4.2.1 等差数列的概念2(性质运用)

${\color{Red}{欢迎到学科网下载资料学习 }}$  

[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

等差数列基本性质

若数列\(\{a_n\}\)是首项为\(a_1\),公差为\(d\)的等差数列,其中\(m\)\(n\)\(s\)\(t∈N^*\)
它具有以下性质:
(1) \(a_n=a_m+(n-m) d\)

证明 由等差数列通项公式可得\(a_n=a_1+(n-1)d\)\(a_m=a_1+(m-1)d\)
\(\qquad\) 两式相减可得\(a_n-a_m=(n-m) d\),即\(a_n=a_m+(n-m) d\).
意义 求等差数列任一项\(a_k\)或通项公式\(a_n\),不一定要求\(a_1\),可利用任一项(非\(a_k\)即可).
若等差数列\(\{a_n\}\)中,\(a_3=4\)\(d=2\),则\(a_6=\)\(\underline{\quad \quad}\) .
 解 \(a_6=a_3+3d=10\).
 

(2) \(d=\dfrac{a_n-a_m}{n-m}\)
证明 由性质\(a_n=a_m+(n-m) d\)可得 \(d=\dfrac{a_n-a_m}{n-m}\).
意义 利用等差数列任意两项可求公差.
若等差数列\(\{a_n\}\)中,\(a_3=4\)\(a_6=10\),则公差\(d=\) \(\underline{\quad \quad}\).
 解 \(d=\dfrac{a_6-a_3}{6-3}=\dfrac{6}{3}=2\).
 

(3)若 $m+n=s+t $, 则 \(a_m+a_n=a_s+a_t\)

证明 由等差数列通项公式可得
\(\qquad\) \(a_m+a_n=a_1+(m-1)d+a_1+(n-1)d=2a_1+(m+n-2)d\)
\(\qquad\) \(a_s+a_t=a_1+(s-1)d+a_1+(t-1)d=2a_1+(s+t-2)d\)
\(\qquad\) \(\because m+n=s+t\)\(\therefore 2a_1+(m+n-2)d=2a_1+(s+t-2)d\)
\(\qquad\)\(a_m+a_n=a_s+a_t\).
意义 下标和相等,其对应项的和相等.
\(a_2+a_8=a_1+a_9=2a_5\),但\(a_2+a_8\)不一定等于\(a_{10}\).
 

(4)下标成等差数列且公差为\(m\)的项\(a_k\)\(a_{k+m}\)\(a_{k+2m}\)\(…(k ,m∈N^*)\)组成公差为\(md\)的等差数列;

证明 \(a_{k+n m}-a_{k+(n-1) m}=a_1+(k+n m-1) d-a_1-(k+n m-m-1) d=m d\),得证.
\(\{a_n\}\)是等差数列,则\(a_3\)\(a_6\)\(a_9\)是公差为\(3d\)的等差数列, \(\{a_{2n-1}\}\)均是公差为\(2d\)的等差数列.
 

(5) 数列\(\{λa_n+b\}\)\((λ、b\)是常数\()\)是公差是\(λb\)的等差数列;

证明 利用等差数列的定义可证.
 

(6) 若数列\(\{b_n \}\)也是等差数列,则数列\(\{ka_n±mb_n+b\}\)\((k,m,b\)为非零常数\()\)也是等差数列;

证明 利用等差数列的定义可证.
 

基本方法

【题型1】 等差数列性质的应用

【典题1】\(\{a_n \}\)为等差数列,若\(a_3+a_4+a_5+a_6+a_7=450\),求\(a_2+a_8\).
解析 方法1 \(\because \{a_n \}\)为等差数列,设首项为\(a_1\),公差为\(d\)
\(\therefore a_3+a_4+⋯+a_7=a_1+2d+a_1+3d+⋯+a_1+6d=5a_1+20d\)
\(5a_1+20d=450\)
\(\therefore a_1+4d=90\).
\(\therefore a_2+a_8=a_1+d+a_1+7d=2a_1+8d=180\).
方法2 \(\because a_3+a_7=a_4+a_6=2a_5=a_2+a_8\)
\(\therefore a_3+a_4+a_5+a_6+a_7=5a_5=450\)
\(\therefore a_5=90\)\(\therefore a_2+a_8=2a_5=180\).
点拨 方法1是利用通项公式\(a_n=a_1+(n-1)d\)处理,方法2注意到各项中下标的特点,
利用等差数列的性质处理,这样来得更简便.
 

【典题2】(多选)设\(d\)为正项等差数列\(\{a_n\}\)的公差,若\(d>0\)\(a_3=2\),则(  )
 A.\(a_2 a_4<4\) \(\qquad \qquad\) B. \(a_2^2+a_4 \geq \dfrac{15}{4}\) \(\qquad \qquad\) C. \(\dfrac{1}{a_1}+\dfrac{1}{a_5}>1\) \(\qquad \qquad\) D.\(a_1 a_5>a_2 a_4\)
解析 由题设知: \(\left\{\begin{array}{l} d>0 \\ a_1=2-2 d>0 \end{array}\right.\),解得\(0<d<1\)
\(\because a_2 a_4=(2-d)(2+d)=4-d^2<4\)\(\therefore A\)正确;
\(\because a_2^2+a_4=(2-d)^2+2+d=d^2-3d+6>4>\dfrac{15}{4}\)
\(\therefore B\)正确;
\(\because a_1+a_5=2 a_3=4, \dfrac{1}{a_1}+\dfrac{1}{a_5}=\dfrac{1}{4}\left(\dfrac{1}{a_1}+\dfrac{1}{a_5}\right)\left(a_1+a_5\right)\)
\(=\dfrac{1}{4}\left(2+\dfrac{a_5}{a_1}+\dfrac{a_1}{a_5}\right)>\dfrac{1}{4}\left(2+2 \sqrt{\dfrac{a_5}{a_1} \cdot \dfrac{a_1}{a_5}}\right)=1\)
\(\therefore C\)正确;
\(\because a_1 a_5-a_2 a_4=(2-2d)(2+2d)-(2-d)(2+d)=-3d^2<0\)
\(\therefore a_1 a_5<a_2 a_4\)\(D\)错误.
故选:\(ABC\)
 

【巩固练习】

1.在等差数列\(\{a_n\}\)中,\(a_3=7\)\(a_5+a_7=32\),则\(\{a_n\}\)的公差\(d=\)(  )
 A.\(5\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

2.已知等差数列\(\{a_n\}\)满足\(a_1+a_3+a_5=18\)\(a_3+a_5+a_7=30\),则\(a_2+a_4+a_6=\)(  )
 A.\(20\) \(\qquad \qquad \qquad \qquad\) B.\(24\) \(\qquad \qquad \qquad \qquad\) C.\(26\) \(\qquad \qquad \qquad \qquad\) D.\(28\)
 

3.在等差数列\(\{a_n\}\)中,若 \(a_1-a_4-a_8-a_{12}+a_{15}=\dfrac{\pi}{4}\),则\(\sin⁡(a_3+a_{13} )\)的值为(  )
 A.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\) C.\(-1\) \(\qquad \qquad \qquad \qquad\) D.\(0\)
 

4.等差数列\(\{a_n\}\)中,\(a_2+a_5+a_8=12\),那么关于\(x\)的方程\(x^2+(a_4+a_6)x+10=0\)(  )
 A.无实根 \(\qquad \qquad\) B.有两个相等实根 \(\qquad \qquad\) C.有两个不等实根\(\qquad \qquad\) D.不能确定有无实根
 

参考答案

  1. 答案 \(C\)
    解析 等差数列\(\{a_n\}\)中,\(a_5+a_7=2a_6=32\),所以\(a_6=16\)
    因为\(a_3=7\),则 \(d=\dfrac{a_6-a_3}{6-3}=3\)
    故选:\(C\)

  2. 答案 \(B\)
    解析 \(\because\) 等差数列\(\{a_n\}\)满足\(a_1+a_3+a_5=18\)\(a_3+a_5+a_7=30\)
    设公差为\(d\)
    相减可得\(6d=30-18=12\)\(\therefore d=2\)
    \(a_2+a_4+a_6=a_1+a_3+a_5+3d=24\)
    故选:\(B\)

  3. 答案 \(C\)
    解析 由等差数列的性质可知,\(a_1+a_{15}=a_4+a_{12}\)
    \(a_1-a_4-a_8-a_{12}+a_{15}=-a_8=\dfrac{\pi}{4}\),解得 \(a_8=-\dfrac{\pi}{4}\)
    \(\because a_3+a_{13}=2a_8\)
    \(\therefore \sin \left(a_3+a_{13}\right)=\sin \left(2 a_8\right)=\sin \left(-\dfrac{\pi}{2}\right)=-1\)
    故选:\(C\)

  4. 答案 \(C\)
    解析 等差数列\(\{a_n\}\)中,\(a_2+a_5+a_8=12=3a_5\),解得\(a_5=4\)
    那么关于\(x\)的方程\(x^2+(a_4+a_6 )x+10=0\)
    化为:\(x^2+8x+10=0\)\(△=8^2-4×10>0\)
    \(\therefore\) 方程有两个不等实数根.
    故选:\(C\)
     

【题型2】 等差数列的综合问题

【典题1】 已知三个数成等差数列,其和为\(15\),首末两项的积为\(9\),求这三个数.
解析 由题意,可设这三个数分别为\(a-d\)\(a\)\(a+d\)
\(\left\{\begin{array}{l} (a-d)+a+(a+d)=15 \\ (a-d)(a+d)=9 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a=5 \\ d=4 \end{array}\right.\)\(\left\{\begin{array}{l} a=5 \\ d=-4 \end{array}\right.\)
所以,当\(d=4\)时,这三个数为\(1,5,9\)
\(d=-4\)时,这三个数为\(9,5,1\).
所以这三个数为\(1,5,9\)\(9,5,1\).
点拨 设三个数分别为\(a-d\)\(a\)\(a+d\)比较好,计算简便些.
 

【典题2】已知数列\(\{a_n\}\)的前\(n\)项和是\(S_n\),且对任意\(n∈N^*\),有\(\dfrac{S_n}{n}\)\(1\)\(a_n\)的等差中项.
  (1)求证:\(a_3-2a_2+1=0\)
  (2)若\(a_4=7\),求数列\(\{a_n\}\)的通项公式.
解析 (1)证明:\(\because\)数列\(\{a_n\}\)的前\(n\)项和是\(S_n\),且对任意\(n∈N^*\),有\(\dfrac{S_n}{n}\)\(1\)\(a_n\)的等差中项.
\(\therefore 2 \times \dfrac{S_1}{1}=2 a_1=1+a_1\),解得\(a_1=1\)
\(2 \times \dfrac{S_3}{3}=2 \times \dfrac{1+a_2+a_3}{3}=1+a_3\)
整理得\(a_3-2a_2+1=0\)
(2)\(\because\) \(\dfrac{S_n}{n}\)\(1\)\(a_n\)的等差中项, \(\therefore 2 \times \dfrac{s_n}{n}=1+a_n\)\(\therefore 2S_n=n+na_n\)
\(2S_{n-1}=n-1+(n-1)a_{n-1}\)
两式相减可得\((n-2)a_n-(n-1)a_{n-1}+1=0\)
\(\therefore (n-1)a_{n+1}-na_n+1=0\)
整理可得,\(2a_n=a_{n-1}+a_{n+1} (n≥2)\)
故数列\(\{a_n\}\)是等差数列.
\(a_4=7\)\(a_1=1\)\(\therefore\) 公差 \(d=\dfrac{a_4-a_1}{4-1}=2\)
\(\therefore a_n=a_1+(n-1)d=1+2(n-1)=2n-1\).
 

【巩固练习】

1.设数列\(\{a_n\}\)是等差数列,\(a_p=q\)\(a_q=p(p≠q)\),试求 \(a_{p+q}\).
 
 

2.一个等差数列的首项为\(\dfrac{1}{25}\),公差\(d>0\),从第\(10\)项起每一项都大于\(1\),求公差\(d\)的范围.
 
 

3.已知数列\(\{a_n\}\)满足\(a_1=2a\)\(a_n=2 a-\dfrac{a^2}{a_n-1}(n \geq 2)\),其中\(a\)是不为\(0\)的常数,令 \(b_n=\dfrac{1}{a_n-a}\)
  (1)求证:数列\(\{b_n\}\)是等差数列;
  (2)求数列\(\{a_n\}\)的通项公式.
 
 

参考答案

  1. 答案 \(0\)
    解析 设数列\(\{a_n \}\)的公差为\(d\)
    \(\because a_p=a_q+(p-q)d\)\(\therefore d=\dfrac{a_p-a_q}{p-q}=\dfrac{q-p}{p-q}=-1\).
    从而 \(a_{p+q}=a_p+q d=q+q \times(-1)=0\)
    \(\therefore a_{p+q}=0\).

  2. 答案 \(\left(\dfrac{8}{75}, \dfrac{3}{25}\right]\)
    解析 设等差数列为\(\{a_n \}\)
    \(d>0\),知\(a_1<a_2<⋯<a_9<a_{10}<a_{11}…\)
    依题意,有 \(\left\{\begin{array}{l} 1<a_{10}<a_{11}<\cdots \\ a_1<a_2<\cdots<a_9 \leq 1 \end{array}\right.\)
    \(\left\{\begin{array} { l } { a _ { 1 0 } > 1 } \\ { a _ { 9 } \leq 1 } \end{array} \Leftrightarrow \left\{\begin{array}{l} \dfrac{1}{25}+(10-1) d>1 \\ \dfrac{1}{25}+(9-1) d \leq 1 \end{array}\right.\right.\)
    解得 \(\dfrac{8}{75}<d \leq \dfrac{3}{25}\)
    即公差\(d\)的取值范围是\(\left(\dfrac{8}{75}, \dfrac{3}{25}\right]\).

  3. 答案 \(a_n=a\left(1+\dfrac{1}{n}\right)\)
    解析 (1) \(\because a_n=2 a-\dfrac{a^2}{a_{n-1}}(n \geq 2)\)
    \(\therefore b_n=\dfrac{1}{a_n-a}=\dfrac{1}{a-\dfrac{a^2}{a_{n-1}}}=\dfrac{a_{n-1}}{a\left(a_{n-1}-a\right)}(n \geq 2)\)
    \(\therefore b_n-b_{n-1}=\dfrac{a_{n-1}}{a\left(a_{n-1}-a\right)}-\dfrac{1}{a_{n-1}-a}=\dfrac{1}{a}(n \geq 2)\)
    \(\therefore\)数列\(\{b_n\}\)是公差为 \(\dfrac{1}{a}\)的等差数列.
    (2) \(\because b_1=\dfrac{1}{a_1-a}=\dfrac{1}{a}\)
    故由(1)得: \(b_n=\dfrac{1}{a}+(n-1) \times \dfrac{1}{a}=\dfrac{n}{a}\)
    \(\dfrac{1}{a_n-a}=\dfrac{n}{a}\),得\(a_n=a\left(1+\dfrac{1}{n}\right)\)
     

分层练习

【A组---基础题】

1.在等差数列\(\{a_n\}\)中,\(a_7-a_3=2\)\(a_4=1\),则\(a_{12}=\) (  )
 A.\(5\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

2.在等差数列\(\{a_n\}\)中,若\(a_1+a_5=10\)\(a_4=7\),则(  )
 A.\(a_6=10\) \(\qquad \qquad\) B.\(a_n=2n-1\) \(\qquad \qquad\) C.\(a_n=n+3\) \(\qquad \qquad\) D.\(a_n=-2n+3\)
 

3.新广中上月开展植树活动以来,学校环境愈发美丽.尤其是黄花风铃木,金黄的花朵挂满枝头,好不烂漫,俨然成了师生的热门打卡景点.书院数学兴趣小组的同学们通过调查发现:我校的黄花风铃树主要分布在孔子行教像旁(\(A\)处)、一食堂旁(\(B\)处)、高二教学楼旁(\(C\)处),如果把\(C\)处的\(5\)株移到\(B\)处,则\(A\)\(B\)\(C\)三处的株数刚好构成等差数列,已知B处现有\(11\)株,那么这三处共有黄花风铃树(  )
 A.\(36\)\(\qquad \qquad \qquad \qquad\) B.\(41\)\(\qquad \qquad \qquad \qquad\) C.\(48\)\(\qquad \qquad \qquad \qquad\) D.\(51\)
 

4.已知等差数列\(\{a_n\}\)中,\(a_2\)\(a_8\)\(2x^2-16x-1=0\)的两根,则\((a_3+a_7 )^2-a_5=\) ( )
 A.\(248\) \(\qquad \qquad \qquad \qquad\) B.\(60\) \(\qquad \qquad \qquad \qquad\) C.\(12\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

5.已知数列\(\{a_n\}\)\(\{b_n\}\)都是等差数列,\(a_1=1\)\(b_1=5\),且\(a_{21}-b_{21}=34\),则\(a_{11}-b_{11}\)的值( )
 A.\(-17\) \(\qquad \qquad \qquad \qquad\) B.\(-15\) \(\qquad \qquad \qquad \qquad\) C.\(17\) \(\qquad \qquad \qquad \qquad\) D.\(15\)
 

6.设\(\{a_n\}\)是等差数列,且\(a_1=3\)\(a_2+a_4=14\),若\(a_m=41\),则\(m=\)\(\underline{\quad \quad}\)
 

7.若数列\(\{a_n\}\)是等差数列,且\(a_1+a_8+a_15=π\),则\(\tan⁡(a_4+a_{12})=\)\(\underline{\quad \quad}\)
 

8.已知数列\(\{a_n\}\)满足\(2a_n=a_{n-1}+a_{n+1} (n≥2)\)\(a_1+a_3+a_5=6\)\(a_2+a_4+a_6=18\),则\(a_3+a_4=\)\(\underline{\quad \quad}\)
 

9.在等差数列\(\{a_n \}\)中,已知\(a_5=10\)\(a_{12}>31\),求公差\(d\)的取值范围.
 
 

10.已知三个数成等差数列并且是递增数列,它们的和为\(18\),平方和为\(116\),求这三个数.
 
 

11.证明: \(2, \sqrt{5}, 7\)不可能是某个等差数列中的三项.
 
 

  1. 已知等差数列\(\{a_n\}\)满足\(a_2+a_3+a_4=18\)\(a_2 a_3 a_4=66\),求数列\(\{a_n\}\)的通项公式.
     
     

参考答案

  1. 答案 \(A\)
    解析 等差数列\(\{a_n\}\)中,\(a_7-a_3=4d=2\)
    因为\(a_4=1\),则\(a_{12}=a_4+8d=1+4=5\)
    故选:\(A\)

  2. 答案 \(B\)
    解析 因为等差数列\(\{a_n\}\)中,\(a_1+a_5=2a_3=10\)\(a_4=7\)
    所以\(a_3=5\)\(d=2\)
    所以\(a_n=a_3+(n-3)d=5+2(n-3)=2n-1\)\(B\)正确,
    \(a_5=9\)\(A\)错误.
    故选:\(B\)

  3. 答案 \(C\)
    解析\(A\)\(B\)\(C\)三处的株数构成等差数列\(\{a_n\}\)
    显然\(a_2=16\),故\(a_1+a_3=2a_2=32\)
    故这三处共有黄花风铃树共\(48\)株.
    故选:\(C\)

  4. 答案 \(B\)
    解析 \(\because\) 等差数列\(\{a_n\}\)中,\(a_2\)\(a_8\)\(2x^2-16x-1=0\)的两根,
    \(\therefore a_2+a_8=2a_5=8\),即\(a_5=4\)
    \(\therefore (a_3+a_7 )^2-a_5=(a_2+a_8 )^2-a_5=64-4=60\)
    故选:\(B\)

  5. 答案 \(D\)
    解析 因为数列\(\{a_n\}\)\(\{b_n\}\)都是等差数列,\(a_1=1\)\(b_1=5\)
    因为\(a_{21}-b_{21}=34\)
    \(2\left(a_{11}-b_{11}\right)=\left(a_1+a_{21}\right)-\left(b_1+b_{21}\right)=a_1-b_1+a_{21}-b_{21}=30\)
    所以 \(a_{11}-b_{11}=15\)
    故选:\(D\)

  6. 答案 \(20\)
    解析 设等差数列\(\{a_n\}\)的公差为\(d\)
    \(\because a_2+a_4=14\)\(\therefore 2a_3=14\),解得\(a_3=7\)
    \(\therefore 2d=a_3-a_1=7-3=4\),解得\(d=2\)
    \(\therefore a_n=a_1+2(n-1)=3+2n-2=2n+1\)
    \(\because a_m=41\)\(\therefore 2m+1=41\),解得\(m=20\)
    故答案、为:\(20\)

  7. 答案 \(-\sqrt{3}\)
    解析 因为数列\(\{a_n\}\)是等差数列,由等差数列的性质可知\(a_1+a_8+a_{15}=3a_8=π\)
    所以 \(a_8=\dfrac{\pi}{3}\)
    \(\tan \left(a_4+a_{12}\right)=\tan \left(2 a_8\right)=\tan \dfrac{2 \pi}{3}=-\sqrt{3}\)
    故答案为: \(-\sqrt{3}\)

  8. 答案 \(8\)
    解析 因为数列\(\{a_n\}\)满足\(2a_n=a_{n-1}+a_{n+1} (n≥2)\)
    所以数列\(\{a_n\}\)为等差数列,
    \(a_1+a_3+a_5=6\)\(a_2+a_4+a_6=18\)
    \(a_3+a_4=2+6=8\)

  9. 答案 \((3,+∞)\)
    解析 由题意,可知 \(\left\{\begin{array}{l} a_1+4 d=10 \\ a_1+11 d>31 \end{array}\right.\),解得\(d>3\).
    所以\(d\)的取值范围是\((3,+∞)\)

  10. 答案 \(4,6,8\)
    解析 解法一:设这三个数为\(a,b,c\)
    则由题意,得 \(\left\{\begin{array}{l} 2 b=a+c \\ a+b+c=18 \\ a^2+b^2+c^2=116 \end{array}\right.\)
    解得\(a=4\)\(b=6\)\(c=8\).
    故这三个数是\(4,6,8\).
    解法二:设这三个数为\(a-d\)\(a\)\(a+d\)
    由已知,得 \(\left\{\begin{array}{l} (a-d)+a+(a+d)=18, (1) \\ (a-d)^2+a^2+(a+d)^2=116,(2) \end{array}\right.\)
    由(1),得\(a=6\),代入(2),得\(d=±2\).
    \(\because\) 该数列是递增的,\(\therefore d=-2\)舍去.
    \(\therefore\)这三个数为\(4,6,8\).

  11. 证明 假设 \(2, \sqrt{5}, 7\)不是同一个等差数列中的三项,分别设为\(a_m\)\(a_n\)\(a_p\)
    \(d=\dfrac{7-2}{p-m}\)为有理数,
    \(d=\dfrac{\sqrt{5}-2}{n-m}\)为无理数,矛盾.
    所以,假设不成立,
    \(2, \sqrt{5}, 7\)不可能是同一个等差数列中的三项.

  12. 答案 \(a_n=-5n+21\)\(a_n=5n-9\)
    解析 在等差数列\(\{a_n\}\)中,\(a_2+a_3+a_4=18\)
    \(3a_3=18\),所以\(a_3=6\)
    \(a_2+a_4=12\)\(a_2 a_4=11\)
    解得 \(\left\{\begin{array}{l} a_2=11 \\ a_4=1 \end{array}\right.\)\(\left\{\begin{array}{l} a_2=1 \\ a_4=11 \end{array}\right.\)
    \(\left\{\begin{array}{l} a_2=11 \\ a_4=1 \end{array}\right.\)时,\(a_1=16\)\(d=-5\),所以\(a_n=-5n+21\)
    \(\left\{\begin{array}{l} a_2=1 \\ a_4=11 \end{array}\right.\)时,\(a_1=-4\)\(d=5\),所以\(a_n=5n-9\)
    综上所述,数列\(\{a_n\}\)的通项公式为\(a_n=-5n+21\)\(a_n=5n-9\)
     

【B组---提高题】

1.(多选)设正项等差数列\(\{a_n\}\)满足\((a_1+a_{10})^2=2a_2 a_9+20\),则(  )
 A.\(a_2 a_9\)的最大值为\(10\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(a_2+a_9\)的最大值为 \(2 \sqrt{10}\)
 C. \(\dfrac{1}{a_2^2}+\dfrac{1}{a_9^2}\)的最大值为\(\dfrac{1}{5}\) \(\qquad \qquad \qquad \qquad\) D.\(a_2^4+a_9^4\)的最小值为\(200\)
 

2.已知数列\(\{a_n\}\)为等差数列,公差\(d(d≠0)\),且满足\(a_3 a_4+2a_4 a_6+a_5 a_{12}=2024d\),则 \(\dfrac{1}{a_6}-\dfrac{1}{a_5}=\)\(\underline{\quad \quad}\)
 

参考答案

  1. 答案 \(ABD\)
    解析 正项等差数列\(\{a_n\}\)满足\(\left(a_1+a_{10}\right)^2=2 a_2 a_9+20=\left(a_2+a_9\right)^2\)
    所以\(a_2^2+a_9^2=20\)
    \(a_2 a_9 \leq \dfrac{1}{2}\left(a_2^2+a_9^2\right)=10\)
    当且仅当 \(a_2=a_9=\sqrt{10}\)时成立,故\(A\)选项正确.
    ②由于\(\left(\dfrac{a_2+a_9}{2}\right)^2 \leq \dfrac{1}{2}\left(a_2^2+a_9^2\right)=10\)
    所以\(\dfrac{a_2+a_9}{2} \leq \sqrt{10}\)\(a_2+a_9 \leq 2 \sqrt{10}\)
    当且仅当\(a_2=a_9=\sqrt{10}\)时成立,故\(B\)选项正确.
    \(\dfrac{1}{a_2^2}+\dfrac{1}{a_9^2}=\dfrac{a_2^2+a_9^2}{a_2^2 a_9^2}=\dfrac{20}{a_2^2 a_9^2} \geq \dfrac{20}{\left(\dfrac{a_2^2+a_9^2}{2}\right)^2}=\dfrac{20}{10^2}=\dfrac{1}{5}\)
    当且仅当 \(a_2=a_9=\sqrt{10}\)时成立,
    所以 \(\dfrac{1}{a_2^2}+\dfrac{1}{a_9^2}\)的最小值为\(\dfrac{1}{5}\),故\(C\)选项错误.
    ④结合①的结论,有 \(a_2^4+a_9^4=\left(a_2^2+a_9^2\right)^2-2 a_2^2 a_9^2=400-2 \times 10^2=200\)
    当且仅当\(a_2=a_9=\sqrt{10}\)时成立,故\(D\)选项正确.
    故选:\(ABD\)

  2. 答案 \(-\dfrac{1}{506}\)
    解析 由等差数列\(\{a_n\}\)满足\(a_3 a_4+2a_4 a_6+a_5 a_12=2024d\)
    \(a_4 (a_4-d)+2a_4 (a_4+2d)+(a_4+d)(a_4+8d)=2024d\)
    \(4a_4^2+12a_4 d+8d^2=2024d\),所以\(4(a_4+2d)(a_4+d)=2024d\)
    \(4a_6 a_5=2024d\),故\(a_6 a_5=506d\)
    所以\(\dfrac{1}{a_6}-\dfrac{1}{a_5}=\dfrac{a_5-a_6}{a_6 a_5}=\dfrac{-d}{506 d}=-\dfrac{1}{506}\)
    故答案为:\(-\dfrac{1}{506}\)
     

【C组---拓展题】

1.(2022•山西自主招生)对于公差为\(d(d≠0)\)的等差数列\(\{a_n\}\),求证:数列中不同两项之和仍是这一数列中的一项的充要条件是存在整数\(m≥-1\),使\(a_1=md\).
 
 
 
 

参考答案

  1. 证明 ①先证必要性:任取等差数列\(\{a_n\}\)中不同的两项\(a_s\)\(a_t\)\((s≠t)\)
    存在整数\(k\)使得\(a_s+a_t=a_k\)
    \(2a_1+(s+t-2)d=a_1+(k-1)d\),得\(a_1=(k-s-t+1)d\)
    故存在\(m\)使得\(m=k-s-t+1\),使得\(a_1=md\)\(m∈Z\)
    再整\(m≥-1\)
    反证法证明:假设当\(d≠0\)时,\(m≥-1\)不成立,则\(m<-1\)恒成立,
    对于不同的两项\(a_1\)\(a_2\),应存在\(a_l\),使得\(a_1+a_2=a_l\)
    \((2m+1)d=md+(l-1)d\)
    所以\(l=m+2\),又因为\(m\)是小于\(-1\)的整数,故\(l≤0\)
    所以假设不成立,故\(m≥-1\)
    ②再证充分性:当\(a_1=md\)\(m≥-1\)\(m∈Z\)
    任取等差数列\(\{a_n\}\)中不同的两项\(a_s\)\(a_t\)\((s≠t)\)
    \(a_s+a_t=2a_1+(s+t-2)d=a_1+(s+t+m-2)d\)
    因为\(s+t+m-2≥0\)\(s+t+m-2∈Z\)
    所以\(a_1+(s+t+m-2)d=a_{s+t}+m-1\)
    综上①②可得,数列中不同两项之和仍是这一数列中的一项的充要条件是存在整数\(m≥-1\),使\(a_1=md\).
     
posted @ 2022-12-05 16:24  贵哥讲数学  阅读(215)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏