n\)取得最大值,\(D\)正确;
    由于数列各项都为正数,和没有最大值,\(C\)错误;
    由题意得,\(0<a_{2022}<1\)\(0<a_{2023}<1\)
    所以\(a_{2021}\cdot a_{2023}=a_{2022}^2<1\)\(B\)错误.
    故选:\(D\)

  3. 答案 \(AC\)
    解析 对于\(A\),不妨设正项等比数列\(\{a_n \}\)的通项公式\(a_n=a_1 q^{n-1}\)
    因为\(\lg ⁡a_n={n-1}\lg ⁡q+\lg ⁡a_1\)\(n\)的一次式,\(\{\lg ⁡a_n \}\)是等差数列,
    所以\(A\)正确,
    对于\(B\),因为\(S_3=a_1+a_2+a_3=a_3 (q^{-2}+q^{-1}+1)\)
    所以 \(q^{-2}+q^{-1}+1=3\),即\(2q^2-q-1=0\),解得\(q=1\)\(q=-\dfrac{1}{2}\)
    所以\(B\)不正确,
    对于\(C\),若\(a_3=1\)\(a_7=16\)
    \(a_5^2=a_3 a_7=16\),注意到 \(\dfrac{a_5}{a_3}=q^2>0\)
    所以\(a_5=4\),所以\(C\)正确,
    对于\(D\),由\(S_6-S_4=6(S_4-S_2 )\)\(a_5+a_6=6(a_3+a_4 )\)
    所以\(q^2 (a_3+a_4 )=6(a_3+a_4 )\)
    \(a_3+a_4=0\)时,\(q=-1\)\(q^2=1\),所以\(D\)不正确.
    故选:\(AC\)

  4. 答案 \(\dfrac{1}{2}\)
    解析 因为 \(a_{12}=9 a_{10}\),所以\(a_1\cdot q^{11}=9a_1\cdot q^9\),即\(q^2=9\)
    因为\(q>0\),所以\(q=3\)
    所以 \(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{3^n-1}{2}\)
    所以\(S_1=1\)\(S_2=4\)\(S_3=13\)
    因为数列\(\{t+S_n \}\)为等比数列,
    所以\((t+S_2 )^2=(t+S_1 )\cdot (t+S_3 )\)
    所以\((t+4)^2=(t+1)\cdot (t+13)\),解得\(t=\dfrac{1}{2}\)

  5. 答案 \(8\)\(9\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\)\(\because a_n>0\)\(\therefore q>0\)
    \(\because a_1=256\)\(S_3=448\)\(\therefore 256(1+q+q^2 )=448\),解得\(q=\dfrac{1}{2}\)
    \(\therefore a_n=256 \times\left(\dfrac{1}{2}\right)^{n-1}=2^{9-n}\)
    \(T_n=2^8 \cdot 2^7 \cdot \ldots \ldots \cdot 2^{9-n}=2^{8+7+\cdots+9-n}=2^{\frac{n(8+9-n)}{2}}=2^{-\left[\left(n-\frac{17}{2}\right)^2 -\frac{289}{4}\right]}\)
    \(\therefore\)\(n=8\)\(9\)时,\(T_n\)取得最大值时.
     

【题型3】等比数列解答题

【典题1】 设数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),满足\(2S_n=a_{n+1}-2^{n+1}+1\),且\(a_1\)\(a_2+5\)\(a_3\)成等差数列.
  (1)求\(a_1\)\(a_2\)的值;
  (2)求证:\(\{a_n+2^n \}\)是等比数列.并求数列\(\{a_n \}\)的通项公式;
  (3)求数列\(\{a_n+2^n+2n\}\)的前\(n\)项和.
解析 (1)\(\because a_1\)\(a_2+5\)\(a_3\)成等差数列, \(\therefore a_1+a_3=2(a_2+5)\)①,
\(\because\) 数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),满足\(2S_n=a_{n+1}-2^{n+1}+1\)
\(n=1\)时,\(2a_1=a_2-3\),②
\(n=2\)时,\(2(a_1+a_2 )=a_3-7\),③
\(\therefore\)联立①②③解得,\(a_1=1\)\(a_2=5\)\(a_3=19\)
(2)证明:由\(2S_n=a_{n+1}-2^{n+1}+1\),①得\(2S_{n-1}=a_n-2^n+1\),②,
两式相减得\(2a_n=a_{n+1}-a_n-2^n (n⩾2)\)
\(\dfrac{a_{n+1}+2^{n+1}}{a_n+2^n}=\dfrac{3 a_n+2^n+2^{n+1}}{a_n+2^n}=3(n \geqslant 2)\)
\(\because \dfrac{a_2+2^2}{a_1+2}=3\)\(\therefore \{a_n+2^n \}\)是首项为\(3\),公比为\(3\)的等比数列.
\(\therefore a_{n+1}+2^{n+1}=3(a_n+2^n )\)
\(a_1=1\)\(a_1+2^1=3\)
\(\therefore a_n+2^n=3^n\),即\(a_n=3^n-2^n\)
(3) 由(2)可知\(a_n=3^n-2^n\),设\(b_n=a_n+2^n+2n=3^n+2n\),前\(n\)项和为\(T_n\)
\(T_n=b_1+b_2+⋯+b_n=(3+3^2+⋯+3^n )+(2+4+⋯+2n)\)
\(=\dfrac{3\left(1-3^n\right)}{1-3}+\dfrac{n(2+2 n)}{2}=\dfrac{3^{n+1}}{2}+n^2+n-\dfrac{3}{2} .\).
 

【典题2】 已知数列\(\{a_n \}\)是各项为正数的等比数列,且\(a_2=4\)\(a_3 a_4 a_5=2^{12}\).数列\(\{b_n\}\)是单调递增的等差数列,且\(b_2 b_3=15\)\(b_1+b_4=8\)
  (1)求数列\(\{a_n \}\)与数列\(\{b_n\}\)的通项公式;
  (2)求数列\(\{a_n b_n\}\)的前\(n\)项和\(T_n\)
解析 (1)设正项等比数列\(\{a_n \}\)的公比为\(q(q>0)\)
\(a_3 a_4 a_5=2^{12}\),得\(a_4^3=2^{12}\),得\(a_4=2^4\)
\(a_2=4\)\(\therefore q^2=\dfrac{a_4}{a_2}=\dfrac{2^4}{4}=4\),则\(q=2\)
\(\therefore a_n=a_2 q^{n-2}=4 \cdot 2^{n-2}=2^n\)
在等差数列\(\{b_n\}\)中,由等差数列的性质可得,\(b_2+b_3=b_1+b_4=8\)
\(b_2 b_3=15\),且数列\(\{b_n\}\)是单调递增数列,
解得\(b_2=3\)\(b_3=5\)
则公差\(d=b_3-b_2=5-3=2\)
\(\therefore b_n=b_2+(n-2)×2=3+2n-4=2n-1\)
(2)\(\because a_n b_n=(2n-1) 2^n\)
\(\therefore T_n=1\cdot 2^1+3\cdot 2^2+5\cdot 2^3+⋯+(2n-1)\cdot 2^n\)
\(2T_n=1\cdot 2^2+3\cdot 2^3+5\cdot 2^4+⋯+(2n-3)\cdot 2^n+(2n-1)\cdot 2^{n+1}\)
\(\therefore -T_n=2+2(2^2+2^3+⋯+2^n)-(2n-1)\cdot 2^{n+1}\)
\(=2+2 \cdot \dfrac{4\left(1-2^{n-1}\right)}{1-2}-(2 n-1) \cdot 2^{n+1}=-(2 n-3) 2^{n+1}-6\)
\(\therefore T_n=(2n-3)\cdot 2^{n+1}+6\)
 

【巩固练习】

1.已知等比数列\(\{a_n \}\)满足\(a_2 a_3=2a_4=32\)
  (1)求\(\{a_n \}\)的通项公式;
  (2)记\(\{a_n \}\)的前\(n\)项和为\(S_n\),证明:\(n⩾2\)时,\(a_n^2>S_n+5\)
 
 

2.已知数列\(\{a_n \}\)满足\(a_1=3\)\(a_2=5\),且\(2a_{n+2}=3a_{n+1}-a_n\)\(n∈N^*\)
  (1)设\(b_n=a_{n+1}-a_n\),求证:数列\(\{b_n\}\)是等比数列;
  (2)若数列\(\{a_n \}\)满足\(a_n⩽m(n∈N^* )\),求实数\(m\)的取值范围.
 
 

3.设数列\(\{a_n \}\)的前\(n\)项和为\(S_n\)\(a_1=1\)\(S_{n+1}=4a_n+2(n∈N^* )\)
  (1)若\(b_n=a_{n+1}-2a_n\),求\(b_n\)
  (2)若 \(c_n=\dfrac{1}{a_{n+1}-2 a_n}\),求\(\{c_n \}\)的前\(6\)项和\(T_6\)
  (3)若 \(d_n=\dfrac{a_n}{2^n}\) ,求数列\(\{d_n \}\)的通项.
 
 

参考答案

  1. 答案 (1) \(a_n=2^n\) ;(2) 略 .
    解析 (1)解:设等比数列\(\{a_n \}\)的公比为\(q\)
    因为\(a_2 a_3=2a_4=32\),所以\(a_1^2 q^3=2a_1 q^3=32\)
    又等比数列\(\{a_n \}\)\(a_1\)\(q\)均不为\(0\),所以\(a_1=q=2\)
    故数列\(\{a_n \}\)的通项公式为\(a_n=a_1\cdot q^{n-1}=2\cdot 2^{n-1}=2^n\)
    (2)证明:由(1)可得\(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{2\left(1-2^n\right)}{1-2}=2^{n+1}-2\)
    因为\(n⩾2\)时,\(2^n>3\)
    所以\(a_n^2-S_n-5=(2^n )^2-2^{n+1}-3=(2^n )^2-2\cdot 2^n-3=(2^n+1)(2^n-3)>0\)
    所以\(n⩾2\)时,\(a_n^2>S_n+5\)

  2. 答案 (1) 略 ;(2)\(\left[7, +∞\right)\).
    解析 (1)证明:由题知,\(2a_{n+2}=3a_{n+1}-a_n\)
    \(b_{n+1}=\dfrac{1}{2} b_n\),且\(b_1=a_2-a_1=5-3=2\)
    则数列\(\{b_n\}\)是以\(2\)为首项,\(\dfrac{1}{2}\)为公比的等比数列.
    (2)解:由(1)知 \(b_n=a_{n+1}-a_n=\dfrac{1}{2^{n-2}}\)
    则当\(n⩾2\)时,
    其前\(n-1\)项和\(S_{n-1}=a_2-a_1+a_3-a_2+⋯+a_n-a_{n-1}\)
    \(=a_n-a_1=\dfrac{2-\dfrac{1}{2^{n-2}}}{1-\dfrac{1}{2}}=4-\dfrac{1}{2^{n-3}}\)
    \(a_n=7-\left(\dfrac{1}{2}\right)^{n-3}\)\(n⩾2\),且\(a_1=3\)也满足通项,
    则由指数函数单调性知,\(a_n=7-\dfrac{1}{2^{n-3}}<7\)
    若满足\(a_n⩽m(n∈N^* )\),则\(m⩾7\)
    即实数\(m\)的取值范围是\([7, +∞)\)

  3. 答案 (1) \(b_n=3\cdot 2^{n-1}\);(2) \(\dfrac{61}{96}\);(3) \(d_n=\dfrac{3 n}{4}-\dfrac{1}{4}\) .
    解析 (1)\(\because a_1=1\)\(S_{n+1}=4a_n+2(n∈N^* )\)
    \(\therefore S_{n+2}=4a_{n+1}+2\)
    \(\therefore a_{n+2}=S_{n+2}-S_{n+1}=4(a_{n+1}-a_n )\)
    \(\therefore a_{n+2}-2a_{n+1}=2(a_{n+1}-a_n )\),即\(b_{n+1}=2b_n\)
    \(\therefore \{b_n \}\)是公比为\(2\)的等比数列,且\(b_1=a_2-2a_1\)
    \(\because a_1=1\)\(a_2+a_1=S_2\),即\(a_2+a_1=4a_1+2\)
    \(\therefore a_2=3a_1+2=5\)\(\therefore b_1=5-2=3\)
    \(\therefore b_n=3\cdot 2^{n-1}\).
    (2) \(c_n=\dfrac{1}{a_{n+1}-2 a_n}=\dfrac{1}{b_n}=\dfrac{1}{3 \cdot 2^{n-1}}\)\(\therefore c_1=\dfrac{1}{3}\)
    \(\therefore c_n=\dfrac{1}{3} \cdot\left(\dfrac{1}{2}\right)^{n-1}\)
    \(\therefore \{c_n \}\)是首项为\(\dfrac{1}{3}\),公比为\(\dfrac{1}{2}\)的等比数列,
    \(\therefore T_6=\dfrac{\dfrac{1}{3}\left[1-\left(\dfrac{1}{2}\right)^6\right]}{1-\dfrac{1}{2}}=\dfrac{2}{3}\left(1-\dfrac{1}{64}\right)=\dfrac{61}{96}\).
    (3) \(\because d_n=\dfrac{a_n}{2^n}\)\(b_n=3\cdot 2^{n-1}\)
    \(\therefore d_{n+1}-d_n=\dfrac{a_{n+1}}{2^{n+1}}-\dfrac{a_n}{2^n}=\dfrac{a_{n+1}-2 a_n}{2^{n+1}}=\dfrac{b_n}{2^{n+1}}=\dfrac{3 \times 3^{n-1}}{2^{n+1}}=\dfrac{3}{4}\)
    \(\therefore \{d_n \}\)是等差数列, \(d_n=\dfrac{3 n}{4}-\dfrac{1}{4}\)
     

分层练习

【A组---基础题】

1.记单调递增的等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(a_2+a_4=10\)\(a_2 a_3 a_4=64\),则(  )
 A.\(S_{n+1}-S_n=2^{n+1}\) \(\qquad \qquad\) B.\(a_n=2^n\) \(\qquad \qquad\) C.\(S_n=2^n-1\) \(\qquad \qquad\) D.\(S_n=2^{n-1}-1\)
 

2.设等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),公比为\(q\),且\(S_3\)\(S_9\)\(S_6\)成等差数列,则\(8q^3\)等于(  )
 A.\(-2\) \(\qquad \qquad \qquad \qquad\) B.\(-4\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

3.设\(S_n\)为等比数列\(\{a_n \}\)的前\(n\)项和,若\(a_n>0\)\(a_1=\dfrac{1}{2}\)\(S_n<2\),则\(\{a_n \}\)的公比的取值范围是(  )
 A.\(\left(0,\dfrac{3}{4}\right]\) \(\qquad \qquad \qquad\) B.\(\left(0,\dfrac{2}{3}\right]\) \(\qquad \qquad \qquad\) C.\(\left(0,\dfrac{3}{4}\right)\) \(\qquad \qquad \qquad\) D.\(\left(0,\dfrac{2}{3}\right)\)
 

4.在等比数列\(\{a_n \}\)中,\(a_1=-9\)\(a_5=-1\),记 \(T_n=a_1 a_3 a_5 \ldots a_{2 n-1}(n=1,2, \cdots)\),则数列\(\{T_n \}\) (  )
 A.有最大项,有最小项 \(\qquad \qquad \qquad \qquad\) B.有最大项,无最小项
 C.无最大项,有最小项 \(\qquad \qquad \qquad \qquad\) D.无最大项,无最小项
 

5.(多选)在公比为\(q\)的等比数列\(\{a_n \}\)中,\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,若\(a_1=1\)\(a_5=27a_2\),则下列说法正确的是(  )
 A.\(q=3\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.数列\(\{S_n+2\}\)是等比数列
 C.\(S_5=121\) \(\qquad \qquad \qquad \qquad \qquad \quad\) D.\(2\lg ⁡a_n=\lg ⁡a_{n-2}+\lg ⁡a_{n+2} (n⩾3)\)
 

6.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(a_1+a_3=5\)\(S_4=20\),则 \(\dfrac{S_8-2 S_4}{S_6-S_4-S_2}=\)\(\underline{\quad \quad}\)
 

7.如图,在\(Rt△ABC\)内有一系列的正方形,它们的边长依次为\(a_1\)\(a_2\)\(…\)\(a_n\)\(…\),若\(AB=a\)\(BC=2a\)
则所有正方形的面积的和为\(\underline{\quad \quad}\)
image.png
 

8.已知等比数列\(\{a_n \}\)的公比\(q>0\),且\(a_1=1\)\(4a_3=a_2 a_4\)
  (1)求公比\(q\)\(a_3\)的值;
  (2)若\(\{a_n \}\)的前\(n\)项和为\(S_n\),求证 \(\dfrac{S_n}{a_n}<2\)
 
 

9.在数列\(\{a_n \}\)中,\(a_1=4\)且对于任意的自然数\(n∈N^+\)都有\(a_{n+1}=2(a_n-n+1)\).
  (1)证明数列\(\{a_n-2n\}\)是等比数列.
  (2)求数列\(\{a_n \}\)的通项公式及前\(n\)项和为\(S_n\)
 
 

10.设数列\(\{a_n \}\)的前\(n\)项和为\(S_n\)\(a_1=3\)\(a_{n+1}=2S_n+3\),数列\(\{b_n\}\)为等差数列,且公差\(d>0\)\(b_1+b_2+b_3=15\).
  (1)求数列\(\{a_n \}\)的通项公式;
  (2)若\(\dfrac{a_1}{3}+b_1\)\(\dfrac{a_2}{3}+b_2\)\(\dfrac{a_3}{3}+b_3\)成等比数列,求数列\(\{b_n\}\)的前\(n\)项和\(T_n\)
  (3)对第(2)小题的\(T_n\),当\(T_n+16⩾λn\)对任意的\(n∈N^*\)恒成立,求\(λ\)的最大值.
 
 

参考答案

  1. 答案 \(C\)
    解析 \(\because a_2 a_3 a_4=64\)\(\therefore a_3^3=64\),解得\(a_3=4\)
    \(a_2+a_4=10\)\(\therefore \dfrac{4}{q}+4 q=10\)
    化为\(2q^2-5q+2=0\),解得\(q=2\)\(\dfrac{1}{2}\)
    \(q=2\)时,\(a_1=1\)\(q=\dfrac{1}{2}\)时,\(a_1=16\)
    又等比数列\(\{a_n \}\)是单调递增,取\(q=2\)\(a_1=1\)
    \(\therefore a_n=2^{n-1}\)
    \(\therefore S_n=\dfrac{2^n-1}{2-1}=2^n-1\)\(S_{n+1}-S_n=2^{n+1}-1-(2^n-1)=2^n\)
    因此只有\(C\)正确.
    故选:\(C\)

  2. 答案 \(B\)
    解析 \(\because S_3\)\(S_9\)\(S_6\)成等差数列,\(\therefore 2S_9=S_3+S_6\)
    \(\therefore (S_9-S_6 )+(S_9-S_3 )=0\)
    \((a_7+a_8+a_9 )+(a_7+a_8+a_9 )+(a_4+a_5+a_6 )=0\)
    \(\therefore 2q^3 (a_4+a_5+a_6 )+(a_4+a_5+a_6 )=0\)
    \(\because a_4+a_5+a_6=a_4 (1+q+q^2 )≠0\)
    \(\therefore q^3=-\dfrac{1}{2}\)\(\therefore 8q^3=-4\)
    故选:\(B\)

  3. 答案 \(A\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\),则\(q≠1\)
    \(\because a_n>0\)\(a_1=\dfrac{1}{2}\)\(S_n<2\)
    \(\therefore \{a_n \}\)是递减数列,\(\dfrac{1}{2}×q^{n-1}>0\)\(\dfrac{\dfrac{1}{2}\left(1-q^n\right)}{1-q}<2\)
    \(\therefore 1>q>0\)\(1⩽4-4q\),解得\(0<q⩽\dfrac{3}{4}\)
    综上,\(\{a_n \}\)的公比的取值范围是\(\left(0,\dfrac{3}{4}\right]\)
    故选:\(A\)

  4. 答案 \(A\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\)
    \(\dfrac{a_1}{a_1}=q^4=\dfrac{1}{9}\),所以\(q^2=\dfrac{1}{3}\)
    设数列\(\{b_n\}\)为等比数列\(\{a_n \}\)的奇数项\(a_1\)\(a_3\)\(a_5\),…,\(a_{2n-1} (n=1,2,…)\)
    则数列\(\{b_n\}\)是以\(-9\)为首项,\(\dfrac{1}{3}\)为公比的等比数列,
    \(b_n=-9 \times\left(\dfrac{1}{3}\right)^{n-1}=-\left(\dfrac{1}{3}\right)^{n-3}\)
    所以 \(T_n=a_1 a_3 a_5 \cdots a_{2 n-1}=b_1 b_2 b_3 \cdots b_n\)
    \(n⩾4\)时,\(|b_n |<1\),当\(1⩽n⩽3\)时,\(|b_n |⩾1\)
    \(n\)为奇数时,\(T_n<0\),因为\(b_3=-1\),所以\(T_n⩾T_3=-27\)
    \(n\)为偶数时,\(T_n>0\),因为\(b_3=-1\),所以\(T_n⩽T_2=27\)
    综上所述,数列\(\{T_n \}\)有最大项\(T_2=27\)和最小项\(T_3=-27\)
    故选:\(A\)

  5. 答案 \(ACD\)
    解析 根据题意,依次分析选项:
    对于\(A\),等比数列\(\{a_n \}\)中,\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,
    \(a_1=1\)\(a_5=27a_2\),则 \(q^3=\dfrac{a_5}{a_2}=27\),解可得\(q=3\)\(A\)正确;
    对于\(B\),由于\(q=3\)\(a_1=1\),则 \(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{3^n-1}{2}\)
    \(S_n+2=\dfrac{3^n+1}{2}\),数列\(\{S_n+2\}\)不是等比数列,\(B\)错误;
    对于\(C\),由于 \(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{3^n-1}{2}\),则\(S_5=121\)\(C\)正确;
    对于\(D\),等比数列\(\{a_n \}\)各项都大于\(0\)
    又由等比数列的性质可知,\(a_{n-2}\cdot a_{n+2}=a_n^2\)
    所以\(2\lg ⁡a_n=\lg ⁡a_{n+2}+\lg ⁡a_{n-2}\)\(D\)正确.
    故选:\(ACD\)

  6. 答案 \(10\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\)
    因为\(S_4=a_1+a_2+a_3+a_4=(1+q)(a_1+a_3 )\),所以\(q=3\)
    \(\dfrac{S_8-2 S_4}{S_6-S_4-S_2}=\dfrac{\left(S_8-S_4\right)-S_4}{\left(S_6-S_2\right)-S_4}\)\(=\dfrac{q^4 S_4-S_4}{q^2 S_4-S_4}=\dfrac{q^4-1}{q^2-1}=q^2+1=10\)

  7. 答案 \(\dfrac{4}{5} a^2\)
    解析 根据题意可知 \(\dfrac{A B}{B C}=\dfrac{1}{2}\),可得 \(a_1=\dfrac{2}{3} a\)
    依次计算\(a_2=\dfrac{2}{3} a_1\)\(a_3=\dfrac{2}{3} a_2\)\(…\)是公比为\(\dfrac{2}{3}\)的等比数列,
    正方形的面积:依次 \(S_1=\dfrac{4}{9} a^2\)\(S_2=\dfrac{4}{9} a_1^2\)\(…\)边长依次为\(a_1\)\(a_2\),…,\(a_n\)
    正方形的面积构成是公比为 \(\dfrac{4}{9}\)的等比数列.
    所有正方形的面积的和\(S_n=\dfrac{S_1}{1-q}=\dfrac{\dfrac{4}{9} a^2}{1-\dfrac{4}{9}}=\dfrac{4}{5} a^2\)
    故答案为:\(\dfrac{4}{5} a^2\)

  8. 答案 (1) \(q=2\)\(a_3=4\);(2) 略 .
    解析 (1)解:\(\because\)等比数列\(\{a_n \}\)的公比\(q>0\),且\(a_1=1\)\(4a_3=a_2 a_4\)
    \(\therefore 4q^2=q^4\),解得\(q=2\)\(\therefore a_3=4\)
    (2)证明:\(a_n=2^{n-1}\)\(S_n=\dfrac{2^n-1}{2-1}=2^n-1\)
    \(\therefore \dfrac{s_n}{a_n}-2=\dfrac{2^n-1}{2^{n-1}}-2=2-\dfrac{1}{2^{n-1}}-2<0\)
    \(\therefore \dfrac{S_n}{a_n}<2\)

  9. 答案 (1)略;(2)\(S_n=2^{n+1}-2+n^2+n\) .
    解析 (1)\(\because a_{n+1}=2(a_n-n+1)\)
    \(\therefore \dfrac{a_{n+1}-2(n+1)}{a_n-2 n}=\dfrac{2\left(a_n-n+1\right)-2(n+1)}{a_n-2 n}=\dfrac{2\left(a_n-2 n\right)}{a_n-2 n}=2\)
    \(\therefore\)数列\(\{a_n-2n\}\)是以\(a_1-2=2\)为首项,以\(2\)为公比的等比数列
    (2)由(1)可得\(a_n-2n=2\cdot 2^{n-1}=2^n\)
    \(\therefore a_n=2^n+2n\)
    \(\therefore S_n=\dfrac{2-2^{n+1}}{1-2}+\dfrac{(2+2 n) n}{2}=2^{n+1}-2+n^2+n\).

  10. 答案 (1) \(a_n=3^n\) ;(2) \(T_n=n^2+2n\) ;(3) \(10\).
    解析 (1)由\(a_{n+1}=2S_n+3\),得\(a_n=2S_{n-1}+3(n⩾2)\)
    相减得:\(a_{n+1}-a_n=2(S_n-S_{n-1} )\),即\(a_{n+1}=3a_n\)
    \(\because\)\(n=1\)时,\(a_2=2a_1+3=9\)\(\therefore \dfrac{a_2}{a_1}=3\)
    \(\therefore\)数列\(\{a_n \}\)是等比数列,
    \(\therefore a_n=3\cdot 3^{n-1}=3^n\).
    (2)\(\because b_1+b_2+b_3=15\)\(b_1+b_3=2b_2\)\(\therefore b_2=5\)
    由题意,\(\dfrac{a_1}{3}+b_1\)\(\dfrac{a_2}{3}+b_2\)\(\dfrac{a_3}{3}+b_3\)成等比数列, \(\therefore\left(\dfrac{a_2}{3}+b_2\right)^2=\left(\dfrac{a_1}{3}+b_1\right)\left(\dfrac{a_3}{3}+b_3\right)\)
    \(b_1=5-d\)\(b_3=5+d\)\(\therefore 64=(5-d+1)(5+d+9)\)
    \(\therefore d^2+8d-20=0\),得\(d=2\)\(d=-10\)(舍去)
    \(T_n=3 n+\dfrac{n(n-1)}{2} \cdot 2=n^2+2 n\).
    (3)由题意, \(\lambda \leqslant n+\dfrac{16}{n}+2\)
    \(\because n+\dfrac{16}{n} \geqslant 2 \sqrt{n \cdot \dfrac{16}{n}}=8\)
    \(\therefore λ\)的最大值为\(8+2=10\)
     

【B组---提高题】

1.首项为\(729\)的等比数列\(\{a_n \}\)满足 \(a_n=3^{b_n}\),记数列\(\{b_n\}\)的前\(n\)项和为\(S_n\),若\(∀n∈N^*\),当\(n≠4\)时,\(S_n<S_4\),则数列\(\{a_n \}\)的公比\(q\)的取值范围为(  )
 A. \(\left(\dfrac{1}{9}, \dfrac{\sqrt{3}}{9}\right)\) \(\qquad \qquad\)B. \(\left(\dfrac{1}{3}, \dfrac{\sqrt{3}}{3}\right)\) \(\qquad \qquad\) C. \(\left(\dfrac{1}{9}, \dfrac{\sqrt{3}}{3}\right)\) \(\qquad \qquad\) D. \(\left(\dfrac{1}{9}, \dfrac{1}{3}\right)\)
 

2.(多选)已知数列\(\{a_n \}\)满足\(a_1=1\)\(a_{n+1}=\lg \left(10^{a_n}+9\right)+1\),其前\(n\)项和为\(S_n\),则下列结论中正确的有(  )
 A.\(\{a_n \}\)是递增数列 \(\qquad \qquad \qquad \qquad \qquad\) B.\(\{a_n+10\}\)是等比数列
 C.\(2a_{n+1}>a_n+a_{n+2}\) \(\qquad \qquad \qquad \qquad\)D.\(S_n<\dfrac{n(n+3)}{2}\)
 

3.已知等比数列\(\{a_n \}\)的首项为\(\dfrac{3}{2}\),公比为\(-\dfrac{1}{2}\),前\(n\)项和为\(S_n\),且对任意的\(n∈N^*\),都有 \(A \leqslant 2 S_n-\dfrac{1}{S_n} \leqslant B\)恒成立,则\(B-A\)的最小值为\(\underline{\quad \quad}\)
 

4.已知数列\(\{a_n \}\)是等差数列,其前\(n\)项和为\(A_n\)\(a_7=15\)\(A_7=63\);数列\(\{b_n\}\)的前\(n\)项和为\(B_n\)\(2B_n=3b_n-3(n∈N^* )\)
  (1)求数列\(\{a_n \}\)\(\{b_n\}\)的通项公式;
  (2)求数列\(\left\{\dfrac{1}{A_n}\right\}\)的前\(n\)项和为\(S_n\)
  (3)求证: \(\sum_{k=1}^n \dfrac{a_k}{B_k}<2\)
 
 

参考答案

  1. 答案 \(A\)
    解析 等比数列\(\{a_n \}\)的公比为\(q\),因为\(a_n=3^{b_n}\),所以\(q>0\)
    则当\(n⩾2\)时, \(\dfrac{a_n}{a_{n-1}}=\dfrac{3^{b_n}}{3^{b_{n-1}}}=3^{b_n-b_{n-1}}=q\)
    所以 \(b_n-b_{n-1}=\log _3 q\),又 \(729=3^6=3^{b_1}\),即\(b_1=6\)
    所以数列\(\{b_n\}\)是以\(6\)为首项,以\(\log_3⁡q\)为公差的等差数列,
    等差数列\(\{b_n\}\)\(n\)项和\(S_n\)中,\(S_4\)是唯一的最大值,
    \(\left\{\begin{array}{l} b_4>0 \\ b_5<0 \end{array}\right.\),即\(\begin{cases}6+3 \log _3 & q>0 \\ 6+4 \log _3 & q<0\end{cases}\),解得\(\dfrac{1}{9}<q<\dfrac{\sqrt{3}}{9}\)
    故选:\(A\)

  2. 答案 \(ACD\)
    解析 因为 \(a_{n+1}=\lg \left(10^{a_n}+9\right)+1\),所以 \(10^{a_{n+1}}=10\left(10^{a_n}+9\right)\)
    所以 \(10^{a_{n+1}}+10=10\left(10^{a_n}+10\right)\)
    \(b_n=10^{a_n}+10\),则\(b_{n+1}=10b_n\)
    \(\{b_n\}\)是以\(10\)为公比的等比数列,\(b_1=20\)
    \(b_n=2×10^n\)
    所以\(a_n=\lg ⁡(2×10^n-10)\)是递增数列,但不是等比数列,\(A\)正确,\(B\)错误;
    因为\(2a_{n+1}=\lg ⁡(4×10^{2n+2}+100-40×10^{n+1} )\)
    \(a_n+a_{n+2}=\lg ⁡(2×10^n-10)(20×10^n-10)\)
    \(=\lg ⁡\left[4×10^{2n+2}+100-20(10^n+10^{n+2} )\right]\)
    \(10^n+10^{n+2}>2 \sqrt{10^{2 n+2}}=2 \times 10^{n+1}\)
    所以\(a_n+a_{n+2}<2a_{n+1}\)\(C\)正确;
    \(c_n=n+1\),则其前\(n\)项和为 \(\dfrac{n(n+3)}{2}\)
    \(a_n=\lg ⁡(2×10^n-10)<\lg ⁡(2×10^n )<\lg ⁡(10×10^n )=n+1=c_n\)
    \(S_n<\dfrac{n(n+3)}{2}\)\(D\)正确.
    故选:\(ACD\)

  3. 答案 \(\dfrac{13}{6}\)
    解析 \(S_n=\dfrac{\dfrac{3}{2}\left[1-\left(-\dfrac{1}{2}\right)^n\right]}{1-\left(-\dfrac{1}{2}\right)}=1-\left(-\dfrac{1}{2}\right)^n\)
    \(2 S_n-\dfrac{1}{S_n}=2\left[1-\left(-\dfrac{1}{2}\right)^n\right]-\dfrac{1}{1-\left(-\dfrac{1}{2}\right)^n}\)
    \(n=2k(k∈N^* )\)时, \(2 S_n-\dfrac{1}{S_n}=2\left[1-\left(\dfrac{1}{2}\right)^n\right]-\dfrac{1}{1-\left(\dfrac{1}{2}\right)^n}\),关于\(n\)单调递增,
    \(n=2\)时,取得最小值 \(2 S_2-\dfrac{1}{S_2}=\dfrac{1}{6}\)\(n\rightarrow+\infty\)时, \(2 S_n-\dfrac{1}{S_n} \rightarrow 1\)
    \(n=2k-1(k∈N^* )\)时, \(2 S_n-\dfrac{1}{S_n}=2\left[1+\left(\dfrac{1}{2}\right)^n\right]-\dfrac{1}{1+\left(\dfrac{1}{2}\right)^n}\),关于\(n\)单调递减,\(n=1\)时,取得最大值 \(2 S_1-\dfrac{1}{S_1}=\dfrac{7}{3}\)
    \(n\rightarrow+\infty\)时, \(2 S_n-\dfrac{1}{S_n} \rightarrow 1\)
    对任意的\(n∈N^*\),都有 \(A \leqslant 2 S_n-\dfrac{1}{S_n} \leqslant B\)恒成立,
    \(B-A\)的最小值为 \(\dfrac{7}{3}-\dfrac{1}{6}=\dfrac{13}{6}\)
    答案 为: \(\dfrac{13}{6}\)

  4. 答案 (1)\(a_n=2n+1\)\(b_n=3^n\) ;(2) \(S_n=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\) ;(3)略 .
    解析 (1)\(\because\)数列\(\{a_n \}\)是等差数列,其前n项和为\(A_n\)\(a_7=15\)\(A_7=63\)
    \(\therefore\left\{\begin{array}{l} a_7=a_1+6 d=15 \\ A_7=7 a_1+\dfrac{7 \times 6}{2} d=63 \end{array} \right.\),解得\(a_1=3\)\(d=2\)
    \(\therefore\) 数列\(\{a_n \}\)的通项公式为\(a_n=3+{n-1}×2=2n+1\)
    \(\because\)数列\(\{b_n\}\)的前n项和为\(B_n\)\(2B_n=3b_n-3(n∈N^* )\)
    \(\therefore n⩾2\)时,\(2b_n=2(B_n-B_{n-1} )=3b_n-3-(3b_{n-1}-3)\)
    化为\(b_n=3b_{n-1}\)
    \(n=1\)\(2b_1=3b_1-3\),解得\(b_1=3\)
    \(\therefore \{b_n \}\)是以\(3\)为首项,\(3\)为公比的等比数列,
    \(\therefore\)数列\(\{b_n\}\)的通项公式为\(b_n=3^n\)
    (2)\(\because\)数列\(\{a_n \}\)的通项公式为 \(A_n=3 n+\dfrac{n(n-1)}{2} \cdot 2=n^2+2 n\)
    \(\therefore \dfrac{1}{A_n}=\dfrac{1}{n^2+2 n}=\dfrac{1}{n(n+2)}=\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\)
    \(\therefore\)数列 \(\left\{\dfrac{1}{A_n}\right\}\)的前 项和 \(S_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\cdots+\dfrac{1}{n-1}-\dfrac{1}{n+1}+\dfrac{1}{n}-\dfrac{1}{n+2}\right)\)
    \(S_n=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\)
    (3)证明:\(\because \{b_n \}\)是以\(3\)为首项,\(3\)为公比的等比数列,
    \(\therefore\) 数列\(\{b_n\}\)的前\(n\)项和为 \(B_n=\dfrac{3\left(1-3^n\right)}{1-3}=\dfrac{3}{2}\left(3^n-1\right)\)
    \(\therefore \dfrac{a_k}{B_k}=\dfrac{2}{3} \cdot \dfrac{2 k+1}{3^k-1} \leqslant \dfrac{2}{3} \times \dfrac{2 k+1}{2 \cdot 3^{k-1}}=\dfrac{2 k+1}{3^k}\)
    \(T_k\)\(\left\{\dfrac{2 k+1}{3^k}\right\}\)的前\(k\)项和,则\(T_k=\dfrac{3}{3^1}+\dfrac{5}{3^2}+\cdots+\dfrac{2 k-1}{3^{k-1}}+\dfrac{2 k+1}{3^k}\)
    两式相减得\(\dfrac{2}{3} T_k=1+2\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\cdots+\dfrac{1}{3^k}\right)-\dfrac{2 k+1}{3^{k+1}}\)
    \(=1+2 \times \dfrac{\dfrac{1}{9}\left(1-\dfrac{1}{3^{k-1}}\right)}{1-\dfrac{1}{3}}-\dfrac{2 k+1}{3^{k+1}}=\dfrac{4}{3}-\dfrac{2 k+4}{3^{k+1}}\)
    所以 \(T_k=2-\dfrac{k+2}{3^k}\)
    \(\sum_{k=1}^n \dfrac{a_k}{B_k} \leqslant T_k=2-\dfrac{n+2}{3^n}<2\)
     

【C组---拓展题】

1.抛物线\(y^2=4px(p>0)\)的准线与\(x\)轴的交点为\(M\),过点\(M\)作直线交抛物线于\(A\)\(B\)两点.
  (1)求线段\(AB\)中点的轨迹方程;
  (2)若\(p=\dfrac{1}{2}\),线段\(AB\)的垂直平分线交对称轴于点\(N(x_N,0)\),求证:\(x_N>\dfrac{3}{2}\)
  (3)若\(p=\dfrac{1}{2}\),直线\(l\)的斜率依次取\(\dfrac{1}{2}\)\(\left(\dfrac{1}{2}\right)^2\)\(…\)\(\left(\dfrac{1}{2}\right)^n\)时,线段\(AB\)的垂直平分线与抛物线对称轴的交点依次是\(N_1\)\(N_2\),…,\(N_n\),求\(S=\dfrac{1}{\left|N_1 N_2\right|}+\dfrac{1}{\left|N_2 N_3\right|}+\cdots+\dfrac{1}{\left|N_n N_{n+1}\right|}\)
 
 

参考答案

  1. 答案 (1) \(y^2=2px+2p^2,(p>0,x>0)\);(2)略;(3)\(\dfrac{1}{9}\left(1-\dfrac{1}{4^n}\right)\).
    解析 (1)抛物线的准线方程为\(x=-p\)\(\therefore M(-p,0)\)
    \(l\)方程为\(y=k(x+p)(k≠0)\)\(A(x_1,y_1 )\)\(B(x_2,y_2 )\)\(AB\)中点\(P(x_0,y_0)\)
    \(\left\{\begin{array}{c} y=k(x+p) \\ y^2=4 p x \end{array}\right.\)\(k^2 x^2+(2pk^2-4p)x+k^2 p^2=0 \quad (*)\)
    \(x_1+x_2=\dfrac{4 p-2 p k^2}{k^2}\)\(\therefore x_0=\dfrac{x_1+x_2}{2}=\dfrac{2 p}{k^2}-p\) ①,
    \(y_0=k\left(x_0+p\right)=\dfrac{2 p}{k}\) ②,
    由①,②消\(k\)后得\(y_0^2=2px_0+2p^2,(p>0,x_0>0)\)
    \(AB\)中点\(P\)轨迹方程为\(y^2=2px+2p^2,(p>0,x>0)\)
    (2)证明:设\(AB\)中点\(P(x_0,y_0)\),由(1)可知 \(x_0=\dfrac{2 p}{k^2}-p=\dfrac{1}{k^2}-\dfrac{1}{2}\)
    \(y_0=k\left(x_0+p\right)=k\left(\dfrac{1}{k^2}-\dfrac{1}{2}+\dfrac{1}{2}\right)=\dfrac{1}{k}\)
    \(\therefore P\left(\dfrac{1}{k^2}-\dfrac{1}{2}, \dfrac{1}{k}\right)\)
    则线段\(AB\)的垂直平分线方程为\(y-\dfrac{1}{k}=-\dfrac{1}{k}\left[x-\left(\dfrac{1}{k^2}-\dfrac{1}{2}\right)\right]\)
    \(y=0\)\(x_N=\dfrac{1}{k^2}+\dfrac{1}{2}\)
    由(1)中的方程(*),可知\(\Delta=\left(2 p k^2-4 p\right)^2-4 k^4 p^2=16 p^2-16 p k^2>0\)
    \(\therefore 0<k^2<1\)\(\therefore \dfrac{1}{k^2}+\dfrac{1}{2}>\dfrac{3}{2}\),则 \(x_N>\dfrac{3}{2}\)
    (3)设\(N_n (x_n,0)\)
    当直线\(l\)的斜率 \(k_n=\left(\dfrac{1}{2}\right)^n\)时,由(2)可知 \(x_n=\dfrac{1}{k_n^2}+\dfrac{1}{2}=4^n+\dfrac{1}{2}\)
    \(\because\left|N_n N_{n+1}\right|=\left|x_{n+1}-x_n\right|=\left|4^{n+1}+\dfrac{1}{2}-\left(4^n+\dfrac{1}{2}\right)\right|=3 \cdot 4^n\)
    \(\therefore \dfrac{1}{\left|N_n N_{n+1}\right|}=\dfrac{1}{3} \cdot\left(\dfrac{1}{4}\right)^n\)
    \(\therefore \dfrac{1}{\left|N_n N_{n+1}\right|}\)是以\(\dfrac{1}{12}\)为首项,以\(\dfrac{1}{4}\)为公比的等比数列,
    \(S=\dfrac{1}{\left|N_1 N_2\right|}+\dfrac{1}{\left|N_2 N_3\right|}+\cdots+\dfrac{1}{\left|N_n N_{n+1}\right|}=\dfrac{\dfrac{1}{12}\left(1-\left(\dfrac{1}{4}\right)^n\right)}{1-\dfrac{1}{4}}=\dfrac{1}{9}\left(1-\dfrac{1}{4^n}\right)\)
     
posted @ 2022-12-05 20:20  贵哥讲数学  阅读(233)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏