4.2.1 等差数列的概念1 (概念、通项公式)

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

定义

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,
这个常数叫做等差数列的公差,记为\(d\) .
代数形式:\(a_n-a_{n-1}=d\) (\(n≥2,d\)是常数)
解释
(1)公差是每一项减前一项,常数指的是与\(n\)无关;
(2)公差\(d\in R\),当\(d=0\)时,数列为常数列;当\(d>0\)时,数列为递增数列;当\(d<0\)时,数列为递减数列
(3)\(a_n-a_{n-1}=2(n≥2)⟹\{a_n\}\)是公差为\(2\)的等差数列;
\(\qquad\)\(a_{n+1}-a_n=-3⟹\{a_n\}\)是公差为\(-3\)的等差数列;
\(\qquad\)\(a_{n+1}-a_n=3n⟹\{a_n\}\)不是等差数列.
【例】以下数列是等差数列的 .
 (1)\(2,,4,8,16\)\(\qquad \qquad\)(2)\(1,3,5,7,9\)\(\qquad \qquad\)(3)数列\(\{a_n \}\)满足\(a_n-a_{n-1}=1(n≥2)\).
答案 (2)(3).
 

等差中项

\(a\)\(b\)\(c\)成等差数列,则\(b\)\(a\)\(c\)的等差中项,则 \(b=\dfrac{a+c}{2}\).
证明
\(a\)\(b\)\(c\)成等差数列,由等差数列的定义可得\(b-a=c-b\),则 \(b=\dfrac{a+c}{2}\).

【例】 \(x+4\)\(5\)\(x^2\)的等差中项,则\(x=\)\(\underline{\quad \quad}\) .
解 依题意得\(2(x+4)=5+x^2\),解得\(x=-1\)\(3\).
 

通项公式

等差数列\(\{a_n \}\)的首项为\(a_1\),公差为\(d\),则\(a_n=a_1+(n-1) d\). (由定义与累加法可得)
解释
(1)证明 若等差数列\(\{a_n \}\)的首项为\(a_1\),公差为\(d\)
由等差数列的定义可得,\(a_{n+1}-a_n=d\)
所以\(a_2-a_1=d\)\(a_3-a_2=d\)\(a_4-a_3=d\)\(…\)\(a_n-a_{n-1}=d(n≥2)\)
把以上\(n-1\)项等式累加可得\(a_n-a_1=(n-1) d(n≥2)\)
\(n=1\)时,上式为\(a_1=a_1+(1-1)d=a_1\),即上式当\(n=1\)时也成立,
\(a_n=a_1+(n-1)d(n\in N^*)\).
等差数列的通项公式由等差数列的定义证明,以上证明方法为累加法.
(2)从函数的角度看等差数列的通项公式.
由等差数列的通项公式\(a_n=a_1+(n-1)d\)可得\(a_n=d\cdot n+(a_1-d)\)
\(d≠0\)时,\(a_n\)是关于\(n\)的一次函数;当\(d=0\)时,\(a_n=a_1\)是常数列.
(3)由两点确定一条直线的性质可以得出,已知等差数列的任意两项可以确定这个等差数列.若已知等差数列的通项公式,可以写出数列中的任意一项.
(4)等差数列\(\{a_n \}\)的通项公式\(a_n=a_1+(n-1) d\)中共含有四个变数,即\(a_1\)\(d\)\(n\)\(a_n\),如果知道了其中的任意三个数,就可以由通项公式求出第四个数,这一求未知量的过程我们通常称之为“知三求一”.

【例】已知等差数列\(\{a_n \}\)中,首项\(a_1=4\),公差\(d=-2\),则通项公式\(a_n\)等于(  )
 A.\(4-2n\) \(\qquad \qquad \qquad \qquad\) B.\(2n-4\) \(\qquad \qquad \qquad \qquad\) C.\(6-2n\) \(\qquad \qquad \qquad \qquad\) D.\(2n-6\)
答案 \(C\)
 

证明一个数列是等差数列的方法

① 定义法: \(a_{n+1}-a_n=d\)\((d\)是常数,\(n\in N^*)\)\(⟹a_n\)是等差数列;
② 中项法: \(2a_{n+1}=a_n+a_{n+2} (n\in N^*)⟹a_n\)是等差数列.
 

基本方法

【题型1】 等差数列的判定与证明

【典题1】 已知数列\(\{a_n \}\)的通项公式为\(a_n=4-2n\),求证:数列\(\{a_n \}\)是等差数列.
证明 \(\because a_n=4-2n\)\(\therefore a_{n+1}=4-2{n+1}=2-2n\).
\(\therefore a_{n+1}-a_n=(2-2n)-(4-2n)=-2\).
\(\therefore \{a_n \}\)是等差数列.
点拨

  1. 证明等差数列的方法:定义法\(a_{n+1}-a_n=d(d\)是常数,\(n\in N^*)\)
    2.若数列的通项公式\(a_n=kn+b(k,b\)是常数\()\),则该数列是等差数列.

【典题2】已知数列\(\{a_n \}\)中,\(a_1=4\)\(a_n=a_{n-1}+2^{n-1}+3(n≥2)\),证明数列\(\{a_n-2^n\}\)是等差数列.
证明 \((a_n-2^n )-(a_{n-1}-2^{n-1} )= a_n-a_{n-1}-2^{n-1}=3(n≥2,n\in N^*)\)
所以\(\{a_n-2^n\}\)是等差数列.
 

【巩固练习】

1.若数列\(\{a_n \}\)的通项公式为\(a_n=2n+1\),则此数列是(  )
 A.公差为\(2\)的等差数列 \(\qquad \qquad \qquad \qquad\) B.公差为\(5\)的等差数列
 C.首项为\(5\)的等差数列 \(\qquad \qquad \qquad \qquad\) D.公差为\(n\)的等差数列
 

2.若数列\(\{a_n \}\)的通项公式为\(a_n=10+\lg⁡2^n\),求证数列\(\{a_n \}\)为等差数列.
 
 

3.数列\(\{a_n \}\)满足 \(a_n=6-\dfrac{9}{a_{n-1}}\left(n \in \boldsymbol{N}^*, n \geq 2\right)\),求证:数列 \(\left\{\dfrac{1}{a_n-3}\right\}\)是等差数列.
 
 

参考答案

  1. 答案 \(A\)
    解析\(a_n=2n+1\),得,公差\(a_1=3\)\(d=a_n-a_{n-1}=(2n+1)-[2{n-1}-1]=2\)
    \(\therefore\) 此数列是公差为\(2\),首项为\(3\)的等差数列.
    故选:\(A\)

  2. 证明 因为\(a_n=10+\lg⁡2^n=10+n\lg⁡2\)
    所以\(a_{n+1}=10+(n+1)\lg⁡2\).
    所以\(a_{n+1}-a_n=[10+(n+1)\lg⁡2]-(10+n\lg⁡2)=\lg⁡2(n\in N^* )\)
    所以数列\(\{a_n \}\)为等差数列.

  3. 证明 数列\(\{a_n \}\)满足 \(a_n=6-\dfrac{9}{a_{n-1}}\left(n \in \boldsymbol{N}^*, n \geq 2\right)\)
    \(\therefore \dfrac{1}{a_{n-3}}-\dfrac{1}{a_{n-1}-3}=\dfrac{a_{n-1}}{3 a_{n-1}-9}-\dfrac{1}{a_{n-1}-3}=\dfrac{a_{n-1}-3}{3\left(a_{n-1}-3\right)}=\dfrac{1}{3}\)
    \(\therefore\)数列 \(\left\{\dfrac{1}{a_n-3}\right\}\)是等差数列.
     

【题型2】 等差数列的通项公式

【典题1】 已知数列\(\{a_n \}\)中,\(a_3=2\)\(a_7=1\).若 \(\left\{\dfrac{1}{a_n}\right\}\)为等差数列,则\(a_5=\)\(\underline{\quad \quad}\).
解析 设等差数列 \(\left\{\dfrac{1}{a_n}\right\}\)的公差为\(d\)
\(\dfrac{1}{a_7}=\dfrac{1}{a_3}+4 d\),即 \(1=\dfrac{1}{2}+4 d\),解得 \(d=\dfrac{1}{8}\)
\(\dfrac{1}{a_5}=\dfrac{1}{a_3}+2 d=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\),解得 \(a_5=\dfrac{4}{3}\)
 

【典题2】已知等差数列\(\{a_n \}\)中,公差\(d>0\),且\(a_2\)\(a_5\)\(x^2-12x+27=0\)的两根,则\((a_3+a_4 )^2-a_7=\)\(\underline{\quad \quad}\) .
解析 \(\because a_2\)\(a_5\)\(x^2-12x+27=0\)的两根,
\(\therefore\left\{\begin{array}{l} a_2=3 \\ a_5=9 \end{array}\right.\)\(\left\{\begin{array}{l} a_2=9 \\ a_5=3 \end{array}\right.\)
\(\because\)公差\(d>0\)\(\therefore\left\{\begin{array}{l} a_2=3 \\ a_5=9 \end{array}\right.\)
\(\left\{\begin{array}{c} a_1+d=3 \\ a_1+4 d=9 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a_1=1 \\ \mathrm{~d}=2 \end{array}\right.\)
\(\therefore a_3=5\)\(a_4=7\)\(a_7=13\)
\(\therefore (a_3+a_4 )^2-a_7=12^2-13=131\).
 

【巩固练习】

1.在数列\(\{a_n \}\)中,\(a_1=2\)\(a_{n+1}=a_n+4\),若\(a_n=2022\),则\(n=\)(  )
 A.\(508\) \(\qquad \qquad \qquad \qquad\) B.\(507\) \(\qquad \qquad \qquad \qquad\) C.\(506\) \(\qquad \qquad \qquad \qquad\) D.\(505\)
 

2.等差数列\(1,-1,-3,…,-89\)的项数是(  )
 A.\(92\) \(\qquad \qquad \qquad \qquad\) B.\(47\) \(\qquad \qquad \qquad \qquad\) C.\(46\) \(\qquad \qquad \qquad \qquad\) D.\(45\)
 

3.已知\(\{a_n \}\)是公差为\(1\)的等差数列,且\(a_2^2=a_1 a_5\),则\(a_1=\)(  )
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{1}{4}\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

4.已知等差数列\(\{a_n \}\)中,\(a_2=-3\)\(a_3=-5\),则\(a_9=\)(  )
 A.\(-10\) \(\qquad \qquad \qquad \qquad\) B.\(-17\) \(\qquad \qquad \qquad \qquad\) C.\(-19\) \(\qquad \qquad \qquad \qquad\) D.\(-21\)
 

5.已知正项数列\(\{a_n \}\)的首项为\(1\)\(\{a_n^2\}\)是公差为\(3\)的等差数列,则使得\(a_n>6\)成立的\(n\)的最小值为\(\underline{\quad \quad}\) .
 

6.若一个三角形三边长成公差为\(2\)的等差数列,且最大角为\(120°\),则这个三角形的面积为\(\underline{\quad \quad}\) .
 

参考答案

  1. 答案 \(C\)
    解析 因为数列\(\{a_n \}\)中,\(a_1=2\)\(a_{n+1}=a_n+4\)
    \(a_1=2\)\(a_{n+1}-a_n=4\)
    所以数列\(\{a_n \}\)是以\(2\)为首项,以\(4\)为公差的等差数列,
    \(a_n=2+4(n-1)=2022\),则\(n=506\)
    故选:\(C\)

  2. 答案 \(C\)
    解析 \(a_1=1\)\(d=(-1)-1=-2\)
    \(a_n=a_1+(n-1)d=3-2n\)
    \(-89=3-2n\),解得\(n=46\).

  3. 答案 \(B\)
    解析\(\{a_n \}\)是公差为\(1\)的等差数列,且\(a_2^2=a_1 a_5\)
    \((a_1+1)^2=a_1 (a_1+4)\)
    所以\(2a_1-1=0\),解得\(a_1=\dfrac{1}{2}\)
    故选:\(B\)

  4. 答案 \(B\)
    解析 依题意得 \(\left\{\begin{array}{c} a_1+d=-3 \\ a_1+2 d=-5 \end{array}\right.\),解得\(a_1=-1\)\(d=-2\)
    \(\therefore a_9=a_1+8d=-1+(-2)×8=-17\)
    故选:\(B\)

  5. 答案 \(13\)
    解析 \(\because\)正项数列\(\{a_n \}\)的首项为\(1\)\(\{a_n^2\}\)是公差为\(3\)的等差数列,
    \(\therefore\) 依题意得,\(a_n^2=1+3(n-1)=3n-2\)
    \(a_n=\sqrt{3 n-2}\).令 \(\sqrt{3 n-2}>6\),得\(3n-2>36\),解得\(n>\dfrac{38}{3}\)
    \(\because n\in N^*\)\(\therefore\) 使得\(a_n>6\)成立的\(n\)的最小值为\(13\).

  6. 答案 \(\dfrac{15 \sqrt{3}}{4}\)
    解析 由题意可设,三条边长分别为\(a\)\(a+2\)\(a+4\)
    \(\left\{\begin{array}{l} a+a+2>a+4 \\ a>0 \end{array}\right.\),解得\(a>2\)
    三角形最大角为\(120°\),则其最长的边的长度为\(a+4\)
    \(\cos 120^{\circ}=\dfrac{a^2+(a+2)^2-(a+4)^2}{2 a \cdot(a+2)}=-\dfrac{1}{2}\)
    化简整理可得\(a^2-a-6=0\),解得\(a=3\)\(a=-2\)(舍去),
    则该三角形的三条边长分别为\(3\)\(5\)\(7\)
    故这个三角形的面积为\(\dfrac{1}{2} \times 3 \times 5 \times \sin 120^{\circ}=\dfrac{15 \sqrt{3}}{4}\)
     

【题型3】实际应用问题

【典题1】 梯子的最高一级宽\(33 cm\),最低一级宽\(110 cm\),中间还有\(10\)级,各级宽度依次成等差数列,计算中间各级的宽度.
解析 设梯子的第\(n\)级的宽为\(a_n cm\),其中最高一级宽为\(a_1 cm\),则数列\(\{a_n \}\)是等差数列.
由题意,得\(a_1=33\)\(a_{12}=110\)\(n=12\)
\(a_{12}=a_1+11d\).
所以\(110=33+11d\),解得\(d=7\).
所以\(a_2=33+7=40\)\(a_3=40+7=47\),…,\(a_{11}=96+7=103\)
即梯子中间各级的宽度从上到下依次是\(40 cm\)\(47 cm\)\(54 cm\)\(61 cm\)\(68 cm\)
\(75 cm\)\(82 cm\)\(89 cm\)\(96 cm\)\(103 cm\).
 

【巩固练习】

1.《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是\(37.5\)尺,芒种的日影子长为\(4.5\)尺,则冬至的日影子长为(  )
 A.\(15.5\)\(\qquad \qquad \qquad \qquad\) B.\(12.5\)\(\qquad \qquad \qquad \qquad\) C.\(10.5\)\(\qquad \qquad \qquad \qquad\) D.\(9.5\)
 

2.《莱茵德纸草书》是世界上最古老的数学著作之一,书中有这样的一道题:把\(120\)个面包分成\(5\)份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的\(7\)倍,若将这\(5\)份面包数按由少到多的顺序排列,则第\(4\)份面包的数量为(  )
 A.\(15\) \(\qquad \qquad \qquad \qquad\) B.\(25\) \(\qquad \qquad \qquad \qquad\) C.\(35\) \(\qquad \qquad \qquad \qquad\) D.\(45\)
 

3.有一正四棱台形楼顶,其中一个侧面中最上面一行铺瓦\(30\)块,总共需要铺瓦\(15\)行,并且下一行比其上一行多铺\(3\)块瓦,求该侧面最下面一行需铺瓦多少块?
 
 

参考答案

  1. 答案 \(A\)
    解析 由题意,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列\(\{a_n \}\),冬至、立春、春分的日影子长的和是\(37.5\)尺,芒种的日影子长为\(4.5\)尺,
    所以 \(\left\{\begin{array}{l} a_1+a_4+a_7=3 a_1+9 d=37.5 \\ a_{12}=a_1+11 d=4.5 \end{array}\right.\),解得\(d=-1\)\(a_1=15.5\)
    所以冬至的日影子长为\(15.5\)尺.
    故选:\(A\)

  2. 答案 \(C\)
    解析 设等差数列的公差为\(d\),五份分别设为\(x-2d\)\(x-d\)\(x\)\(x+d\)\(x+2d\)
    \(\left\{\begin{array}{l} x-2 d+x-d+x+x+d+x+2 d=240 \\ 3 x+3 d=7(2 x-3 d) \end{array}\right.\)
    解得\(x=24\)\(d=11\)
    \(\therefore\)\(4\)份面包的数量为\(x+d=35\)
    故选:\(C\)

  3. 答案 \(72\)
    解析 设从上面开始第\(n\)行铺瓦\(a_n\)块,
    则数列\(\{a_n \}\)是首项为\(30\),公差为\(3\)的等差数列.
    \(a_{15}=a_1+14d=30+14×3=72\)
    即该侧面最下面一行应铺瓦\(72\)块.

分层练习

【A组---基础题】

1.等差数列\(-3,1,5,…\)的第\(15\)项为(  )
 A.\(40\) \(\qquad \qquad \qquad \qquad\) B.\(53\) \(\qquad \qquad \qquad \qquad\) C.\(63\) \(\qquad \qquad \qquad \qquad\)D.\(76\)
 

2.下列通项公式表示的数列为等差数列的是(  )
 A. \(a_n=\dfrac{n}{n+1}\) \(\qquad \qquad \qquad\) B.\(a_n=n^2-1\) \(\qquad \qquad \qquad\) C.\(a_n=5^n\) \(\qquad \qquad \qquad\) D.\(a_n=3n-1\)
 

3.已知\(\{a_n \}\)是公差为3的等差数列,\(\{b_n\}\)是公差为\(4\)的等差数列,且\(b_n\in N^*\),则\(\{a_{b_n}\}\)为(  )
 A.公差为\(7\)的等差数列 \(\qquad \qquad \qquad \qquad\) B.公差为\(12\)的等差数列
 C.公比为\(12\)的等比数列 \(\qquad \qquad \qquad \qquad\) D.公比为\(81\)的等比数列
 

4.已知 \(\left\{\dfrac{1}{a_n+1}\right\}\)是等差数列,且\(a_1=\dfrac{1}{4}\)\(a_4=1\),则\(a_11=\)(  )
 A.\(-12\) \(\qquad \qquad \qquad \qquad\) B.\(-11\) \(\qquad \qquad \qquad \qquad\) C.\(-6\) \(\qquad \qquad \qquad \qquad\) D.\(-5\)
 

5.(多选)已知数列\(\left\{\dfrac{a_n}{n+2^n}\right\}\)是首项为\(1\),公差为\(d\)的等差数列,则下列判断正确的是(  )
 A.\(a_1=3\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.若\(d=1\),则\(a_n=n^2+2^n\)
 C.\(a_2\)可能为\(6\) \(\qquad \qquad \qquad \qquad \qquad\) D.\(a_1,a_2,a_3\)可能成等差数列
 

6.已知等差数列\(\{a_n \}\)的各项均为正整数,且\(a_8=2021\),则\(a_1\)的最小值是\(\underline{\quad \quad}\)
 

7.《九章算术》“竹九节”问题中指出,若有一根九节的竹子,自上而下各节的容积成等差数列,上\(5\)节的容积为\(4\)升,下\(4\)节的容积为\(5\)升,问第五节的容积是多少升?
 
 

8.已知数列\(\{a_n \}\)的通项公式是\(a_n=7^{n+2}\),求证:数列\(\{\lg⁡a_n \}\)是等差数列.
 
 

9.已知数列\(\{a_n \}\)满足:\(a_1=2\)\(a_n=2-\dfrac{9}{a_{n-1}+4}(n>1)\),记 \(b_n=\dfrac{1}{a_n+1}\)
  (1)求证:数列\(\{b_n\}\)等差数列;\(\qquad \qquad\) (2)求\(a_n\)
 
 

10.各项不为\(0\)的数列\(\{a_n \}\)满足 \(\dfrac{a_n}{a_{n-1}}=\dfrac{1}{3 a_{n-1}+1}\left(n \geq 2, \quad n \in N^*\right)\),且\(a_2=-1\)
  (1)求证:数列 \(\left\{\dfrac{1}{a_n}\right\}\)为等差数列;
  (2)若 \(\dfrac{a_{n+1}}{a_n} \geq \lambda\)对任意\(n\in N^*\)恒成立,求实数\(λ\)的取值范围.
 
 

参考答案

  1. 答案 \(B\)
    解析 \(a_1=-3\)\(d=1-(-3)=4\)
    \(a_{15}=a_1+(15-1)d=-3+14×4=53\).

  2. 答案 \(D\)
    解析 \(\because\)等差数列的通项是关于\(n\)的一次函数,在四个选项中,只有\(D\)是关\(n\)的一次函数,
    \(\therefore\)所给的四个通项中只有\(D\)表示等差数列,
    故选:\(D\)

  3. 答案 \(B\)
    解析 \(\because\)\(\{a_n \}\)是公差为\(3\)的等差数列,\(\{b_n\}\)是公差为\(4\)的等差数列,且\(b_n\in N^*\)
    \(\therefore a_n=a_1+3(n-1)\)\(b_n=b_1+4(n-1)\)
    \(a_{b_n}=a_1+3(b_n-1)=a_1+3[b_1+4(n-1)]=a_1+3b_1+12(n-1)\)
    \(\therefore \{a_{b_n}\}\)为公差为\(12\)的等差数列.
    故选:\(B\)

  4. 答案 \(C\)
    解析 设等差数列 \(\left\{\dfrac{1}{a_n+1}\right\}\)的公差为d,
    \(\because \dfrac{1}{a_1+1}=\dfrac{4}{5}\)\(\dfrac{1}{a_4+1}=\dfrac{1}{2}\)\(\therefore \dfrac{1}{2}=\dfrac{4}{5}+3 d\),解得 \(d=-\dfrac{1}{10}\)
    \(\therefore \dfrac{1}{a_{11}+1}=\dfrac{4}{5}+10 \times\left(-\dfrac{1}{10}\right)=-\dfrac{1}{5}\)\(\therefore a_{11}=6\)
    故选:\(C\)

  5. 答案 \(ACD\)
    解析 由已知可得数列\(\left\{\dfrac{a_n}{n+2^n}\right\}\)的通项公式为 \(\dfrac{a_n}{n+2^n}=1+(n-1) d\)
    \(n=1\)时, \(\dfrac{a_1}{1+2}=1\),解得\(a_1=3\),故\(A\)正确;
    \(d=1\),则 \(\dfrac{a_n}{n+2^n}=1+(n-1) \times 1=n\)
    所以\(a_n=n^2+n2^n\),故\(B\)错误;
    \(d=0\),则\(a_n=n+2^n\)\(a_2=6\),故\(C\)正确;
    \(a_1,a_2,a_3\)成等差数列,则\(2a_2=a_1+a_3\)
    \(12+12d=14+22d\),解得\(d=-\dfrac{1}{5}\)
    \(a_1,a_2,a_3\)可能成等差数列,故\(D\)正确.
    故选:\(ACD\)

  6. 答案 \(5\)
    解析 设等差数列\(\{a_n \}\)的公差为\(d(d\in N^*)\)
    \(a_8=a_1+7d\),得\(a_1=2021-7d\)
    由于\(2021=7×288+5\),所以\(a_1=7×288+5-7d=7(288-d)+5\)
    即当\(d=288\)时,\(a_1\)有最小值\(5\)

  7. 答案 \(1\)
    解析 设自上而下各节的容积构成等差数列\(\{a_n \}\),公差为\(d\)
    \(\left\{\begin{array}{l} a_1+a_2+a_3+a_4+a_5=4 \\ a_6+a_7+a_8+a_9=5 \end{array}\right.\)
    化简得 \(\left\{\begin{array}{l} 5 a_1+10 d=4 \\ 4 a_1+26 d=5 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a_1=0.6 \\ d=0.1 \end{array}\right.\)
    \(a_5=a_1+4d=1\)

  8. 证明 设\(b_n=\lg⁡a_n=\lg⁡7^{n+2}=(n+2)\lg⁡7\)
    \(b_{n+1}=[(n+1)+2]\lg⁡7=(n+3)\lg⁡7\)
    \(b_{n+1}-b_n=(n+3)\lg⁡7-(n+2)\lg⁡7=\lg⁡7\)
    所以数列\(\{b_n \}\)是等差数列,
    即数列\(\{\lg⁡a_n \}\)是等差数列.

  9. 答案 (1)略;(2) \(a_n=\dfrac{3}{n}-1\).
    解析 (1)证明:由 \(a_n=2-\dfrac{9}{a_{n-1}+4}(n>1)\)
    \(a_n+1=3-\dfrac{9}{a_{n-1}+4}=\dfrac{3 a_{n-1}+3}{a_{n-1}+4}(n>1)\)
    \(\dfrac{1}{a_n+1}=\dfrac{1}{a_{n-1}+1}+\dfrac{1}{3}(n>1) \Rightarrow \dfrac{1}{a_n+1}-\dfrac{1}{a_{n-1}+1}=\dfrac{1}{3}(n>1)\)
    \(b_n=\dfrac{1}{a_n+1}\),所以 \(b_{n+1}-b_n=\dfrac{1}{3}(n>1)\)
    所以数列\(\{b_n\}\)等差数列;
    (2)由(1)结合\(a_1=2\),可得\(b_1=\dfrac{1}{3}\)
    所以\(b_n=b_1+(n-1)d=\dfrac{1}{3}+\dfrac{1}{3}{n-1}=\dfrac{1}{3} n\)
    \(a_n=\dfrac{1}{b_n}-1=\dfrac{3}{n}-1\).

  10. 答案 (1) 略;(2)\(\left(-∞,-\dfrac{1}{2}\right]\).
    解析 (1)证明:各项不为\(0\)的数列\(\{a_n \}\)满足\(\dfrac{a_n}{a_{n-1}}=\dfrac{1}{3 a_{n-1}+1}\left(n \geq 2, n \in N^*\right)\)
    变为 \(a_n=\dfrac{a_{n-1}}{3 a_{n-1}+1}\)
    两边取倒数:可得 \(\dfrac{1}{a_n}=\dfrac{1}{a_{n-1}}+3\),即\(\dfrac{1}{a_n}-\dfrac{1}{a_{n-1}}=3\)
    \(a_2=-1\)\(\therefore \dfrac{1}{-1}-\dfrac{1}{a_1}=3\),解得\(a_1=-\dfrac{1}{4}\)
    \(\therefore\)数列 \(\left\{\dfrac{1}{a_n}\right\}\)为等差数列,公差为\(3\),首项为\(-4\)
    (2)解:由(1)可得: \(\dfrac{1}{a_n}=-4+3(n-1)=3 n-7\)
    \(\dfrac{a_{n+1}}{a_n} \geq \lambda\)对任意\(n\in N^*\)恒成立, \(\therefore \lambda \leq \dfrac{3 n-7}{3 n-4}\)的最小值.
    \(f(n)=\dfrac{3 n-7}{3 n-4}=\dfrac{3 n-4-3}{3 n-4}=1-\dfrac{3}{3 n-4}\)
    \(n=1\)时,\(f(1)=4\)\(n=2\)时,\(f(2)=-\dfrac{1}{2}\)
    \(n≥3\)时,\(f(n)\)单调递增,\(n→+∞\)时,\(f(n)→1\)
    \(\therefore λ≤-\dfrac{1}{2}\)
    \(\therefore\)实数\(λ\)的取值范围是\(\left(-∞,-\dfrac{1}{2}\right]\)
     

【B组---提高题】

1.(多选)已知无穷等差数列\(\{a_n \}\)的公差\(d\in N^*\),且\(5,17,23\)\(\{a_n \}\)中的三项,则下列结论正确的是(  )
 A.\(d\)的最大值是\(6\) \(\qquad \qquad \qquad \qquad\) B.\(2a_2≤a_8\)
 C.\(a_n\)一定是奇数 \(\qquad \qquad \qquad \qquad\) D.\(137\)一定是数列\(\{a_n \}\)中的项
 

2.在\(△ABC\)中,角\(A\)\(B\)\(C\)的对边分别为\(a\)\(b\)\(c\),角\(A\)\(B\)\(C\)成等差数列,则 \(\dfrac{a+c}{b}\)的取值范围是\(\underline{\quad \quad}\) .
 

3.数列\(\{a_n \}\)中,\(a_1=1\)\(a_n=3a_{n-1}+3^n-1(n\in N^*,n≥2)\),若存在实数\(λ\),使得数列 \(\left\{\dfrac{a_n+\lambda}{3^n}\right\}\)为等差数列,则\(λ=\)\(\underline{\quad \quad}\)
 

4.已知数列\(\{a_n \}\)满足\(a_{n+1}=\dfrac{1+a_n}{3-a_n}\left(n \in \boldsymbol{N}^*\right)\),且\(a_1=0\)
  (1)求\(a_2\)\(a_3\)的值;
  (2)是否存在一个实常数\(λ\),使得数列\(\left\{\dfrac{1}{a_n-\lambda}\right\}\)为等差数列,请说明理由.
 
 

参考答案

  1. 答案 \(ABD\)
    解析 \(\because\)无穷等差数列\(\{a_n \}\)的公差\(d\in N^*\),且\(5,17,23\)\(\{a_n \}\)中的三项,
    \(\therefore\)\(\left\{\begin{array}{l} 17-5=12=m d \\ 23-17=6=n d \end{array}\right.\),解得\(d=\dfrac{6}{m-n}\)
    \(\therefore d\)的最大值为\(6\),故\(A\)正确;
    \(\because a_1≤5,d\in N^*\)
    \(\therefore 2a_2-a_8=a_1-5d≤0\),故\(B\)正确;
    \(\because d=\dfrac{6}{m-n}\)
    \(\therefore\)\(m-n=2\)时,\(d=3\),数列可能为\(5,8,11,14,17,20,23,…\),故\(C\)错误;
    \(\because 137=23+19×6\)
    \(\therefore 137\)一定是等差数列\(\{a_n \}\)中的项,故\(D\)正确.
    故选:\(ABD\)

  2. 答案 \((1,2]\)
    解析 由角\(A\)\(B\)\(C\)成等差数列,得\(2B=A+C\)
    \(A+B+C=π\),得\(3B=π\),故 \(B=\dfrac{\pi}{3}\)
    所以 \(\dfrac{a+c}{b}=\dfrac{\sin A+\sin C}{\sin B}=\dfrac{2}{\sqrt{3}}(\sin A+\sin C)\)
    \(y=\sin A+\sin C\),又 \(A+C=\dfrac{2 \pi}{3}\)
    所以 \(y=\sin A+\sin \left(\dfrac{2 \pi}{3}-A\right)=\sin A+\dfrac{\sqrt{3}}{2} \cos A+\dfrac{1}{2} \sin A\)
    \(=\dfrac{3}{2} \sin A+\dfrac{\sqrt{3}}{2} \sin A=\sqrt{3} \sin \left(A+\dfrac{\pi}{6}\right)\)
    \(A \in\left(0, \dfrac{2 \pi}{3}\right)\),得 \(A+\dfrac{\pi}{6} \in\left(\dfrac{\pi}{6}, \dfrac{5 \pi}{6}\right)\)
    \(\sin \left(A+\dfrac{\pi}{6}\right) \in\left(\dfrac{1}{2}, 1\right]\)
    所以 \(y=\sqrt{3} \sin \left(A+\dfrac{\pi}{6}\right) \in\left(\dfrac{\sqrt{3}}{2}, \sqrt{3}\right]\)
    所以 \(\dfrac{a+c}{b} \in(1,2]\)

  3. 答案 \(-\dfrac{1}{2}\)
    解析 \(\because a_1=1\)\(a_n=3a_{n-1}+3^n-1(n\in N^*,n≥2)\)
    \(\therefore a_n-\dfrac{1}{2}=3(a_{n-1}-\dfrac{1}{2})+3^n\)
    两边同时除以\(3^n\)可得, \(\dfrac{a_n-\dfrac{1}{2}}{3^n}=\dfrac{a_{n-1}-\dfrac{1}{2}}{3^{n-1}}+1\)
    \(\therefore\) 数列 \(\left\{\dfrac{a_n-\dfrac{1}{2}}{3^n}\right\}\)是等差数列,由题意可得,\(λ=-\dfrac{1}{2}\).

  4. 答案 (1)\(a_2=\dfrac{1}{3}\)\(a_3=\dfrac{1}{2}\); (2) 存在一个实常数\(λ=1\),使得数列\(\left\{\dfrac{1}{a_n-\lambda}\right\}\)是等差数列.
    解析 (1)\(a_2=\dfrac{1}{3}\)\(a_3=\dfrac{1}{2}\)
    (2)假设存在一个实常数\(λ\),使得数列\(\left\{\dfrac{1}{a_n-\lambda}\right\}\)为等差数列,
    \(\dfrac{1}{a_1-\lambda}, \dfrac{1}{a_2-\lambda}, \dfrac{1}{a_3-\lambda}\)成等差数列,
    所以\(\dfrac{2}{a_2-\lambda}=\dfrac{1}{a_1-\lambda}+\dfrac{1}{a_3-\lambda}\)
    所以\(\dfrac{2}{\dfrac{1}{3}-\lambda}=\dfrac{1}{0-\lambda}+\dfrac{1}{\dfrac{1}{2}-\lambda}\),解之得\(λ=1\)
    因为\(\dfrac{1}{a_{n+1}-1}-\dfrac{1}{a_n-1}=\dfrac{1}{\dfrac{1+a_n}{3-a_n}-1}-\dfrac{1}{a_n-1}\)\(=\dfrac{3-a_n}{2\left(a_n-1\right)}-\dfrac{1}{a_n-1}=\dfrac{1-a_n}{2\left(a_n-1\right)}=-\dfrac{1}{2}\)
    \(\dfrac{1}{a_1-1}=-1\)
    所以存在一个实常数\(λ=1\),使得数列 \(\left\{\dfrac{1}{a_n-\lambda}\right\}\)是首项为\(-1\),公差为\(-\dfrac{1}{2}\)的等差数列.
     

【C组---拓展题】

1.已知等差数列\(\{a_n \}\)中,\(a_1^2+a_6^2=8\),则\(a_2+a_4\)的取值范围是(  )
 A. \(\left[-\dfrac{2}{5}, \dfrac{2}{5}\right]\) \(\qquad \qquad\) B. \(\left[-\dfrac{\sqrt{13}}{5}, \dfrac{\sqrt{13}}{5}\right]\) \(\qquad \qquad\) C. \(\left[-\dfrac{2 \sqrt{26}}{5}, \dfrac{2 \sqrt{26}}{5}\right]\) \(\qquad \qquad\) D. \(\left[-\dfrac{4 \sqrt{26}}{5}, \dfrac{4 \sqrt{26}}{5}\right]\)
 

2.已知数列\(\{a_n \}\)的前\(n\)项和为\(S_n\)\(a_1=1\)\(a_n≠0\)\(a_n a_{n+1}=λS_n-1\),其中\(λ\)为常数.
  (1)证明:\(a_{n+2}-a_n=λ\)
  (2)是否存在λ,使得\(\{a_n \}\)为等差数列?并说明理由.
 
 

参考答案

  1. 答案 \(D\)
    解析 设等差数列\(\{a_n \}\)的公差为\(d\)\(a_6=a_1+5d\)
    \(\because a_1^2+a_6^2=8,\therefore a_1^2+(a_1+5d)^2=8\)
    故令\(a_1=2 \sqrt{2} \cos \theta\)\(a_1+5 d=2 \sqrt{2} \sin \theta\)
    \(d=\dfrac{1}{5}(2 \sqrt{2} \sin \theta-2 \sqrt{2} \cos \theta)\)
    \(a_2+a_4=2 a_1+4 d=4 \sqrt{2} \cos \theta+\dfrac{4}{5}(2 \sqrt{2} \sin \theta-2 \sqrt{2} \cos \theta)\)\(=2 \sqrt{2}\left(\dfrac{6}{5} \cos \theta+\dfrac{4}{5} \sin \theta\right)\)
    \(2 \sqrt{2} \cdot \sqrt{\left(\dfrac{6}{5}\right)^2+\left(\dfrac{4}{5}\right)^2}=\dfrac{4 \sqrt{26}}{5}\)
    \(-\dfrac{4 \sqrt{26}}{5} \leq a_2+a_4 \leq \dfrac{4 \sqrt{26}}{5}\)
    故选:\(D\)

  2. 答案 (1)略;(2) 存在\(λ=4\)使得数列\(\{a_n \}\)为等差数列.
    解析 (1)证明:\(\because a_n a_{n+1}=λS_n-1\)
    \(\therefore a_{n+1} a_{n+2}=λS_{n+1}-1\)
    两式相减可得\(a_{n+1} (a_{n+2}-a_n)=λa_{n+1}\)
    \(\because a_{n+1}≠0\)\(\therefore a_{n+2}-a_n=λ\)
    (2)解:\(\because a_n a_{n+1}=λS_n-1\)\(\therefore a_1 a_2=λS_1-1⇒a_2=λ-1\)
    \(\because a_{n+2}-a_n=λ\)\(\therefore a_3=a_1+λ=λ+1\)
    假设存在\(λ\),使得\(\{a_n \}\)为等差数列,则\(a_1,a_2,a_3\)成等差数列,
    \(2a_2=a_1+a_3\)
    \(\therefore 2(λ-1)=1+λ+1\),解得\(λ=4\)
    \(a_{n+2}-a_n=4\)
    可知数列\(\{a_n \}\)中偶数项可组成首项为\(a_2=3\),公差为\(4\)的等差数列,
    \(a_{2n}=3+4(n-1)=4n-1=2\cdot (2n)-1\)
    数列\(\{a_n \}\)中奇数项可组成首项为\(a_1=1\),公差为\(4\)的等差数列,
    \(a_{2 n-1}=1+4(n-1)=4 n-3=2 \cdot(2 n-1)-1\)
    所以\(a_n=2n-1\)
    \(a_{n+1}-a_n=2\)
    因此存在\(λ=4\)使得数列\(\{a_n \}\)为等差数列.
     

posted @ 2022-12-05 16:08  贵哥讲数学  阅读(1707)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏