4.3.2 等比数列的前n项和公式

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

等比数列的前n项和

等比数列\(\{a_n \}\)的首项为\(a_1\),公比为\(q\),则其前\(n\)项和为

\[S_n= \begin{cases}n a_1 & (q=1) \\ \dfrac{a_1\left(1-q^n\right)}{1-q} & (q \neq 1)\end{cases} \]

(1) 证明 等比数列\(\{a_n \}\)的首项为\(a_1\),公比为\(q\),则其前\(n\)项和是
\(S_n=a_1+a_2+a_3+⋯+a_n=a_1+a_1 q+a_1 q^2+⋯+a_1 q^{n-1}\) (1),
两边乘以公比\(q\)\(qS_n=a_1 q+a_1 q^2+⋯+a_1 q^{n-1} +a_1 q^n\) (2)
(1)-(2)得\((1-q)S_n=a_1 (1-q^n )\)
\(q≠1\)时, \(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}\)
\(q=1\)时,\(S_n=a_1+a_2+a_3+⋯+a_n=a_1+a_1+a_1+⋯+a_1=na_1\)
故等比数列的前\(n\)项和为 \(S_n= \begin{cases}n a_1 & (q=1) \\ \dfrac{a_1\left(1-q^n\right)}{1-q} & (q \neq 1)\end{cases}\).
以上的方法称之为 错位相减法.
(2)当公比\(q=1\)时,\(S_n=na_1\),是\(n\)的正比例函数;
当公比\(q≠1\)时,\(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}\),它可变形为\(\ S_n=-\dfrac{a_1}{1-q} \cdot q^n+\dfrac{a_1}{1-q}\)
\(A=\dfrac{a_1}{1-q}\),上式可写成\(S_n=-Aq^n+A\).
由此可见,非常数列的等比数列的前\(n\)项和\(S_n\)是由关于\(n\)的一个指数式与一个常数的和构成的,
而指数式的系数与常数项互为相反数.
即若某数列的前\(n\)项和公式为\(S_n=-A⋅q^n+A\) \((A≠0,q≠0\)\(q≠1,n∈N^*)\),则此数列一定是等比数列.

【例】等比数列\(\{a_n \}\)的公比\(q=2\),首项\(a_1=2\),则\(S_n\)等于\(\underline{\quad \quad}\) .
答案 \(2^{n+1} -2\)
 

基本性质

(1)若\(q≠-1\),则\(S_n\)\(S_{2 n}-S_n\)\(S_{3 n}-S_{2 n}\),…成等比数列,且公比\(q^n\)
\((q=-1\)\(n\)是偶数时,\(S_n=0)\)
证明 \(\dfrac{S_{(k+1) n}-S_{k n}}{S_{k n}-S_{(k-1) n}}=\dfrac{a_{k n+1}+a_{k n+2}+\cdots+a_{(k+1) n}}{a_{(k-1) n+1}+a_{(k-1) n+2}+\cdots+a_{k n}}\)\(=\dfrac{q^n\left(a_{(k-1) n+1}+a_{(k-1) n+2}+\cdots+a_{k n}\right)}{a_{(k-1) n+1}+a_{(k-1) n+2}+\cdots+a_{k n}}=q^n\).
 

(2)在等比数列\(\{a_n \}\)中,当总项数为\(2n\)时, \(S_{\text {偶 }}=q S_{\text {奇 }}\).
证明 \(S_{\text {偶 }}=a_2+a_4+\cdots+a_{2 n}=q\left(a_1+a_3+\cdots+a_{2 n-1}\right)=q S_{\text {奇 }}\).
 

(3) \(S_{n+m}=S_n+q^n S_m\).
证明 \(S_{m+n}=a_1+a_2+\cdots+a_n+a_{n+1}+\cdots+a_{n+m-1}+a_{n+m}\)
\(=S_n+a_1⋅q^n+a_2⋅q^n+a_3⋅q^n+⋯+a_m⋅q^n\)
\(=S_n+q^n (a_1+a_2+⋯+a_m )\)
\(=S_n+q^n S_m\).
 

基本方法

【题型1】 等比数列前n项和的有关计算问题

【典题1】 记正项等比数列\(\{a_n \}\)的前\(n\)项和是\(S_n\),若\(4(a_1+a_2)=3\)\(S_6=\dfrac{63}{4}\),则\(a_7=\)(  )
 A.\(32\) \(\qquad \qquad \qquad \qquad\) B.\(16\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{1}{128}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{256}\)
解析 根据题意,显然等比数列\(\{a_n \}\)的公比\(q≠1\),故 \(S_6=\dfrac{a_1\left(1-q^6\right)}{1-q}=\dfrac{a_1-a_7}{1-q}=\dfrac{63}{4}\) ①,
又知道\(4\left(a_1+a_2\right)=4 S_2=\dfrac{4 a_1\left(1-q^2\right)}{1-q}=3\) ②,
①÷②得:\(q^4+q^2-20=0\),解得\(q^2=4\)\(q^2=-5\)(舍),
因为数列\(\{a_n \}\)是正项等比数列,所以\(q=2\)
\(4(a_1+a_2)=4(a_1+2a_1)=3\),得 \(a_1=\dfrac{1}{4}\)
所以 \(a_7=a_1 \cdot q^6=\dfrac{1}{4} \times 2^6=16\)
故选:\(B\)
 

【典题2】 已知等比数列\(\{a_n \}\)的前\(n\)项和是\(S_n\),若\(a_1+2a_2=0\)\(S_3=\dfrac{3}{4}\),且\(a≤S_n≤a+2\)
则实数\(a\)的取值范围是(  )
 A.\([-1,0]\) \(\qquad \qquad \qquad\) B.\(\left[-1,\dfrac{1}{2}\right]\) \(\qquad \qquad \qquad\) C.\(\left[\dfrac{1}{2},1\right]\) \(\qquad \qquad \qquad\) D.\([0,1]\)
解析 设等比数列\(\{a_n \}\)的公比为\(q\)\(\because a_1+2a_2=0\)\(S_3=\dfrac{3}{4}\)
\(\therefore a_1 (1+2q)=0\)\(a_1\left(1+q+q^2\right)=\dfrac{3}{4}\),解得:\(a_1=1\)\(q=-\dfrac{1}{2}\)
\(\therefore S_n=\dfrac{1-\left(-\dfrac{1}{2}\right)^n}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}\left[1-\left(-\dfrac{1}{2}\right)^n\right]\)
\(n=1\)时,\(S_n\)取最大值\(1\),当\(n=2\)时,\(S_n\)取最小值\(\dfrac{1}{2}\)
\(\therefore\left\{\begin{array}{l} a \leq \dfrac{1}{2} \\ a+2 \geq 1 \end{array}\right.\)\(-1≤a≤\dfrac{1}{2}\)
故选:\(B\)
 

【典题3】 已知等比数列\(\{a_n \}\)的公比为\(2\),若\(a_1+a_3=5\),则\(a_1 a_2+a_2 a_3+a_3 a_4+⋯+a_{99} a_{100}=\)\(\underline{\quad \quad}\).
解析 因为等比数列\(\{a_n \}\)的公比为\(2\)\(a_1+a_3=5\)
所以\(a_1 (1+q^2 )=5\),可得\(a_1=1\),则 \(a_n=2^{n-1}\)\(a_n a_{n+1}=2^{2 n-1}\)
\(a_1 a_2+a_2 a_3+a_3 a_4+\cdots+a_{99} a_{100}=\dfrac{2}{3}\left(4^{99}-1\right)\)
 

【巩固练习】

1.已知数列\(\{a_n \}\)是各项均为正数的等比数列,其前\(n\)项和为\(S_n\)\(a_1+a_2=2\)\(a_5+a_6=8\),则\(S_{10}=\)(  )
 A.\(16\) \(\qquad \qquad \qquad \qquad\) B.\(32\) \(\qquad \qquad \qquad \qquad\) C.\(40\) \(\qquad \qquad \qquad \qquad\) D.\(62\)
 

2.等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\)\(a_1=a_2+2a_3\)\(S_2\)\(S_1\)\(mS_3\)的等比中项,则\(m\)的值为(  )
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{9}{7}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{6}{7}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{2}\)
 

3.若\(S_n\)是等比数列\(\{a_n \}\)的前\(n\)项和,\(S_3\)\(S_9\)\(S_6\)成等差数列,且\(a_8=2\),则\(a_2+a_5=\)(  )
 A.\(-12\) \(\qquad \qquad \qquad \qquad\) B.\(-4\) \(\qquad \qquad \qquad \qquad\) C.\(4\) \(\qquad \qquad \qquad \qquad\) D.\(12\)
 

4.已知等比数列\(\{a_n \}\)的前\(n\)项和是\(S_n\),若\(3a_1+2a_2=4\)\(9S_3=8S_6\),则\(S_5=\)(  )
 A.\(\dfrac{15}{8}\)\(5\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{31}{16}\)\(5\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{31}{16}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{15}{8}\)
 

5.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),则下列结论一定成立的是(  )
 A.若\(a_5>0\),则\(a_{2017}<0\) \(\qquad \qquad \qquad \qquad\) B.若\(a_6>0\),则\(a_{2018}<0\)
 C.若\(a_5>0\),则\(S_{2017}>0\) \(\qquad \qquad \qquad \qquad\) D.若\(a_6>0\),则\(S_{2018}>0\)
 

参考答案

  1. 答案 \(D\)
    解析 设公比为\(q\),由\(a_1+a_2=2,a_5+a_6=8\)\(\left\{\begin{array}{l} a_1+a_1 q=2 \\ a_1 q^4+a_1 q^5=8 \end{array}\right.\)
    解得 \(a_1=2 \sqrt{2}-2\)\(q=\sqrt{2}\),或 \(q=-\sqrt{2}\)(舍去),
    \(S_{10}=\dfrac{(2 \sqrt{2}-2)\left(1-(\sqrt{2})^{10}\right)}{1-\sqrt{2}}=62\)
    故选:\(D\)

  2. 答案 \(B\)
    解析 设数列\(\{a_n \}\)的公比为\(q\),则由\(a_1=a_2+2a_3\),得\(a_1=a_1 q+2a_1 q^2\)
    易知\(a_1≠0\),所以\(2q^2+q-1=0\),解得\(q=-1\)\(q=\dfrac{1}{2}\)
    \(q=-1\)时,\(S_2=0\),这与\(S_2\)\(S_1\)\(mS_3\)的等比中项矛盾
    \(q=\dfrac{1}{2}\)时,\(S_1=a_1\)\(S_2=\dfrac{3}{2} a_1\)\(m S_3=\dfrac{7}{4} a_1 m\)
    \(S_2\)\(S_1\)\(mS_3\)的等比中项,得\(S_2^2=S_1⋅mS_3\)
    \(\dfrac{9}{4} a_1^2=m \cdot \dfrac{7}{4} a_1^2\),所以 \(m=\dfrac{9}{7}\)
    故选:\(B\)

  3. 答案 \(C\)
    解析 由题意可得:等比数列\(\{a_n\}\)\(q≠1\)
    \(\because S_3\)\(S_9\)\(S_6\)成等差数列,且\(a_8=2\)
    \(\therefore 2S_9=S_6+S_3\),且\(a_8=2\)
    \(\therefore 2 \times \dfrac{a_1\left(q^9-1\right)}{q-1}=\dfrac{a_1\left(q^6-1\right)}{q-1}+\dfrac{a_1\left(q^3-1\right)}{q-1}\)\(a_1 q^7=2\)
    解得:\(q^3=-\dfrac{1}{2}\)\(a_1 q=8\)
    \(a_2+a_5=a_1 q(1+q^3)=8×(1-\dfrac{1}{2})=4\)
    故选:\(C\)

  4. 答案 \(C\)
    解析 等比数列\(\{a_n \}\)的前\(n\)项和是\(S_n\)\(3a_1+2a_2=4\)\(9S_3=8S_6\)
    \(\therefore\) 当公比\(q=1\)时,\(\left\{\begin{array}{l} 3 a_1+2 a_1=4 \\ 9 \times 3 a_1=8 \times 6 a_1 \end{array}\right.\),无解,
    当公比\(q≠1\)时, \(\left\{\begin{array}{l} 3 a_1+2 a_1 q=4 \\ 9 \times \dfrac{a_1\left(1-q^3\right)}{1-q}=8 \times \dfrac{a_1\left(1-q^6\right)}{1-q} \end{array}\right.\),解得\(a_1=1\)\(q=\dfrac{1}{2}\)
    \(\therefore S_5=\dfrac{1 \times\left(1-\dfrac{1}{2^5}\right)}{1-\dfrac{1}{2}}=\dfrac{31}{16}\)
    故选:\(C\)

  5. 答案 \(C\)
    解析 \(A\).若\(a_5=a_1 q^4>0\),则 \(a_{2017}=a_1 q^{2016}>0\),故本选项错误;
    \(B\)\(a_6=a_1 q^5>0\),则 \(a_{2018}=a_1 q^{2017}>0\),故本选项错误;
    \(C\)\(a_5=a_1 q^4>0\),则\(a_1>0\).若\(q=1\)时, \(S_{2017}=2017 a_1>0\)
    \(q≠1\)\(S_{2017}=\dfrac{a_1\left(q^{2017}-1\right)}{q-1}>0\),故本选项正确;
    \(D\)、若\(a_6=a_1 q^5>0\).若\(a_1>0\)\(q=1\)时, \(S_{2018}=2018 a_1>0\)
    \(q≠1\)\(S_{2018}=\dfrac{a_1\left(q^{2018}-1\right)}{q-1}\)
    \(q<-1\)时, \(S_{2018}<0\)\(q=-1\)\(S_{2018}=0\),故本选项错误;
    故选:\(C\)
     

【题型2】 等比数列前n项和的性质应用

【典题1】 在等比数列\(\{a_n \}\)中,已知\(S_n=48\)\(S_{2n}=60\),求\(S_{3n}.\)
解析 方法1 \(\because S_{2n}≠2S_n\)\(\therefore q≠1\).
由已知,得\(\left\{\begin{array}{l} \dfrac{a_1\left(1-q^n\right)}{1-q}=48 \\ \dfrac{a_1\left(1-q^{2 n}\right)}{1-q}=60 \end{array}\right.\)
\(\therefore 1+q^n=\dfrac{5}{4}\),即 \(q^n=\dfrac{1}{4}\),代入 \(\dfrac{a_1\left(1-q^n\right)}{1-q}=48\)\(\dfrac{a_1}{1-q}=64\).
\(S_{3 n}=\dfrac{a_1\left(1-q^{3 n}\right)}{1-q}=64 \times\left(1-\dfrac{1}{4^3}\right)=63\).
方法2 \(\because \{a_n \}\)为等比数列,
\(\therefore S_n\)\(S_{2n}-S_n\)\(S_{3n}-S_{2n}\)也成等比数列,
\(\therefore (S_{2n}-S_n )^2=S_n (S_{3n}-S_{2n} )\)
\(\therefore S_{3 n}=\dfrac{\left(S_{2 n}-S_n\right)^2}{S_n}+S_{2 n}=\dfrac{(60-48)^2}{48}+60=63\).
点拨 方法2采取等比数列前\(n\)项和的性质:\(S_n\)\(S_{2n}-S_n\)\(S_{3n}-S_{2n}\)\(…\)成等比数列,较方法1简便.
 

【巩固练习】

1.设等比函数\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(\dfrac{S_6}{S_3}=3\),则\(\dfrac{S_{12}}{S_9}=\)(  )
 A. \(\dfrac{7}{3}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{15}{7}\)\(\qquad \qquad \qquad \qquad\) C. \(\dfrac{15}{7}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{8}{3}\)
 

2.等比数列\(\{a_n \}\)中,\(a_1+a_2+a_3=3\)\(a_4+a_5+a_6=6\),则\(\{a_n\}\)的前\(12\)项和为(  )
 A.\(90\) \(\qquad \qquad \qquad \qquad\) B.\(60\) \(\qquad \qquad \qquad \qquad\) C.\(45\) \(\qquad \qquad \qquad \qquad\) D.\(32\)
 

参考答案

  1. 答案 \(B\)
    解析 \(\because \{a_n\}\)为等比数列,则\(S_3\)\(S_6-S_3\)\(S_9-S_6\)\(S_{12}-S_9\)也成等比数列,
    \(S_6:S_3=1:3\)
    \(S_3=x\),则 \(S_6=\dfrac{1}{3} x\)
    则由\(x\)\(-\dfrac{2}{3} x\)\(S_9-\dfrac{1}{3} x\)\(S_{12}-S_9\)也成等比数列,
    可得 \(S_9=\dfrac{7}{9} x\)\(S_{12}=\dfrac{5}{3} x\),则 \(\dfrac{S_{12}}{S_9}=\dfrac{15}{7}\)
    故选:\(B\)

  2. 答案 \(C\)
    解析 \(\because\)等比数列\(\{a_n \}\)中,\(a_1+a_2+a_3=3\)\(a_4+a_5+a_6=6\)
    由等比数列的性质得:
    \(a_1+a_2+a_3\)\(a_4+a_5+a_6\)\(a_7+a_8+a_9\)\(a_{10}+a_{11}+a_{12}\)也成等比数列,
    \(\therefore\)\(a_1+a_2+a_3=3\)\(a_4+a_5+a_6=6\),得\(a_7+a_8+a_9=12\)\(a_{10}+a_{11}+a_{12}=24\)
    \(\therefore \{a_n\}\)的前\(12\)项和为:\(3+6+12+24=45\)
    故选:\(C\)
     

【题型3】 综合问题

【典题1】 已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\)\(a_1=-1\)\(\dfrac{S_{10}}{S_5}=\dfrac{31}{32}\)
  (1)求等比数列\(\{a_n \}\)的公比\(q\)\(\qquad \qquad\) (2)求\(a_1^2+a_2^2+⋯+a_n^2\)
解析 (1)由题意可知\(q≠1\)
因为\(\dfrac{S_{10}}{S_5}=\dfrac{31}{32}\),所以\(\dfrac{\dfrac{a_1\left(1-q^{10}\right)}{1-q}}{\dfrac{a_1\left(1-q^5\right)}{1-q}}=1-q^5=\dfrac{31}{32}\),解得\(q=\dfrac{1}{2}\)
(2)由(1)可得\(a_n=-\dfrac{1}{2^{n-1}}\),则 \(a_n^2=\dfrac{1}{4^{n-1}}\)\(\dfrac{a_n^2}{a_{n-1}^2}=\dfrac{1}{4}\)
所以数列\(\{a_n^2 \}\)是首项为\(1\),公比为\(\dfrac{1}{4}\)的等比数列,
所以\(a_1^2+a_2^2+\cdots+a_n^2=\dfrac{1-\dfrac{1}{n}}{1-\dfrac{1}{4}}=\dfrac{4}{3}-\dfrac{1}{3 \cdot 4^{n-1}}\)
 

【典题2】 某地本年度旅游业收入估计为\(400\)万元,由于该地出台了一系列措施,进一步发展旅游业,预计今后旅游业的收入每年会比上一年增加\(\dfrac{1}{4}\).
  (1)求\(n\)年内旅游业的总收入;
  (2)试估计大约几年后,旅游业的总收入超过\(8 000\)万元.
解析 设第\(n\)年的旅游业收入估计为\(a_n\)万元,
\(a_1=400\)\(a_{n+1}=\left(1+\dfrac{1}{4}\right) a_n=\dfrac{5}{4} a_n\)
\(\therefore \dfrac{a_{n+1}}{a_n}=\dfrac{5}{4}\)\(\therefore \{a_n\}\)是公比为\(\dfrac{5}{4}\)的等比数列.
\(\therefore S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{400\left[1-\left(\dfrac{5}{4}\right)^n\right]}{1-\dfrac{5}{4}}=1600\left[\left(\dfrac{5}{4}\right)^n-1\right]\)
\(n\)年内旅游业总收入为\(1600\left[\left(\dfrac{5}{4}\right)^n-1\right]\)万元.
(2)由(1)知\(S_n=1600\left[\left(\dfrac{5}{4}\right)^n-1\right]\),令\(S_n>8000\)
\(1600\left[\left(\dfrac{5}{4}\right)^n-1\right]>8000\)
\(\therefore\left(\dfrac{5}{4}\right)^n>6\)\(\therefore \lg \left(\dfrac{5}{4}\right)^n>\lg 6\).
\(\therefore n>\dfrac{\lg 6}{\lg \dfrac{5}{4}}\approx 8.0296\).
\(\therefore\)大约第\(9\)年后,旅游业总收入超过\(8 000\)万元.
 

【巩固练习】

1.中国古代数学著作《算法统宗》中,载有一些关于等比数列的问题.如:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关……”问:此人最后一天走的路程是(  )
 A .\(4\)\(\qquad \qquad \qquad \qquad\) B.\(5\)\(\qquad \qquad \qquad \qquad\) C. \(6\)\(\qquad \qquad \qquad \qquad\) D.\(8\)
 

2.我国古代数学著作《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织出的布都是前一天的\(2\)倍,已知她\(5\)天共织布\(5\)尺,问这女子每天织布多少?”这个问题体现了古代对数列问题的研究.某数学爱好者对于这道题作了以下改编:有甲、乙两位女子,需要合作织出\(40\)尺布.两人第一天都织出一尺,以后几天中,甲女子每天织出的布都是前一天的\(2\)倍,乙女子每天织出的布都比前一天多半尺,则两人完成织布任务至少需要(  )
 A.\(2\)\(\qquad \qquad \qquad \qquad\) B.\(3\)\(\qquad \qquad \qquad \qquad\) C. \(4\)\(\qquad \qquad \qquad \qquad\) D.\(5\)
 

3.如图,在边长为\(1\)的等边\(△ABC\)中,圆\(O_1\)\(△ABC\)的内切圆,圆\(O_2\)与圆\(O_1\)外切,且与\(AB\)\(BC\)相切,…,圆\(O_{n+1}\)与圆\(O_n\)外切,且与\(AB\)\(BC\)相切,如此无限继续下去.记圆\(O_n\)的面积为\(a_n (n∈N)\)
  (1)证明\(\{a_n \}\)是等比数列; \(\qquad \qquad\)(2)求\(a_1+a_2+⋯+a_n\)的值.
image.png
 

4.已知单调递减的等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\)\(a_1+a_3=\dfrac{5}{8}\)\(S_3=7a_3\)
  (1)求数列\(\{a_n \}\)的通项公式;
  (2)求满足 \(S_n \leq \dfrac{999}{1000}\)的所有正整数\(n\)的值.
 

5.已知公比小于\(1\)的等比数列\(\{a_n \}\)中,其前\(n\)项和为\(S_n\)\(a_2=\dfrac{1}{4}\)\(S_3=\dfrac{7}{8}\)
  (1)求\(a_n\)\(\qquad \qquad\) (2)求证:\(\dfrac{1}{2}≤S_n<1\)
 

参考答案

  1. 答案 \(C\)
    解析 由题意得该人第\(n\)天行走的路程\(\{a_n \}\)构成公比为\(q=\dfrac{1}{2}\)的等比数列,
    且这个等比数列的前\(6\)项和\(S_6=378\)
    \(\therefore S_6=\dfrac{a_1\left(1-\dfrac{1}{6}\right)}{1-\dfrac{1}{2}}=378\),解得\(a_1=192\)
    \(\therefore\) 此人最后一天走的路程是\(a_6=192×(\dfrac{1}{2})^5=6\)(里).
    故选:\(C\)

  2. 答案 \(D\)
    解析 设甲,乙每天织布分别记为数列\(\{a_n \}\)\(\{b_n \}\)
    由题意得数列\(\{a_n \}\)是以\(1\)为首项,\(2\)为公比的等比数列,
    \(\{b_n \}\)是以\(1\)为首项,以\(\dfrac{1}{2}\)为公差的等差数列,
    \(n+\dfrac{1}{4} n(n-1)+\dfrac{1-2^n}{1-2} \geq 40\)
    \(n^2+3n+2^{n+2}≥164\)
    经检验\(n=5\)时符合题意.
    故选:\(D\)

  3. 答案 (1)略;(2) \(a_1+a_2+\cdots+a_n=\dfrac{\sqrt{3}}{4}\left[1-\left(\dfrac{1}{3}\right)^n\right]\).
    解析 (1)证明:记\(a_1\)为圆\(O_n\)的半径,则 \(a_1=\dfrac{1}{2} \tan 30^{\circ}=\dfrac{\sqrt{3}}{6},\)
    \(\dfrac{a_{n-1}-a_n}{a_{n-1}+a_n}=\sin 30^{\circ}=\dfrac{1}{2} \text {, }\)\(\therefore a_n=\dfrac{1}{3} a_{n-1} (n≥2)\)
    所以\(\{a_n \}\)是首项为 \(\dfrac{\sqrt{3}}{6}\),公比为\(\dfrac{1}{3}\)的等比数列;
    (2)由(1)得 \(a_n=\dfrac{\sqrt{3}}{6} \times\left(\dfrac{1}{3}\right)^{n-1}=\dfrac{3^{\dfrac{1}{2}-n}}{2}\)
    所以\(a_1+a_2+\cdots+a_n=\dfrac{\dfrac{\sqrt{3}}{6}\left[1-\left(\dfrac{1}{3}\right)^n\right]}{1-\dfrac{1}{3}}=\dfrac{\sqrt{3}}{4}\left[1-\left(\dfrac{1}{3}\right)^n\right]\)
    image.png

  4. 答案 (1) \(a_n=\dfrac{1}{2^n}\) ;(2) \(1、2、3、4、5、6、7、8、9\).
    解析 (1)根据题意,设等比数列\(\{a_n \}\)的公比为\(q\)\((0<q<1)\)
    又由\(a_1+a_3=\dfrac{5}{8}\)\(S_3=7a_3\),则有\(\left\{\begin{array}{l} a_1+a_1 q^2=\dfrac{5}{8} \\ a_1+a_1 q+a_1 q^2=7 \times a_1 q^2 \end{array}\right.\)
    解可得\(a_1=\dfrac{1}{2}\)\(q=\dfrac{1}{2}\)
    \(a_n=a_1 q^{n-1} =\dfrac{1}{2^n}\)
    (2)根据题意,由(1)的结论,\(a_n=\dfrac{1}{2^n}\) ,则\(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=1-\dfrac{1}{2^n}\)
    \(S_n \leq \dfrac{999}{1000}\),即\(1-\dfrac{1}{2^n} \leq \dfrac{999}{1000}\),变形可得\(2^n≤1000\)
    又由\(n∈N^+\),则\(n≤9\)
    \(n\)可取的值为\(1、2、3、4、5、6、7、8、9\)

  5. 答案 (1) \(a_n=\left(\dfrac{1}{2}\right)^n\);(2) 略.
    解析 (1)解:设等比数列\(\{a_n \}\)的公比为\(q\).
    \(\left\{\begin{array}{l} a_2=\dfrac{1}{4} \\ S_3=\dfrac{7}{8} \end{array}\right.\)\(\left\{\begin{array}{l} a_2=\dfrac{1}{4} \\ \dfrac{1}{4 q}+\dfrac{1}{4}+\dfrac{1}{4} q=\dfrac{7}{8} \end{array}\right.\)
    解得 \(\left\{\begin{array}{l} a_2=\dfrac{1}{4} \\ q=\dfrac{1}{2} \end{array}\right.\)\(\left\{\begin{array}{l} a_2=\dfrac{1}{4} \\ q=2 \end{array}\right.\)(舍去),
    所以\(a_n=\dfrac{1}{4}×\left(\dfrac{1}{2}\right)^{n-2} =\left(\dfrac{1}{2}\right)^n\)
    (2)证明:由(1)得\(a_n=\left(\dfrac{1}{2}\right)^n\)
    所以 \(S_n=\dfrac{\dfrac{1}{2}\left[1-\left(\dfrac{1}{2}\right)^n\right]}{1-\dfrac{1}{2}}=1-\left(\dfrac{1}{2}\right)^n\)
    因为\(y=\left(\dfrac{1}{2}\right)^x\)\(R\)上为减函数,且\(y=\left(\dfrac{1}{2}\right)^x>0\)恒成立,
    所以当\(n∈N^*\),即\(n≥1\)时,\(0<\left(\dfrac{1}{2}\right)^n≤\dfrac{1}{2}\)
    所以\(\dfrac{1}{2}≤S_n=1-\left(\dfrac{1}{2}\right)^n<1\)
     

分层练习

【A组---基础题】

1.已知等比数列\(\{a_n \}\)的公比\(q>0\),前\(n\)项和是\(S_n\),若\(a_1=1\)\(S_4=5S_2\),则\(a_5=\)(  )
 A.\(16\) \(\qquad \qquad \qquad \qquad\) B.\(12\) \(\qquad \qquad \qquad \qquad\) C.\(8\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

2.已知\(S_n\)是等比数列\(\{a_n \}\)的前\(n\)项和,若\(S_5=1\)\(S_{10}=33\),则数列\(\{a_n \}\)的公比是(  )
 A.\(8\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

3.已知各项均为正数的等比数列\(\{a_n \}\)的前\(n\)项和是\(S_n\),且满足\(a_6\)\(3a_4\)\(-a_5\)成等差数列,则 \(\dfrac{S_4}{S_2}\)的值为(  )
 A.\(3\) \(\qquad \qquad \qquad \qquad\) B.\(9\) \(\qquad \qquad \qquad \qquad\) C.\(10\) \(\qquad \qquad \qquad \qquad\) D.\(13\)
 

4.我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问日织几何?其意为:一女子每天织布的尺数是前天的\(2\)倍,\(5\)天共织布\(5\)尺,问第五天织布的尺数是多少?你的答案是(  )
 A. \(\dfrac{5}{31}\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{5}{2}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{80}{31}\)
 

5.(多选)已知\(S_n\)是公比\(q\)的正项等比数列\(\{a_n \}\)的前\(n\)项和,若\(a_1+a_2=3\)\(a_2 a_4=16\),则下列说法正确的是(  )
 A.\(q=2\) \(\qquad \qquad \qquad \qquad\) B.数列\(\{S_n+1\}\)是等比数列
 C.\(S_6=63\) \(\qquad \qquad \qquad \qquad\) D.数列\(\{\lg a_n\}\)是公差为\(2\)的等差数列
 

6.已知等比数列\(\{a_n \}\)的前\(n\)项和是\(S_n\),且\(\dfrac{S_6}{3 S_3}=\dfrac{3}{8}\),则\(\dfrac{2 a_6}{a_5+a_4}=\)\(\underline{\quad \quad}\)
 

7.已知正项等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\)\(S_8-2S_4=6\),则 \(a_9+a_{10}+a_{11}+a_{12}\)的最小值为\(\underline{\quad \quad}\)
 

8.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长\(1\)尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高\(3\)尺,莞第一天长高\(1\)尺,以后蒲每天长高前一天的一半,莞每天长高前一天的\(2\)倍.若蒲、莞长度相等,求所需时间.
(结果精确到\(0.1\).参考数据:\(\lg 2=0.3010\)\(\lg 3=0.4771\).)
 
 

9.等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),已知\(S_1\)\(S_3\)\(S_2\)成等差数列.
  (1)求\(\{a_n \}\)的公比\(q\)\(\qquad \qquad\)(2)若\(a_1-a_3=3\),求\(S_n\).
 
 

10.设\(\{a_n \}\)是等比数列,其前\(n\)项的和为\(S_n\),且\(a_2=2\)\(S_2-3a_1=0\)
  (1)求\(\{a_n \}\)的通项公式; \(\qquad \qquad\) (2)若\(S_n+a_n≥48\),求\(n\)的最小值.
 
 

11.已知数列\(\{b_n \}\)满足\(b_1=1\)\(b_{n+1} =\dfrac{1}{2} b_n\)
  (1)求\(\{b_n \}\)的通项公式; \(\qquad \qquad\) (2)求\(b_2+b_4+b_6+⋯+b_{2n}\)值.
 
 

参考答案

  1. 答案 \(A\)
    解析\(a_1=1\)\(S_4=5S_2\),得 \(\dfrac{1-q^4}{1-q}=5 \cdot \dfrac{1-q^2}{1-q}\),即\(q^4-5q^2+4=0\)
    显然\(q≠1\)所以解得\(q=-2\)(舍去)或\(q=2\)
    所以\(a_5=a_1 q^4=1×2^4=16\)
    故选:\(A\)

  2. 答案 \(D\)
    解析 \(\because S_n\)是等比数列\(\{a_n \}\)的前\(n\)项和,\(S_5=1\)\(S_{10}=33\)
    \(\therefore \dfrac{S_{10}}{S_5}=\dfrac{1-q^{10}}{1-q^5}=1+q^5=33\)
    \(\therefore q^5=32\)\(q=2\)
    故选:\(D\)

  3. 答案 \(C\)
    解析 设各项均为正数的等比数列\(\{a_n \}\)的公比为\(q>0\)
    \(\because\)满足\(a_6\)\(3a_4\)\(-a_5\)成等差数列,
    \(\therefore 6a_4=a_6-a_5\)\(\therefore 6a_4=a_4 (q^2-q)\)
    \(\therefore q^2-q-6=0\)\(q>0\).解得\(q=3\)
    \(\dfrac{S_4}{S_2}=\dfrac{\dfrac{a_1\left(3^4-1\right)}{3-1}}{\dfrac{a_1\left(3^2-1\right)}{3-1}}=3^2+1=10\)
    故选:\(C\)

  4. 答案 \(D\)
    解析 由题意,该女子每天织布的尺数成等比数列\(\{a_n \}\),其公比为\(q=2\)
    设第一天织布的尺数为\(a_1\),第一天织布的尺数为\(a_5\),前\(5\)天共织布为\(S_5=5\)
    \(S_5=\dfrac{a_1\left(1-2^5\right)}{1-2}=5\),解得 \(a_1=\dfrac{5}{31}\)
    所以 \(a_5=a_1 q^4=\dfrac{5}{31} \times 2^4=\dfrac{80}{31}\)
    故选:\(D\)

  5. 答案 \(ABC\)
    解析 因为正项等比数列\(\{a_n \}\)中,\(a_1+a_2=3\)\(a_2 a_4=16\)
    所以\(\left\{\begin{array}{l} a_1+a_1 q=3 \\ a_1^2 q^4=16 \end{array}\right.\)
    因为\(q>0\),解得\(q=2\)\(q=-\dfrac{2}{3}\)(舍),\(A\)正确;
    所以\(a_1=1\)\(S_n+1=\dfrac{1-2^n}{1-2}+1=2^n\)
    故数列是等比数列\(\{S_n+1\}\)\(B\)正确;
    \(S_6=\dfrac{1-2^6}{1-2}=63\)\(C\)正确;
    \(a_n=2^{n-1}\)
    \(\lg a_n=(n-1) \lg 2\),数列\(\{\lg a_n\}\)是公差为\(\lg 2\)的等差数列,\(D\)错误;
    故选:\(ABC\)

  6. 答案 \(\dfrac{1}{3}\)
    解析 \(\because\)等比数列\(\{a_n \}\)中, \(\dfrac{S_6}{3 S_3}=\dfrac{3}{8}\)
    显然\(q≠1\)\(\therefore \dfrac{a_1\left(1-q^6\right)}{1-q}=\dfrac{9}{8} \times \dfrac{a_1\left(1-q^3\right)}{1-q}\)
    \(\therefore 1-q^6=\dfrac{9}{8}\left(1-q^3\right)\)\(\therefore 1+q^3=\dfrac{9}{8}\)\(\therefore q=\dfrac{1}{2}\)
    \(\therefore \dfrac{2 a_6}{a_5+a_4}=\dfrac{2 a_1 q^5}{a_1\left(q^4+q^3\right)}=\dfrac{2 q^2}{1+q}=\dfrac{\frac{1}{2}}{\frac{3}{2}}=\dfrac{1}{3}\)

  7. 答案 \(24\)
    解析 由题意可得:\(S_8-2S_4=6\),可得:\(S_8-S_4=S_4+6\)
    由等比数列的性质可得:\(S_4\)\(S_8-S_4\)\(S_{12}-S_8\)成等比数列,
    \(S_4\left(S_{12}-S_8\right)=\left(S_8-S_4\right)^2\)
    综上可得: \(a_9+a_{10}+a_{11}+a_{12}=S_{12}-S_8=\dfrac{\left(S_4+6\right)^2}{S_4}=S_4+\dfrac{36}{S_4}+12 \geq 24\)
    当且仅当\(S_4=6\)时等号成立.
    综上可得,则\(a_9+a_{10}+a_{11}+a_{12}\)的最小值为\(24\)
    故答案为:\(24\)

  8. 答案 \(2.6\)
    解析 设蒲的长度组成等比数列\(\{a_n \}\),其\(a_1=3\),公比为\(\dfrac{1}{2}\),其前\(n\)项和为\(A_n\)
    莞的长度组成等比数列\(\{b_n \}\),其\(b_1=1\),公比为\(2\)
    其前\(n\)项和为\(B_n\).则 \(A_n=\dfrac{3\left(1-\dfrac{1}{n}\right)}{1-\dfrac{1}{2}}\)\(B_n=\dfrac{2^n-1}{2-1}\)
    由题意可得\(\dfrac{3\left(1-\dfrac{1}{2^n}\right)}{1-\dfrac{1}{2}}=\dfrac{2^n-1}{2-1}\),化为 \(2^n+\dfrac{6}{2^n}=7\)
    解得\(2^n=6\)\(2^n=1\)(舍去).
    \(\therefore n=\dfrac{\lg 6}{\lg 2}=1+\dfrac{\lg 3}{\lg 2} \approx 2.6\)
    \(\therefore\)估计\(2.6\)日蒲、莞长度相等.

  9. 答案 (1) \(-\dfrac{1}{2}\);(2) \(S_n=\dfrac{8}{3}\left[1-\left(-\dfrac{1}{2}\right)^n\right]\) .
    解析 (1)依题意,有\(2S_3=S_1+S_2\)
    \(a_1+(a_1+a_1 q)=2(a_1+a_1 q+a_1 q^2 )\)
    由于\(a_1≠0\),故\(2q^2+q=0\).
    \(q≠0\),所以\(q=-\dfrac{1}{2}\).
    (2)由已知,可得 \(a_1-a_1\left(-\dfrac{1}{2}\right)^2=3\),解得\(a_1=4\).
    从而\(S_n=\dfrac{4 \times\left[1-\left(-\dfrac{1}{2}\right)^n\right]}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{8}{3}\left[1-\left(-\dfrac{1}{2}\right)^n\right]\).

  10. 答案 (1) \(a_n=2^{n-1}\) ;(2) \(6\) .
    解析 (1)设等比数列的公比\(q\)
    \(\because S_2-3a-1 =0\)\(\therefore a_2=2a_1=2\)\(\therefore q=2\)\(a_1=1\)
    \(\therefore a_n=a_1 q^{n-1} =2^{n-1}\) .
    (2) \(\because S_n=\dfrac{1-2^n}{1-2}=2^{n-1}\)
    \(\because S_n+a_n=2^n-1+2^{n-1} =3\cdot 2^{n-1} -1≥48\)
    \(\therefore 3\cdot 2^{n-1} >49\)\(\therefore 2^{n-1}>\dfrac{49}{3}\)
    \(\therefore n≥6\)\(n\)的最小值\(6\)

  11. 答案 (1) \(b_n=\left(\dfrac{1}{2}\right)^{n-1}\);(2) \(\dfrac{2}{3}\left[1-\left(\dfrac{1}{4}\right)^n\right]\).
    解析 (1)由\(b_{n+1} =\dfrac{1}{2} b_n\)\(\dfrac{b_n+1}{b_n}=\dfrac{1}{2}\)
    所以\(\{b_n \}\)为等比数列,且首项\(b_1=1\),公比\(q=\dfrac{1}{2}\)
    所以\(\{b_n \}\)的通项公式为\(b_n=\left(\dfrac{1}{2}\right)^{n-1}\)
    (2)设\(a_n=b_{2n}\),则\(\dfrac{a_{n+1}}{a_n}=\dfrac{b_{2 n+2}}{b_{2 n}}=\dfrac{\left(\frac{1}{2}\right)^{2 n+1}}{\left(\frac{1}{2}\right)^{2 n-1}}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
    所以\(\{b_{2n} \}\)是首项为\(\dfrac{1}{2}\),公比\(\dfrac{1}{4}\)的等比数列,
    所以 \(b_2+b_4+b_6+\cdots+b_{2 n}=\dfrac{\dfrac{1}{2}\left[1-\left(\dfrac{1}{4}\right)^n\right]}{1-\dfrac{1}{4}}=\dfrac{2}{3}\left[1-\left(\dfrac{1}{4}\right)^n\right]\).
     

【B组---提高题】

1.设\(\{a_n \}\)是各项均为正数的等比数列,\(S_n\)为其前\(n\)项和.已知\(a_1 a_3=16\)\(S_3=14\),若存在\(n_0\)使得\(a_1,a_2,⋯,a_{n_0}\)的乘积最大,则\(n_0\)的一个可能值是(  )
 A.\(4\) \(\qquad \qquad \qquad \qquad\) B.\(5\) \(\qquad \qquad \qquad \qquad\) C.\(6\) \(\qquad \qquad \qquad \qquad\) D.\(7\)
 

2.已知数列\(\{a_n \}\)的前\(n\)项和是\(S_n\)\(a_1=\dfrac{1}{3}\),当\(n≥2\)时,\(a_n\)\(S_n-1\)\(S_n\)成等比数列,若 \(S_m<\dfrac{19}{21}\),则\(m\)的最大值为(  )
 A.\(9\) \(\qquad \qquad \qquad \qquad\) B.\(11\) \(\qquad \qquad \qquad \qquad\) C.\(19\) \(\qquad \qquad \qquad \qquad\) D.\(21\)
 

3.(多选)设等比数列\(\{a_n \}\)的公比为\(q\),其前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\),并满足条件\(a_1>1\)\(a_{2019} a_{2020}>1\)\(\dfrac{a_{2019}-1}{a_{2020}-1}<0\),下列结论正确的是(  )
 A.\(S_{2019}<S_{2020}\) \(\qquad\) B.\(S_{2019} S_{2021}-1<0\) \(\qquad\)C.\(T_{2019}\)是数列\(\{T_n\}\)中的最大值 \(\qquad\) D.数列\(\{T_n\}\)无最大值
 

参考答案

  1. 答案 \(A\)
    解析 等比数列\(\{a_n \}\)中,公比\(q>0\)
    \(a_1 a_3=16=a_2^2\),所以\(a_2=4\)
    \(S_3=14\)
    所以\(\left\{\begin{array}{l} a_1 \cdot a_3=16 \\ a_1+a_3=10 \end{array}\right.\),解得\(\left\{\begin{array}{l} a_1=2 \\ a_3=8 \end{array}\right.\)\(\left\{\begin{array}{l} a_1=8 \\ a_3=2 \end{array}\right.\)
    \(\left\{\begin{array}{l} a_1=2 \\ a_3=8 \end{array}\right.\)时,可得\(q=2\),可得\(a_1,a_2,⋯,a_{n_0}\)的值为\(2,4,8,16…\)
    不会存在\(n_0\)使得\(a_1,a_2,⋯,a_{n_0}\)的乘积最大(舍去),
    \(\left\{\begin{array}{l} a_1=8 \\ a_3=2 \end{array}\right.\)时,可得\(q=\dfrac{1}{2}\),可得\(a_1,a_2,⋯,a_{n_0}\)的值为\(8,4,2,1,\dfrac{1}{2},\dfrac{1}{4}⋯\)
    观察可知存在\(n_0=4\),使得\(8×4×2×1\)的乘积最大,
    综上,可得\(n_0\)的一个可能是\(4\)
    故选:\(A\)

  2. 答案 \(A\)
    解析 依题意,因为当\(n≥2\)时,\(a_n\)\(S_n-1\)\(S_n\)成等比数列,
    所以\((S_n-1)^2=a_n S_n\),即\((S_n-1)^2=(S_n-S_{n-1} )S_n\)
    \(\dfrac{1}{S_n-1}-\dfrac{1}{S_{n-1}-1}=-1\)
    所以\(\left\{\dfrac{1}{S_n-1}\right\}\)成等差数列,所以 \(\dfrac{1}{S_n-1}=-n-\dfrac{1}{2}\),即\(S_n=\dfrac{2 n-1}{2 n+1}\)
    \(S_m<\dfrac{19}{21}\),即\(\dfrac{2 m-1}{2 m+1}<\dfrac{19}{21}\),解得\(m<10\)
    所以\(m\)的最大值为\(9\)
    故选:\(A\)

  3. 答案 \(AC\)
    解析 等比数列\(\{a_n \}\)的公比为q,其前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\)
    并满足条件\(a_1>1\)\(a_{2019} a_{2020}>1\)\(\dfrac{a_{2019}-1}{a_{2020}-1}<0\)
    \(\therefore a_{2019}>1\)\(0<a_{2020}<1\)\(\therefore 0<q<1\)
    根据\(a_1>1\)\(0<q<1\),可知等比数列\(\{a_n \}\)为正项的递减数列.
    \(a_1>a_2>⋯>a_{2019}>1>a_{2020}>⋯>0\)
    \(\because S_{2020}-S_{2019}=a_{2020}>0\)
    \(\therefore S_{2019}<S_{2020}\),故选项\(A\)正确;
    \(\because S_{2019}=a_1+a_2+⋯+a_{2019}>1\)
    \(\therefore S_{2019} S_{2021}=S_{2019}\left(S_{2019}+a_{2020}+a_{2021}\right)\)\(=S_{2019}^2+S_{2019}\left(a_{2020}+a_{2021}\right)>S_{2019}^2>1\)
    \(S_{2019} S_{2021}-1>0\).故选项\(B\)错误;
    根据\(a_1>a_2>⋯>a_{2019}>1>a_{2020}>⋯>0\).可知
    \(T_{2019}\)是数列\(\{T_n\}\)中的最大项,故选项\(C\)正确、选项\(D\)错误.
    故选:\(AC\)
     

【C组---拓展题】

1.设\(m\)个正数\(a_1\)\(a_2\)\(…\)\(a_m\)\((m≥4,m∈N^*)\)依次围成一个圆圈.其中\(a_1\)\(a_2\)\(a_3\)\(…\)\(a_{k-1}\)\(a_k\)\((k<m,k∈N^*)\)是公差为\(d\)的等差数列,而\(a_1\)\(a_m\)\(a_{m-1}\)\(…\)\(a_{k+1}\)\(a_k\)是公比为\(2\)的等比数列.
  (1)若\(a_1=d=2\)\(k=8\),求数列\(a_1\)\(a_2\)\(…\)\(a_m\)的所有项的和\(S_m\)
  (2)若\(a_1=d=2\)\(m<2015\),求\(m\)的最大值;
  (3)是否存在正整数\(k\),满足\(a_1+a_2+a_3+⋯+a_{k-1} +a_k=3\)\((a_{k+1}+a_{k+2}+⋯+a_{m-1} +a_m)\)
若存在,求出\(k\)值;若不存在,请说明理由.
 
 
 
 

参考答案

  1. 答案 (1) \(84\);(2) \(1033\);(3) \(k=4\).
    解析 (1)依题意\(a_k=16\)
    故数列\(a_1\)\(a_2\)\(…\)\(a_m\)即为\(2,4,6,8,10,12,14,16,8,4\)\(10\)个数,
    此时\(m=10\)\(S_m=84\)
    (2)由数列\(\{a_n \}\)满足\(a_1=d=2\),是首项为\(2\)、公差为\(2\)的等差数列知,\(a_k=2k\)
    \(a_1\)\(a_m\)\(a_{m-1}\)\(…\)\(a_{k+1}\)\(a_k\)是首项为\(2\)、公比为\(2\)的等比数列知, \(a_k=2^{m+2-k}\)
    故有 \(2 k=2^{m+2-k}\)\(k=2^{m+1-k}\),即\(k\)必是\(2\)的整数次幂,
    \(k \cdot 2^k=2^{m+1}\)知,要使\(m\)最大,\(k\)必须最大,
    \(k<m<2015\),故\(k\)的最大值\(2^{10}\)
    从而 \(2^{10} \cdot 2^{1024}=2^{m+1}\)\(m\)的最大值是\(1033\)
    (3)由数列\(\{a_n \}\)是公差为\(d\)的等差数列知,\(a_k=a_1+(k-1)d\)
    \(a_1\)\(a_m\)\(a_{m-1}\)\(…\)\(a_{k+1}\)\(a_k\)是公比为\(2\)的等比数列 \(a_k=a_1 \cdot 2^{m+1-k}\)
    \(a_1+(k-1) d=a_1 \cdot 2^{m+1-k}\)\((k-1) d=a_1\left(2^{m+1-k}-1\right)\)
    \(a_1+a_2+a_3+\cdots+a_{k-1}+a_k=3\left(a_{k+1}+a_{k+2}+\cdots+a_{m-1}+a_m\right)\)\(a_m=2a_1\)
    \(k a_1+\dfrac{1}{2} k(k-1) d=3 \times 2 a_1 \times \dfrac{1-2^{m-k}}{1-2}\)
    \(k a_1+\dfrac{1}{2} k\left[a_1\left(2^{m+1-k}-1\right)\right]=3 \times 2 a_1\left(2^{m-k}-1\right)\)
    \(\dfrac{1}{2} k \cdot 2^{m+1-k}+\dfrac{1}{2} k=6\left(2^{m-k}-1\right)\)
    \(k \cdot 2^{m+1-k}+k=6 \times 2^{m+1-k}-12\)
    显然\(k≠6\),则 \(2^{m+1-k}=\dfrac{k+12}{6-k}=-1+\dfrac{18}{6-k}\)
    所以\(k<6\),将\(k=1,2,3,4,5\)一一代入验证知,
    \(k=4\)时,上式右端为\(8\),等式成立,此时\(m=6\)
    综上可得:当且仅当\(m=6\)时,存在\(k=4\)满足等式.
     
posted @ 2022-12-05 20:01  贵哥讲数学  阅读(993)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏