5.6 函数y=Asin(ωx+φ)的图像和性质

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第一册同步巩固,难度2颗星!

基础知识

A,ω,φ对f(x)=Asin (ωx+φ)(A>0,ω>0)的影响

\(A\)影响函数\(f(x)\)的最值,\(ω\)影响函数\(f(x)\)周期\((T=\dfrac{2\pi}{ω})\)\(φ\)影响函数\(f(x)\)水平位置.

$\qquad$ $\qquad$

解释
\(A\),\(ω\),\(φ\)的理解,想象下把\(y=\sin ⁡x\)看成一个人,
\(\left(1\right)\)\(A\)影响他的身高,\(A>1\)时就“个子长高”,\(0<A<1\)时就“浓缩精华”了;

\(\qquad\) \(\qquad\)

\(\left(2\right)\)\(ω\)影响他的“腰围”(周期),\(ω>1\)时就“减肥成功”,\(0<ω<1\)时就“减肥失败”了;

\(\qquad\) \(\qquad\)

\(\left(3\right)\)\(φ\)影响他的站位,\(φ>0\)时就“向左平移”,\(φ<0\)时就“向右平移”了.

\(\qquad\) \(\qquad\)
 

函数的变换

\(\left(1\right)\) 平移变换
\(y=f(x)⟶ y=f(x±a)(a>0)\)\(y=f(x)\)图像沿\(x\)轴向左(右)平移\(a\)个单位(左加右减);
\(y=f(x)⟶y=f(x)± b (b>0)\)\(y=f(x)\)图像沿\(x\)轴向上(下)平移\(b\)个单位(上加下减).
解释
\(f(x)=3\sin (2x+\dfrac{\pi}{3} )\)向左平移\(\dfrac{\pi}{4}\)个单位,得到的函数不是\(f(x)=3\sin (2x+\dfrac{\pi}{4} +\dfrac{\pi}{3} )\), 而是\(f(x)=3\sin \left[2(x+\dfrac{\pi}{4} )+\dfrac{\pi}{3} \right]\).
 

(2) 伸缩变换
\(y=f(x)⟶ y=A f(x)(A>0)\)
\(y=f(x)\)图像横坐标不变,纵坐标伸长到原来的\(A\)倍(\(A>1\)伸长,\(A<1\)缩短).
\(y=f(x)⟶ y=f(ω x)(ω>0)\)
\(y=f(x)\)图像纵坐标不变,横坐标缩到原来的 \(\dfrac{1}{\omega}\)倍( \(ω>1\)缩短,\(ω<1\)伸长);
问题 怎么理解呢?例:若将\(f(x)=3 \sin ⁡(x+\dfrac{\pi}{3} )\)图像纵坐标不变,横坐标缩到原来的\(\dfrac{1}{2}\)倍,那得到的函数是\(f(x)=3 \sin ⁡(2x+\dfrac{\pi}{3} )\)还是\(f(x)=3 \sin ⁡(\dfrac{1}{2} x+\dfrac{\pi}{3} )\)呢?
解释 我们把\(f(x)=3 \sin ⁡(x+\dfrac{\pi}{3} )\)的图象想象成一条弹簧,若纵坐标不变,横坐标缩到原来的\(\dfrac{1}{2}\)倍,那说明弹簧被压缩了,则周期变小,\(ω\)变大(\(T=\dfrac{2\pi}{ω}\),\(T\)\(ω\)成反比),即变换后的函数应该是\(f(x)=3 \sin ⁡(2x+\dfrac{\pi}{3} )\).
 

基本方法

【题型1】 三角函数图象的变换

【典题1】 用“五点法”作函数\(y=2\sin (2x+\dfrac{\pi}{4} )\)在一个周期上的图象.
解析 \(\left(1\right)\)列出五个关键点如下:

$2x+\dfrac{\pi}{4}$ $0$ $\dfrac{\pi}{2}$ $π$ $\dfrac{3\pi}{2}$ $2π$
$x$ $-\dfrac{\pi}{8}$ $\dfrac{\pi}{8}$ $\dfrac{3\pi}{8}$ $\dfrac{5\pi}{8}$ $\dfrac{7\pi}{8}$
$y$ $0$ $2$ $0$ $-2$ $0$
$\left(2\right)$描点画图:

image.png

 

【典题2】 函数\(f(x)=3 \sin ⁡(2x-\dfrac{\pi}{6} )\)的图象可以看成由函数\(y=\sin ⁡x\)的图象如何变换得到的?
解析 方法1
\(y=\sin x \stackrel{\text { 向右平移 } \dfrac{\pi}{6} \text { 个单位 }}{\longrightarrow} y=\sin \left(x-\dfrac{\pi}{6}\right) \stackrel{\text { 纵坐标不变, 横坐标变为原来的 } \dfrac{1}{2} \text { 倍 }}{\longrightarrow}\)
\(y=\sin \left(2 x-\dfrac{\pi}{6}\right) \stackrel{\text { 横坐标不变, 纵坐标变为原来的 } 3 \text { 倍 }}{\longrightarrow} y=\sin \left(2 x-\dfrac{\pi}{6}\right)\).
具体图象变换显示如下

方法2
\(y=\sin x \stackrel{\text { 纵坐标不变, 横坐标变为原来的竩倍 }}{\longrightarrow} y=\sin 2 x \stackrel{\text { 向右平移 } \dfrac{\pi}{12} \text { 个单位 }}{\longrightarrow} y=\sin \left(2 x-\dfrac{\pi}{6}\right)\)
\(\stackrel{\text { 横坐标不变, 纵坐标变为原来的 } 3 \text { 倍 }}{\longrightarrow} y=\sin \left(2 x-\dfrac{\pi}{6}\right)\).
具体图象变换显示如下

点拨 函数的\(f(x)=A\sin (ωx+φ)(A>0,ω>0)\)的图象由其他三角函数变换得到,先变换\(A\)还是\(ω\),或\(φ\)均可以.
 

【典题3】 已知函数\(y=f(x)\),将\(y=f(x)\)的图象上的每一点的纵坐标保持不变,横坐标变为原来的\(2\)倍,然后把所得的图象沿着 轴向左平移\(\dfrac{\pi}{2}\)个单位,这样得到的是\(y=\dfrac{1}{2} \sin x\)的图象,那么函数\(y=f(x)\)的解析式是 ( )
  A. \(f(x)=\dfrac{1}{2} \sin \left(\dfrac{x}{2} -\dfrac{\pi}{2} \right)\) \(\qquad \qquad \qquad \qquad\) B. \(f(x)=\dfrac{1}{2} \sin ⁡\left(2 x+\dfrac{\pi}{2} \right)\)
  C. \(f(x)=\dfrac{1}{2} \sin \left(\dfrac{x}{2} +\dfrac{\pi}{2} \right)\) \(\qquad \qquad \qquad \qquad\) D. \(f(x)=\dfrac{1}{2} \sin ⁡\left(2 x-\dfrac{\pi}{2} \right)\)
解析 由题意曲线与\(y=\dfrac{1}{2} \sin x\)的图象沿\(x\)轴向右平移\(\dfrac{\pi}{2}\)个单位,再纵坐标不变,横坐标缩小为原来的一半即可得到\(y=f(x)\)的图形,故\(y=\dfrac{1}{2} \sin x\)的图形沿\(x\)轴向右平移\(\dfrac{\pi}{2}\)个单位所得图形对应的函数解析式为\(y=\dfrac{1}{2} \sin \left(x-\dfrac{\pi}{2} \right)\),然后再将所得的曲线上的点的纵坐标保持不变,横坐标缩小到原来的一半,所得的图形对应的解析式为\(f(x)=\dfrac{1}{2} \sin \left(2x-\dfrac{\pi}{2} \right)\).
 

【巩固练习】

1.用五点法画出函数\(f(x)=3\sin \left(\dfrac{x}{2} +\dfrac{\pi}{6} \right)+3\)在一个周期内的闭区间上的图象;
 
 

2.把函数\(y=\cos 2x+1\)的图象上所有点的横坐标伸长到原来的\(2\)倍(纵坐标不变),然后向左平移\(1\)个单位长度,再向下平移\(1\)个单位长度,得到的图象是(  )
image.png \(\qquad \qquad\) image.png
 

3.为了得到函数\(f(x)=\sin \left(2x+\dfrac{3\pi}{4} \right)\)的图象,可以将函数\(g(x)=\cos 2x\)的图象(  )
 A.向右平移\(\dfrac{\pi}{4}\)个单位 \(\qquad \qquad \qquad \qquad\) B.向左平移\(\dfrac{\pi}{4}\)个单位
 C.向右平移\(\dfrac{\pi}{8}\)个单位 \(\qquad \qquad \qquad \qquad\) D.向左平移\(\dfrac{\pi}{8}\)个单位
 

4.将函数\(y=\cos x\)的图象先左移\(\dfrac{\pi}{4}\),再纵坐标不变,横坐标缩为原来的\(\dfrac{1}{2}\),所得图象的解析式为 (  )
 A.\(y=\sin \left(2x+\dfrac{\pi}{4} \right)\) \(\qquad \qquad \qquad \qquad\) B.\(y=\sin \left(\dfrac{1}{2} x+\dfrac{3\pi}{4} \right)\)
 C.\(y=\sin \left(\dfrac{1}{2} x+\dfrac{\pi}{4} \right)\) \(\qquad \qquad \qquad \qquad\) D.\(y=\sin \left (2x+\dfrac{3\pi}{4} \right)\)
 

5.将函数\(f(x)=\sin \left(ωx+\dfrac{\pi}{6} \right)(ω>0)\)图象上所有点的横坐标伸长到原来的\(2\)倍,再向右平移\(\dfrac{\pi}{6}\)个单位长度,得到函数\(y=g(x)\)的图象,若\(y=g(x)\)为奇函数,则\(ω\)的最小值为(  )
 A. \(4\) \(\qquad \qquad \qquad \qquad\) B.\(3\) \(\qquad \qquad \qquad \qquad\) C. \(2\) \(\qquad \qquad \qquad \qquad\) D. \(1\)
 

参考答案

  1. 解析 列表
$x$ $-\dfrac{\pi}{3}$ $\dfrac{2\pi}{3}$ $\dfrac{5\pi}{3}$ $\dfrac{8\pi}{3}$ $\dfrac{11\pi}{3}$
$\dfrac{x}{2} +\dfrac{\pi}{6}$ $0$ $\dfrac{\pi}{2}$ $π$ $\dfrac{3\pi}{2}$ $2π$
$y$ $3$ $6$ $3$ $0$ $3$

其函数图象如下,

  1. 答案 \(A\)
    解析 \(y=\cos 2x+1\)图象上所有点的横坐标伸长到原来的\(2\)倍得\(y_1=\cos x+1\),再向左平移\(1\)个单位长度得\(y_2=\cos (x+1)+1\),再向下平移\(1\)个单位长度得\(y_3=\cos (x+1)\),故相应图象为\(A\)

  2. 答案 \(D\)
    解析 为了得到函数\(f(x)=\sin \left(2x+\dfrac{3\pi}{4} \right)\)的图象,可以将函数\(g(x)=\cos 2x=\sin \left(2x+\dfrac{\pi}{2} \right)\)的图象向左平移\(\dfrac{\pi}{8}\)个单位,\(\sin \left[2\left(x+\dfrac{\pi}{8} \right)+\dfrac{\pi}{2} \right]=\sin \left(2x+\dfrac{3\pi}{4} \right)\)
    故选:\(D\)

  3. 答案 \(D\)
    解析 函数\(y=\cos x=\sin \left(x+\dfrac{\pi}{2} \right)\),其图象先左移\(\dfrac{\pi}{4}\)个单位,得\(y=\sin \left(x+\dfrac{3\pi}{4} \right)\)的图象;
    再纵坐标不变,横坐标缩为原来的\(\dfrac{1}{2}\),得函数\(y=\sin \left(2x+\dfrac{3\pi}{4}\right)\)的图象;
    所以函数\(y\)的解析式为\(y=\sin \left(2x+\dfrac{3\pi}{4} \right)\)
    故选:\(D\)

  4. 答案 \(C\)
    解析 由题意,将函数\(f(x)=\sin \left(ωx+\dfrac{\pi}{6} \right)(ω>0)\)图象上所有点的横坐标伸长到原来的\(2\)倍,再向右平移\(\dfrac{\pi}{6}\)个单位长度,
    得到\(g(x)=\sin \left[\dfrac{\omega}{2}\left(x-\dfrac{\pi}{6}\right)+\dfrac{\pi}{6}\right]=\sin \left(\dfrac{\omega}{2} x+\dfrac{\pi}{6}-\dfrac{\omega \pi}{12}\right)\)
    因为\(y=g(x)\)为奇函数,
    所以 \(\dfrac{\pi}{6}-\dfrac{\omega \pi}{12}=k \pi(k \in Z)\),解得\(ω=2-12k(k∈Z)\)
    \(ω>0\)
    所以当\(k=0\)时,\(ω\)取得最小值\(2\)
    故选:\(C\)
     

【题型2】 求y=A\sin (ωx+φ)的解析式

【典题1】 已知函数\(f(x)=A\sin (ωx+φ)\left(A>0,ω>0,0<|φ|<\dfrac{\pi}{2} \right)\)的部分图象如图所示,下述四个结论:
\(ω=2\);②\(φ=-\dfrac{\pi}{3}\);③\(f\left(x+\dfrac{\pi}{12} \right)\)是奇函数;④\(f\left(x-\dfrac{\pi}{12} \right)\)是偶函数中,其中所有正确结论的编号是\(\underline{\quad \quad}\) .

解析 由函数图象的最值可得\(A=1\)
\(\dfrac{3}{4} T=\dfrac{\pi}{6} -\left(-\dfrac{7\pi}{12} \right)=\dfrac{3\pi}{4}\),解得\(T=π\),所以 \(\omega=\dfrac{2 \pi}{T}=2\)
此时\(f(x)=\sin ⁡(2x+φ)\)
代入\(\left(-\dfrac{7\pi}{12} ,1\right)\)\(f\left(-\dfrac{7\pi}{12} \right)=\sin \left(-\dfrac{7\pi}{6} +φ\right)=1\)
\(\therefore -\dfrac{7\pi}{6} +φ=\dfrac{\pi}{2} +2kπ⇒φ=\dfrac{5\pi}{3} +2kπ\)
\(\because 0<|φ|<\dfrac{\pi}{2}\)\(\therefore φ=-\dfrac{\pi}{3}\)
\(\therefore f(x)=\sin \left(2x-\dfrac{\pi}{3} \right)\)
\(\therefore\) ①、②正确;
\(\because f\left(x+\dfrac{\pi}{12} \right)=\sin \left[2\left(x+\dfrac{\pi}{12} \right)-\dfrac{\pi}{3} \right]=\sin \left(2x-\dfrac{\pi}{6} \right)\)不是奇函数,\(\therefore\)③错误;
\(\because f\left(x-\dfrac{\pi}{12} \right)=\sin \left[2\left(x-\dfrac{\pi}{12} \right)-\dfrac{\pi}{3} \right]=\sin \left(2x-\dfrac{\pi}{2} \right)=-\cos 2x\)
\(\therefore f(x-\dfrac{\pi}{12} )\)为偶函数,④正确.
综上知,正确的命题序号是①②④.
点拨 由函数\(y=A\sin (ωx+φ)+B(A>0,ω>0)\)的部分图象求解析式的方法
\(\left(1\right)\)\(A\),\(B\):通过函数最值求解,由 \(\left\{\begin{array}{c} f_{\max }=A+B \\ f_{\min }=-A+B \end{array}\right.\)\(A=\dfrac{f_{\max }-f_{\min }}{2}\)\(B=\dfrac{f_{\max }+f_{\min }}{2}\)
\(\left(2\right)\)\(ω\):根据图象求出周期\(T\),再利用\(T=\dfrac{2\pi}{ω}\)求出\(ω\)
\(\left(3\right)\)\(φ\):求出\(A\),\(ω\)后代入函数图象一最值点,求出\(φ\).
 

【巩固练习】

1.函数\(f\left(x\right)=A\sin \left(ωx+φ\right)\)\((A,ω,φ\)为常数\(,A>0,ω>0 )\)的部分图象如图所示,则\(f\left(0\right)\)的值是\(\underline{\quad \quad}\)
image.png
 

2.若函数\(y=A\sin ⁡\left(ωx+φ\right)+B\left(A>0,ω>0\right)\)在其一个周期内的图象上有一个最高点\(\left(\dfrac{\pi}{12} ,3\right)\)和一个最低点\(\left(\dfrac{7\pi}{12} ,-5\right)\),求这个函数的解析式.
 
 

参考答案

  1. 答案 \(\dfrac{\sqrt{6}}{2}\)
    解析 由图可知:\(A=\sqrt{2}\)\(\dfrac{T}{4}=\dfrac{7 \pi}{12}-\dfrac{\pi}{3}=\dfrac{\pi}{4}\)
    所以\(T=π\), \(\omega=\dfrac{2 \pi}{T}=2\)
    又函数图象经过点\(\left(\dfrac{\pi}{3} ,0\right)\),所以\(2×\dfrac{\pi}{3} +φ=π\),则\(φ=\dfrac{\pi}{3}\)
    故函数的解析式为\(f\left(x\right)=\sqrt{2} \sin ⁡\left(2x+\dfrac{\pi}{3} \right)\)
    所以\(f\left(0\right)=\sqrt{2} \sin ⁡\dfrac{\pi}{3} = \dfrac{\sqrt{6}}{2}\)

  2. 答案 \(y=4\sin ⁡\left(2x+\dfrac{\pi}{3} \right)-1\)
    解析 由已知,\(y_{\max}=3\)\(y_{\min}=-5\),则
    \(A=\dfrac{y_{\max }-y_{\min }}{2}=\dfrac{3-(-5)}{2}=4\)
    \(B=\dfrac{y_{\max }+y_{\min }}{2}=\dfrac{3+(-5)}{2}=-1\)
    ③由 \(\dfrac{T}{2}=\dfrac{7 \pi}{12}-\dfrac{\pi}{12}=\dfrac{\pi}{2}\)\(\therefore T=π\),得 \(\omega=\dfrac{2 \pi}{T}=\dfrac{2 \pi}{\pi}=2\)
    ④函数的解析式\(y=A\sin \left(ωx+φ\right)+B=4\sin\left(2x+φ\right)-1\)
    将点\(\left(\dfrac{\pi}{12} ,3\right)\)代入,得\(4\sin ⁡\left(2×\dfrac{\pi}{12} +φ\right)-1=3\)
    \(\sin ⁡\left(\dfrac{\pi}{6} +φ\right)=1\)
    所以\(\dfrac{\pi}{6} +φ=2kπ+\dfrac{\pi}{2}\),\(k∈Z\),这里对\(φ\)没有限制,
    应该说\(φ=2kπ+\dfrac{\pi}{3}\)\(k∈Z\)的任意一个解都满足题意,一 般取\(|φ|<\dfrac{\pi}{2}\)
    故所求的函数解析式为\(y=4\sin ⁡\left(2x+\dfrac{\pi}{3} \right)-1\)
     

【题型3】函数\(y=A\sin \left(ωx+φ\right)\)性质的综合应用

【典题1】 已知函数\(f\left(x\right)=\sin ^2 ωx+\sqrt{3} \sin ωx\sin \left(ωx+\dfrac{\pi}{2} \right)\left(ω>0\right)\)的最小正周期为\(π\)
\(\left(1\right)\)\(ω\)的值;
\(\left(2\right)\)求函数\(f(x)\)在区间\(\left[0 ,\dfrac{2\pi}{3} \right]\)上的取值范围.
\(\left(3\right)\)求函数\(f(x)\)的最大值,并且求使\(f(x)\)取得最大值的\(x\)的集合.
解析 \(\left(1\right)f\left(x\right)=\sin ^2 ωx+\sqrt{3} \sin ωx\sin \left(ωx+\dfrac{\pi}{2} \right)=\sin ^2 ωx+\sqrt{3} \sin ωx\cos ωx\)
\(=\dfrac{1-\cos 2 \omega x}{2}+\dfrac{\sqrt{3} \sin 2 \omega x}{2}=\dfrac{1}{2}+\dfrac{\sqrt{3} \sin 2 \omega x}{2}-\dfrac{\cos 2 \omega x}{2}\)
\(=\dfrac{1}{2} +\sin \left(2ωx-\dfrac{\pi}{6} \right)\)
\(\because\)函数\(f\left(x\right)=\sin ^2 ωx+\sqrt{3} \sin ωx\sin \left(ωx+\dfrac{\pi}{2} \right)\left(ω>0\right)\)的最小正周期为\(π\)
\(\therefore ω\)的值为\(1\)
\(\left(2\right)\)\(\left(1\right)\)\(f\left(x\right)=\dfrac{1}{2} +\sin \left(2x-\dfrac{\pi}{6} \right)\)
\(x∈\left[0 ,\dfrac{2\pi}{3} \right]\)\(2x-\dfrac{\pi}{6} ∈\left[-\dfrac{\pi}{6} ,\dfrac{7\pi}{6} \right]\)
所以\(\sin \left(2x-\dfrac{\pi}{6} \right)∈\left[-\dfrac{1}{2} ,1\right]\)
\(\therefore\)函数\(f(x)\)在区间\(\left[0 ,\dfrac{2\pi}{3} \right]\)上的取值范围是\(\left[0 ,\dfrac{3}{2} \right]\)
\(\left(3\right)\because f\left(x\right)=\dfrac{1}{2} +\sin \left(2x-\dfrac{\pi}{6} \right)\)
\(\therefore\)函数的最大值为\(\dfrac{3}{2}\),此时有\(2x-\dfrac{\pi}{6} =2kπ+\dfrac{\pi}{2}\) ,\(k∈Z\)
解得\(x=kπ+\dfrac{\pi}{3}\)\(k∈Z\)
即使\(f(x)\)取得最大值的x的集合是\(\{x|x=kπ+\dfrac{\pi}{3},k∈Z\}\)
点拨 通过各种公式(两角和差公式、倍角公式、积化和差公式等)转化,最终把函数的解析式转化为\(f\left(x\right)=A\sin \left(ωx+φ\right)+B\)\(f\left(x\right)=A\cos \left(ωx+φ\right)+B\)的形式求解函数的各性质(单调性、对称性、周期、最值等).
 

【巩固练习】

1.已知函数\(f\left(x\right)=\sqrt{3} \sin x\cos x-\sin ^2 x\)
\(\left(1\right)\)求函数\(f(x)\)的最小正周期;
\(\left(2\right)\)求函数\(f(x)\)的单调增区间;
\(\left(3\right)\)求函数\(f(x)\)在区间\(\left[0 ,\dfrac{\pi}{2} \right]\)上的最大值.
 
 

2.已知函数\(f\left(x\right)=\sqrt{3} \sin ωx+\cos ωx\left(ω>0\right)\)图象的相邻对称轴与对称中心之间的距离为\(\dfrac{\pi}{4}\)
\(\left(1\right)\)\(f(x)\)的单调递增区间;
\(\left(2\right)\)\(x∈\left[-\dfrac{\pi}{6} ,\dfrac{7\pi}{12} \right]\)时,求\(f(x)\)的值域.
 
 

参考答案

  1. 答案 \(\left(1\right) π\)\(\left(2\right) \left[-\dfrac{\pi}{3} +kπ ,\dfrac{\pi}{6} +kπ\right]\left(k∈Z\right)\);\(\left(3\right) \dfrac{1}{2}\) .
    解析 \(\text { (1) } f(x)=\sqrt{3} \sin x \cos x-\sin ^2 x=\dfrac{\sqrt{3}}{2} \sin 2 x-\dfrac{1-\cos 2 x}{2}\)
    \(=\dfrac{\sqrt{3}}{2} \sin 2 x+\dfrac{1}{2} \cos 2 x-\dfrac{1}{2}=\sin \left(2 x+\dfrac{\pi}{6}\right)-\dfrac{1}{2}\)
    \(\left(1\right)\)最小正周期\(T=\dfrac{2\pi}{2} =π\)
    \(\left(2\right)\)\(-\dfrac{\pi}{2} +2kπ≤2x+\dfrac{\pi}{6} ≤\dfrac{\pi}{2} +2kπ\)\(k∈Z\)
    \(-\dfrac{\pi}{3} +kπ≤x≤\dfrac{\pi}{6} +kπ\)\(k∈Z\)
    故单调增区间为:\(\left[-\dfrac{\pi}{3} +kπ ,\dfrac{\pi}{6} +kπ\right]\)\(\left(k∈Z\right)\)
    \(\left(3\right)\)\(x∈\left[0 ,\dfrac{\pi}{2} \right]\)时,\(2x+\dfrac{\pi}{6} ∈\left[\dfrac{\pi}{6},\dfrac{7\pi}{6} \right]\)
    \(f\left(x\right)=\sin \left(2x+\dfrac{\pi}{6} \right)-\dfrac{1}{2} ∈\left[-1 ,\dfrac{1}{2} \right]\)
    所以函数\(f\left(x\right)\)在区间\(\left[0 ,\dfrac{\pi}{2} \right]\)上的最大值为\(\dfrac{1}{2}\)

  2. 答案 \(\left(1\right) \left[kπ-\dfrac{\pi}{3} ,kπ+\dfrac{\pi}{6} \right]\)\(k∈Z\)\(\left(2\right) \left[-\sqrt{3},2\right]\).
    解析 \(\left(1\right)\because\) 函数\(f\left(x\right)=\sqrt{3} \sin ωx+\cos ωx=2\sin \left(ωx+\dfrac{\pi}{6} \right)\left(ω>0\right)\)
    图象的相邻对称轴与对称中心之间的距离为 \(\dfrac{1}{4} ×\dfrac{2\pi}{ω}=\dfrac{\pi}{4}\)
    \(\therefore ω=2\)\(f\left(x\right)=2\sin \left(2x+\dfrac{\pi}{6} \right)\)
    \(2kπ-\dfrac{\pi}{2} ≤2x+\dfrac{\pi}{6} ≤2kπ+\dfrac{\pi}{2}\)\(k∈Z\)
    求得\(kπ-\dfrac{\pi}{3} ≤x≤kπ+\dfrac{\pi}{6}\)
    可得函数的增区间为\(\left[kπ-\dfrac{\pi}{3} ,kπ+\dfrac{\pi}{6} \right]\)\(k∈Z\)
    \(\left(2\right)\)\(x∈\left[-\dfrac{\pi}{6} ,\dfrac{7\pi}{12} \right]\)时,\(2x+\dfrac{\pi}{6} ∈\left[-\dfrac{\pi}{6} ,\dfrac{4\pi}{3} \right]\)
    \(\sin \left(2x+\dfrac{\pi}{6} \right)∈\left[-\dfrac{\sqrt{3}}{2} ,1\right]\)\(f\left(x\right)∈\left[-\sqrt{3},2\right]\)
    故函数\(f(x)\)的值域为\(\left[-\sqrt{3},2\right]\)
     

分层练习

【A组---基础题】

1.为了得到函数\(y=\cos 3x\)的图象,只需把函数\(y=\cos \left(3x-\dfrac{\pi}{4} \right)\)的图象 (   )
 A.向左平移\(\dfrac{\pi}{6}\)个单位长度 \(\qquad \qquad \qquad \qquad \qquad\) B.向右平移\(\dfrac{\pi}{6}\)个单位长度
 C.向左平移\(\dfrac{\pi}{12}\)个单位长度 \(\qquad \qquad \qquad \qquad \qquad\) D.向右平移\(\dfrac{\pi}{12}\) 个单位长度
 

2.把函数\(y=\sin 2x\left(x∈R\right)\)的图象上所有的点向左平行移动\(\dfrac{\pi}{6}\)个单位长度,再把所得图象上所有点的横坐标缩短到原来的\(\dfrac{1}{2}\)倍(纵坐标不变),得到的图象所表示的函数是(  )
 A. \(y=\sin ⁡\left(4x+\dfrac{\pi}{6} \right),x∈R\) \(\qquad \qquad \qquad \qquad\) B. \(y=\sin ⁡\left(4x-\dfrac{\pi}{6} \right),x∈R\)
 C. \(y=\sin ⁡\left(4x+\dfrac{\pi}{3} \right),x∈R\) \(\qquad \qquad \qquad \qquad\) D. \(y=\sin ⁡\left(4x-\dfrac{\pi}{3} \right),x∈R\)
 

3.下列函数中,图象的一部分如图所示的是(  )
image.png
 A.\(y=\sin \left(x+\dfrac{\pi}{6} \right)\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(y=\sin \left(2x-\dfrac{\pi}{6} \right)\)
 C.\(y=\cos \left(4x-\dfrac{\pi}{3} \right)\) \(\qquad \qquad \qquad \qquad \qquad\) D.\(y=\cos \left(2x-\dfrac{\pi}{6} \right)\)
 

4.将函数\(f\left(x\right)=A\sin \left(ωx+\dfrac{\pi}{6} \right)\left(A>0,ω>0\right)\)的图象上的点的横坐标缩短为原来的\(\dfrac{1}{2}\)倍,再向右平移\(\dfrac{\pi}{3}\) 个单位得到函数\(g\left(x\right)=2\cos \left(2x+φ\right)\)的图象,则下列说法正确的是(  )
 A.函数\(f(x)\)的最小正周期为\(π\)
 B.函数\(f(x)\)的单调递增区间为\(\left[2kπ-\dfrac{2\pi}{3} ,2kπ+\dfrac{\pi}{3} \right]\left(k∈Z\right)\)
 C.函数\(f(x)\)的图象有一条对称轴为\(x=\dfrac{2\pi}{3}\)
 D.函数\(f(x)\)的图象有一个对称中心为\(\left(\dfrac{2\pi}{3} ,0\right)\)
 

5.如图,函数\(y=A\sin \left(ωx+φ\right)\left(A>0,ω>0,|φ|≤\dfrac{\pi}{2} \right)\)与坐标轴的三个交点\(P\)\(Q\)\(R\)满足\(P\left(1,0\right)\)\(∠PQR=\dfrac{\pi}{4}\)\(M\)\(QR\)的中点, \(P M=\dfrac{\sqrt{34}}{2}\),则\(A\)的值为\(\underline{\quad \quad}\) .
image.png
 

6.给出下列六种图象变换的 方法:
 ①图象上所有点的纵坐标不变,横坐标缩短到原来的\(\dfrac{1}{2}\)
 ②图象上所有点的纵坐标不变,横坐标伸长为原来的\(2\)倍;
 ③图象向右平移\(\dfrac{\pi}{3}\) 个单位长度;
 ④图象向左平移\(\dfrac{\pi}{3}\)个单位长度;
 ⑤图象向右平移\(\dfrac{2\pi}{3}\)个单位长度;
 ⑥图象向左平移\(\dfrac{2\pi}{3}\)个单位长度.
请用上述变换中的两种变换,将函数\(y=\sin x\)的图象变换为函数\(y=\sin \left(\dfrac{x}{2} +\dfrac{\pi}{3} \right)\)的图象,那么这两种变换正确的标号是\(\underline{\quad \quad}\) (要求按变换先后顺序填上一种你认为正确的标号即可).
 

7.已知函数\(f\left(x\right)=\sin \left(ωx+φ\right)\left(ω>0,0≤φ≤π\right)\)\(R\)上的偶函数,其图象关于点\(M\left(\dfrac{3\pi}{4} ,0\right)\)对称,且在区间\(\left[0,\dfrac{\pi}{2} \right]\)上是单调函数,求\(φ\)\(ω\)的值.
 

8.函数\(f\left(x\right)=A\sin \left(ωx-\dfrac{\pi}{6} \right)+1\left(A>0,ω>0\right)\)的最大值为\(3\),其图象相邻两条对称轴之间的距离为\(\dfrac{\pi}{2}\)
\(\left(1\right)\)求函数\(f(x)\)的解析式;
\(\left(2\right)\)\(α∈\left(0,\dfrac{\pi}{2} \right)\)\(f\left( \dfrac{α}{2}\right)=2\),求\(α\)的值.
 
 

9.已知函数\(f\left(x\right)=A\sin \left(ωx+φ\right)+B\left(A>0,ω>0,|φ|<\dfrac{\pi}{2} \right)\)的部分图象如图所示.
\(\left(1\right)\)\(f(x)\)的解析式;
\(\left(2\right)\)\(f(x)\)的单调递增区间和对称中心坐标;
\(\left(3\right)\)\(f(x)\)的图象向左平移\(\dfrac{\pi}{6}\)个单位,再讲横坐标伸长到原来的\(2\)倍,纵坐标不变,最后将图象向上平移\(1\)个单位,得到函数\(g\left(x\right)\)的图象,求函数\(y=g\left(x\right)\)\(x∈\left[0,\dfrac{7\pi}{6} \right]\)上的最大值和最小值.
image.png
 
 

10.函数\(f\left(x\right)=\sin \left(2x+\dfrac{\pi}{6} \right)+\cos 2x\)
\(\left(1\right)\)\(f\left(0\right)\)\(f\left(\dfrac{\pi}{12} \right)\)
\(\left(2\right)\)求函数\(f(x)\)\(\left[-\dfrac{\pi}{4} ,\dfrac{\pi}{4} \right]\)上的最大值与最小值.
 
 

参考答案

  1. 答案 \(C\)
    解析 函数\(y=\cos \left(3x-\dfrac{\pi}{4} \right)=\cos \left[3\left(x-\dfrac{\pi}{12} \right)\right]\)
    所以只需把函数\(y=\cos \left(3x-\dfrac{\pi}{4} \right)\)的图象,向左平移\(\dfrac{\pi}{12}\)个长度单位,
    即可得到函数\(y=\cos \left[3\left(x+\dfrac{\pi}{12} -\dfrac{\pi}{12} \right)\right]=\cos 3x\)的图象.
    故选:\(C\)

  2. 答案 \(C\)
    解析 函数\(y=\sin 2x\left(x∈R\right)\)的图象上所有的点向左平行移动\(\dfrac{\pi}{6}\)个单位长度得到\(y=\sin ⁡\left(2x+\dfrac{\pi}{3} \right)\)的图象,再把所得图象上所有点的横坐标缩短到原来的\(\dfrac{1}{2}\)倍(纵坐标不变),得到\(y=\sin ⁡\left(4x+\dfrac{\pi}{3} \right),x∈R\)
    故选:\(C\)

  3. 答案 \(D\)
    解析 “五点法”对应解方程.设\(y=A\sin \left(ωx+φ\right)\),显然\(A=1\),
    又图象过点\(\left(-\dfrac{\pi}{6} ,0\right),\left(\dfrac{\pi}{12} ,1\right)\)
    所以\(ω×\left(-\dfrac{\pi}{6} \right)+φ=0\)\(ω×\dfrac{\pi}{12} +φ=\dfrac{\pi}{2}\)解得\(ω=2\),\(φ=\dfrac{\pi}{3}\)
    所以函数解析式为\(y=\sin \left(2x+\dfrac{\pi}{3} \right)=\cos \left(2x-\dfrac{\pi}{6} \right)\).故选\(D\)

  4. 答案 \(B\)
    解析 函数\(f\left(x\right)=A\sin \left(ωx+\dfrac{\pi}{6} \right)\left(A>0,ω>0\right)\)的图象上的点的横坐标缩短为原来的\(\dfrac{1}{2}\)倍,再向右平移\(\dfrac{\pi}{3}\)个单位得到:\(g\left(x\right)=A\sin \left(2ωx+\dfrac{\pi}{6} -\dfrac{2πω}{3}\right)\)的图象.
    \(g\left(x\right)=2\cos \left(2x+φ\right)=2\sin \left(2x+φ+\dfrac{\pi}{2} \right)\)比较,
    又由于\(A>0\)\(ω>0\),所以\(A=2\)\(ω=1\)
    \(\sin \left(2x-\dfrac{\pi}{2} \right)=\cos \left(2x-π\right)=\cos \left(2x+φ\right)\)
    得到:\(φ=2kπ-π\)\(k∈Z\)
    所以:\(f\left(x\right)=2\sin \left(x+\dfrac{\pi}{6} \right)\)\(g\left(x\right)=-2\cos 2x\)
    故函数\(f(x)\)的周期为\(2π\)\(A\)错误;
    \(2kπ-\dfrac{\pi}{2} ≤x+\dfrac{\pi}{6} ≤2kπ+\dfrac{\pi}{2}\)\(k∈Z\)
    解得\(2kπ-\dfrac{2\pi}{3} ≤x≤2kπ+\dfrac{\pi}{3}\),\(k∈Z\)
    函数\(f(x)\)单调递增区间为\(\left[2kπ-\dfrac{2\pi}{3} ,2kπ+\dfrac{\pi}{3} \right]\left(k∈Z\right)\),故\(B\)正确;
    由于\(f\left(\dfrac{2\pi}{3} \right)=2\sin \dfrac{5\pi}{6} =1\),可得\(C\),\(D\)错误.
    故选:\(B\)

  5. 答案 \(5\sqrt{2}\)
    解析 \(∠PQR=\dfrac{\pi}{4}\),所以\(OQ=OR\),设\(Q\left(m,0\right)\),则\(R\left(0,-m\right)\)
    \(M\)\(QR\)的中点,所以\(M\left(\dfrac{m}{2},-\dfrac{m}{2}\right)\)
    \(P M=\dfrac{\sqrt{34}}{2}\),即 \(\sqrt{\left(1-\dfrac{m}{2}\right)^2+\left(0+\dfrac{m}{2}\right)^2}=\dfrac{\sqrt{34}}{2}\)
    整理得\(m^2-2m-15=0\),解得\(m=5\)\(m=-3\)(不合题意,舍去);
    所以\(R\left(0,-5\right)\)\(Q\left(5,0\right)\)
    所以\(\dfrac{1}{2} T=4\),解得\(T=8\),所以\(\dfrac{2\pi}{ω}=8\),解得\(ω=\dfrac{\pi}{4}\)
    \(P\left(1,0\right)\)代入\(f\left(x\right)=A\sin \left(\dfrac{\pi}{4} x+φ\right)\),即\(A\sin \left(\dfrac{\pi}{4} +φ\right)=0\)
    \(|φ|≤\dfrac{\pi}{2}\),得\(φ=-\dfrac{\pi}{4}\)
    \(R\left(0,-5\right)\),代入\(f\left(x\right)=A\sin \left(\dfrac{\pi}{4} x-\dfrac{\pi}{4} \right)\)
    \(A\sin\left (-\dfrac{\pi}{4} \right)=-5\),解得\(A=5\sqrt{2}\)

  6. 答案 ④②或②⑥ 
    解析 \(y=\sin x \stackrel{④}{\rightarrow} y=\sin \left(x+\dfrac{\pi}{3}\right) \stackrel{②}{\rightarrow} y=\sin \left(\dfrac{1}{2} x+\dfrac{\pi}{3}\right)\)
    \(y=\sin x \stackrel{②}{\rightarrow} y=\sin \dfrac{x}{2} \stackrel{⑥}{\rightarrow} y=\sin \left(\dfrac{x}{2}+\dfrac{\pi}{3}\right)\)

  7. 答案 \(φ=\dfrac{\pi}{2}\)\(ω=2\)\(\dfrac{2}{3}\)
    解析 \(f\left(x\right)\)是偶函数,得\(f\left(-x\right)=f\left(x\right)\),即函数\(f(x)\)的图象关于\(y\)轴对称,
    \(\therefore f\left(x\right)\)\(x=0\)时取得最值,即\(\sin φ=1\)\(-1\)
    依题设\(0≤φ≤π\),解得\(φ=\dfrac{\pi}{2}\)
    \(f(x)\)的图象关于点\(M\)对称,
    可知\(\sin \left(\dfrac{3\pi}{4} ω+\dfrac{\pi}{2} \right)=0\),解得 \(\omega=\dfrac{4 k}{3}-\dfrac{2}{3}\) ,\(k∈Z\)
    \(f(x)\)\(\left[0,\dfrac{\pi}{2} \right]\)上是单调函数,\(\therefore T≥π\),即\(\dfrac{2\pi}{ω}≥π\)\(\therefore ω≤2\)
    \(ω>0\)
    \(\therefore\)\(k=1\)时,\(ω=\dfrac{2}{3}\);当\(k=2\)时,\(ω=2\)
    \(\therefore φ=\dfrac{\pi}{2}\)\(ω=2\)\(\dfrac{2}{3}\)

  8. 答案 \(\left(1\right) y=2\sin \left(2x-\dfrac{\pi}{6} \right)+1\)\(\left(2\right) \dfrac{\pi}{3}\).
    解析 \(\left(1\right)\because\) 函数\(f(x)\)的最大值为\(3\)\(\therefore A+1=3\),即\(A=2\)
    \(\because\) 函数图象的相邻两条对称轴之间的距离为\(\dfrac{\pi}{2}\)
    \(\therefore\) 最小正周期\(T=π\)
    \(\therefore ω=2\)
    故函数\(f(x)\)的解析式为\(y=2\sin \left(2x-\dfrac{\pi}{6} \right)+1\)
    \(\left(2\right) \therefore f\left( \dfrac{α}{2}\right)=2\sin \left(α-\dfrac{\pi}{6} \right)+1=2\)
    \(\sin \left(α-\dfrac{\pi}{6} \right)=\dfrac{1}{2}\)
    \(\because 0<α<\dfrac{\pi}{2}\)\(\therefore -\dfrac{\pi}{6} <α-\dfrac{\pi}{6} <\dfrac{\pi}{3}\)
    \(\therefore α-\dfrac{\pi}{6} =\dfrac{\pi}{6}\).故\(α=\dfrac{\pi}{3}\)

  9. 答案 \(\left(1\right)f\left(x\right)=2\sin \left(2x+\dfrac{\pi}{3} \right)-1\)\(\left(2\right)\left(\dfrac{k\pi}{2} -\dfrac{\pi}{6} ,-1\right)\),\(k∈Z\)\(\left(3\right)\)最小值\(-2\),最大值\(\sqrt{3}\) .
    解析 \(\left(1\right)\)由图象可知 \(\left\{\begin{array}{l} A+B=1 \\ -A+B=-3 \end{array}\right.\),可得:\(A=2\)\(B=-1\)
    又由于 \(\dfrac{T}{2}=\dfrac{7 \pi}{12}-\dfrac{\pi}{12}\) ,可得:\(T=π\),所以 \(\omega=\dfrac{2 \pi}{T}=2\)
    由图象及五点法作图可知: \(2 \times \dfrac{\pi}{12}+\varphi=\dfrac{\pi}{2}\) ,所以\(φ=\dfrac{\pi}{3}\)
    所以\(f\left(x\right)=2\sin \left(2x+\dfrac{\pi}{3} \right)-1\)
    \(\left(2\right)\)\(\left(1\right)\)知,\(f\left(x\right)=2\sin \left(2x+\dfrac{\pi}{3} \right)-1\)
    \(2kπ-\dfrac{\pi}{2} ≤2x+\dfrac{\pi}{3} ≤2kπ+\dfrac{\pi}{2}\)\(k∈Z\)
    \(kπ-\dfrac{5\pi}{12} ≤x≤kπ+\dfrac{\pi}{12}\)\(k∈Z\)
    所以\(f(x)\)的单调递增区间为\(\left[kπ-\dfrac{5\pi}{12} ,kπ+\dfrac{\pi}{12} \right]\),\(k∈Z\)
    \(2x+\dfrac{\pi}{3} =kπ\)\(k∈Z\),得\(x=\dfrac{k\pi}{2} -\dfrac{\pi}{6}\)\(k∈Z\)
    所以\(f(x)\)的对称中心的坐标为\(\left(\dfrac{k\pi}{2} -\dfrac{\pi}{6} ,-1\right)\),\(k∈Z\)
    \(\left(3\right)\)由已知的图象变换过程可得:\(g\left(x\right)=2\sin \left(x+\dfrac{2\pi}{3} \right)\)
    因为\(0≤x≤\dfrac{7\pi}{6}\),所以\(\dfrac{2\pi}{3} ≤x+\dfrac{2\pi}{3} ≤\dfrac{11\pi}{6}\)
    所以当\(x+\dfrac{2\pi}{3} =\dfrac{3\pi}{2}\),得\(x=\dfrac{5\pi}{6}\)时,\(g\left(x\right)\)取得最小值\(g\left(\dfrac{5\pi}{6} \right)=-2\)
    \(x+\dfrac{2\pi}{3} =\dfrac{2\pi}{3}\),即\(x=0\)时,\(g\left(x\right)\)取得最大值\(g\left(0\right)=\sqrt{3}\)

  10. 答案 \(\left(1\right) f\left(0\right)=\dfrac{3}{2}\)\(f\left(\dfrac{\pi}{12} \right)=\sqrt{3}\)\(\left(2\right)\)最大值为\(\sqrt{3}\),最小值为 \(-\dfrac{\sqrt{3}}{2}\) .
    解析 \(\left(1\right)\)因为 \(f(x)=\sin \left(2 x+\dfrac{\pi}{6}\right)+\cos 2 x=\dfrac{\sqrt{3}}{2} \sin 2 x+\dfrac{1}{2} \cos 2 x+\cos 2 x\)
    \(=\dfrac{\sqrt{3}}{2} \sin 2 x+\dfrac{3}{2} \cos 2 x=\sqrt{3} \sin \left(2 x+\dfrac{\pi}{3}\right)\)
    所以\(f\left(0\right)=\sqrt{3} \sin \left(2×0+\dfrac{\pi}{3} \right)=\dfrac{3}{2}\)\(f\left(\dfrac{\pi}{12} \right)=\sqrt{3} \sin \left(2×\dfrac{\pi}{12} +\dfrac{\pi}{3} \right)=\sqrt{3}\)
    \(\left(2\right)f\left(x\right)=\sqrt{3} \sin \left(2x+\dfrac{\pi}{3} \right)\)
    因为\(x∈\left[-\dfrac{\pi}{4} ,\dfrac{\pi}{4} \right]\),所以\(-\dfrac{\pi}{6} ≤2x+\dfrac{\pi}{3} ≤\dfrac{5\pi}{6}\)
    \(-\dfrac{1}{2} ≤\sin \left(2x+\dfrac{\pi}{3} \right)≤1\),所以 \(-\dfrac{\sqrt{3}}{2} \leq f(x) \leq \sqrt{3}\)
    所以函数\(f(x)\)\(\left[-\dfrac{\pi}{4} ,\dfrac{\pi}{4} \right]\)上的最大值为\(\sqrt{3}\),最小值为 \(-\dfrac{\sqrt{3}}{2}\)
     

【B组---提高题】

1.已知函数\(f\left(x\right)=\sin ⁡\left(ωx+φ\right)\left(ω>0,0<φ<π\right)\)\(f\left(0\right)=f\left(\dfrac{2 \pi}{9}\right)=-f\left(\dfrac{\pi}{3} \right)\),且\(f\left(x\right)\)\(\left(\dfrac{\pi}{6} ,\dfrac{4\pi}{9}\right)\)上单调,则函数\(y=f(x)\)的解析式是\(\underline{\quad \quad}\) .
 

2.如图是函数\(f\left(x\right)=A \sin \left(ωx+φ\right)\left(A>0,ω>0,0<φ<\dfrac{\pi}{2} \right)\)的部分图象,\(M\)\(N\)是它与\(x\)轴的两个不同交点,\(D\)\(M\)\(N\)之间的最高点且横坐标为\(\dfrac{\pi}{4}\),点\(F\left(0,1\right)\)是线段\(DM\)的中点.
\(\left(1\right)\)求函数\(f(x)\)的解析式及\(\left[π,2π\right]\)上的单调增区间;
\(\left(2\right)\)\(x∈\left[-\dfrac{\pi}{12} ,\dfrac{5\pi}{12} \right]\)时,函数\(h\left(x\right)=f^2 \left(x\right)-a f\left(x\right)+1\)的最小值为\(\dfrac{1}{2}\) ,求实数\(a\)的值.
image.png
 
 

参考答案

  1. 答案 \(f\left(x\right)=\sin ⁡\left(3x+\dfrac{\pi}{6} \right)\)
    解析 对于函数\(f\left(x\right)=\sin \left(ωx+φ\right) \left (ω>0,0<φ<π\right)\)
    \(f\left(0\right)=f\left(\dfrac{2\pi}{9}\right)\),可得函数的图象关于直线\(x=\dfrac{1}{2} \left(0+\dfrac{2\pi}{9}\right)=\dfrac{\pi}{9}\)对称;
    \(f\left(\dfrac{2\pi}{9}\right)=-f\left(\dfrac{\pi}{3} \right)\),可得函数的图象关于点\(\left(\dfrac{\dfrac{2 \pi}{9}+\dfrac{\pi}{3}}{2},0\right).\)对称,即\(\left(\dfrac{5 \pi}{18},0\right)\)
    \(\therefore \dfrac{T}{4}+k T=\dfrac{5 \pi}{18}-\dfrac{\pi}{9}=\dfrac{\pi}{6}\)\(k∈Z\), 解得 \(T=\dfrac{2 \pi}{3(4 k+1)}\)
    \(\therefore \omega=\dfrac{2 \pi}{T}=3(4 k+1)\)
    \(\because f\left(x\right)\)\(\left(\dfrac{\pi}{6} ,\dfrac{4\pi}{9}\right)\)上单调,\(\therefore \dfrac{T}{2} \geq \dfrac{4 \pi}{9}-\dfrac{\pi}{6}\),解得\(T>\dfrac{5\pi}{9}\)
    \(\therefore 0<\omega \leq \dfrac{18}{5} \text {, }\)
    \(\omega=\dfrac{2 \pi}{T}=3(4 k+1)\)\(\therefore ω=3\)
    \(\because \left(\dfrac{5 \pi}{18},0\right)\)是对称中心,\(\therefore f\left(\dfrac{5 \pi}{18}\right)=0\)
    \(\sin \left(3 \times \dfrac{5 \pi}{18}+\varphi\right)=0\)
    \(\because 0<φ<π\) , \(\therefore φ=\dfrac{\pi}{6}\)
    \(\therefore f\left(x\right)=\sin ⁡\left(3x+\dfrac{\pi}{6} \right)\).

  2. 答案 \(\left(1\right) f\left(x\right)=2\sin \left(x+\dfrac{\pi}{4} \right)\)\(\left[\dfrac{5\pi}{4} ,2π\right]\)\(\left(2\right) \dfrac{3}{2}\).
    解析 \(\left(1\right)\)\(MN\)的中点为\(H\),则\(DH⊥MN\)
    因为\(F\)\(DM\)的中点,且\(F\)\(y\)轴上,
    \(OF//DH\)\(OF=\dfrac{1}{2} DH\),则\(OM=OH\)
    所以\(D\left(\dfrac{\pi}{4} ,2\right)\)\(M\left(-\dfrac{\pi}{4} ,0\right)\),则\(A=2\)
    \(T=\dfrac{2 \pi}{\omega}=4\left[\dfrac{\pi}{4}-\left(-\dfrac{\pi}{4}\right)\right]=2 \pi\),所以\(ω=1\)
    所以\(f\left(x\right)=2\sin \left(x+φ\right)\)
    \(f\left(\dfrac{\pi}{4} \right)=2\),解得\(φ=2kπ+\dfrac{\pi}{4}\),\(k∈Z\)
    \(0<φ<\dfrac{\pi}{2}\) ,所以\(φ=\dfrac{\pi}{4}\)
    \(f\left(x\right)=2\sin \left(x+\dfrac{\pi}{4} \right)\)
    \(-\dfrac{\pi}{2} +2kπ≤x+\dfrac{\pi}{4} ≤\dfrac{\pi}{2} +2kπ\),解得\(-\dfrac{3\pi}{4} +2kπ≤x≤\dfrac{\pi}{4} +2kπ\)
    \(x∈\left[π,2π\right]\)
    所以函数\(f\left(x\right)\)\(\left[π,2π\right]\)上的单调增区间为:\(\left[\dfrac{5\pi}{4} ,2π\right]\)
    \(\left(2\right)\)因为\(-\dfrac{\pi}{12} ≤x≤\dfrac{5\pi}{12}\),所以\(\dfrac{\pi}{6} ≤x+\dfrac{\pi}{4} ≤\dfrac{2\pi}{3}\)
    所以\(\dfrac{1}{2} ≤\sin \left(x+\dfrac{\pi}{4} \right)≤1\),所以\(1≤f\left(x\right)≤2\)
    \(t=f\left(x\right)\),则\(t∈\left[1,2\right]\)
    \(g(t)=t^2-a t+1=\left(t-\dfrac{a}{2}\right)^2+1-\dfrac{a^2}{4}\)
    ①当\(\dfrac{a}{2} ≤1\),即\(a≤2\)时, \(g(t)_{\min }=g(1)=\dfrac{1}{2}\),解得:\(a=\dfrac{3}{2}\)
    ②当\(1<\dfrac{a}{2} <2\),即\(2<a<4\)时, \(g(t)_{\min }=g\left(\dfrac{a}{2}\right)=1-\dfrac{a^2}{4}=\dfrac{1}{2}\),解得:\(a=±\sqrt{2}\)(舍),
    ③当\(\dfrac{a}{2} ≥2\)\(a≥4\)时, \(g(t)_{\min }=g(2)=\dfrac{1}{2}\),解得 \(a=\dfrac{9}{4}\)(舍),
    综合①②③得实数\(a\)的值为\(\dfrac{3}{2}\)
     

【C组---拓展题】

1.已知函数\(f\left(x\right)=\sqrt{3} \sin \left(2ωx+φ\right)+1\left(ω>0,-\dfrac{\pi}{2} <φ<\dfrac{\pi}{2} \right)\),函数\(f(x)\)的图象经过点\(\left(-\dfrac{\pi}{12} ,1\right)\)\(f(x)\)的最小正周期为\(\dfrac{\pi}{2}\)
\(\left(1\right)\)求函数\(f(x)\)的解析式;
\(\left(2\right)\)将函数\(y=f(x)\)图象上所有的点向下平移\(1\)个单位长度,再函数图象上所有点的横坐标变为原来的\(2\)倍,纵坐标不变,再将图象上所有的点的横坐标不变,纵坐标变为原来的 \(\dfrac{2 \sqrt{3}}{3}\)倍,得到函数\(y=h\left(x\right)\)图象,令函数\(g\left(x\right)=h\left(x\right)+1\),区间\([a ,b ] (a ,b∈R\)\(a<b )\)满足:\(y=g\left(x\right)\)\(\left[a ,b\right]\)上至少有\(30\)个零点,在所有满足上述条件的\(\left[a ,b\right]\)中,求\(b-a\)的最小值.
\(\left(3\right)\)\(m\left[1+\sqrt{3}\left(f\left(\dfrac{x}{8}-\dfrac{\pi}{12} \right)-1\right)\right]+\dfrac{1}{2} +\dfrac{3}{2} \cos x≤0\)对任意\(x∈\left[0 ,2π\right]\)恒成立,求实数\(m\)的取值范围.
 
 

参考答案

  1. 答案 \(\left(1\right) f\left(x\right)=\sqrt{3} \sin \left(4x+\dfrac{\pi}{3} \right)+1\)\(\left(2\right) \dfrac{43\pi}{3}\)\(\left(3\right) \left(-∞ ,-2\right]\).
    解析 \(\left(1\right)\because f\left(x\right)=\sqrt{3} \sin \left(2ωx+φ\right)+1\)
    又函数\(f\left(x\right)\)的最小正周期为\(\dfrac{\pi}{2}\)\(\therefore \dfrac{2\pi}{2} ω=\dfrac{\pi}{2}\)\(\therefore ω=2\)
    \(\therefore f\left(x\right)=\sqrt{3} \sin \left(4x+φ\right)+1\)
    又函数\(f(x)\)经过点\(\left(-\dfrac{\pi}{12} ,1\right)\)
    所以\(f\left(-\dfrac{\pi}{12} \right)=\sqrt{3} \sin \left(-\dfrac{\pi}{3} +φ\right)+1=1\)
    于是\(\left(4×\left(-\dfrac{\pi}{12} \right)+φ\right)=kπ\),\(k∈Z\)
    因为\(-\dfrac{\pi}{2} <ϕ<\dfrac{\pi}{2}\),所以\(ϕ=\dfrac{\pi}{3}\)
    \(f\left(x\right)=\sqrt{3} \sin \left(4x+\dfrac{\pi}{3} \right)+1\)
    \(\left(2\right)\)由题意,\(h(x)=2 \sin \left(2 x+\dfrac{\pi}{3}\right) g(x)=2 \sin \left(2 x+\dfrac{\pi}{3}\right)+1\)
    \(g\left(x\right)=0\)得:\(\sin \left(2x+\dfrac{\pi}{3} \right)=-\dfrac{1}{2}\)
    \(\therefore 2x+\dfrac{\pi}{3} =2kπ+\dfrac{7\pi}{6}\)\(2x+\dfrac{\pi}{3} =2kπ+\dfrac{11\pi}{6}\)\(k∈Z\)
    解得:\(x=kπ+\dfrac{5\pi}{12}\)\(x=kπ+\dfrac{3\pi}{4}\) ,\(k∈Z\)
    \(\therefore\)相邻两个零点之间的距离为\(\dfrac{\pi}{3}\)\(\dfrac{2\pi}{3}\)
    \(b-a\)最小,则\(a\) ,\(b\)均为\(g\left(x\right)\)的零点,
    此时在区间\(\left[a ,π+a\right]\),\(\left[a ,2π+a\right]\),… ,\(\left[a ,mπ+a\right]\left(m∈N^*\right)\)分别恰有\(3\)\(5\),…,\(2m+1\)个零点.
    \(\therefore\)在区间\(\left[a ,14π+a\right]\)恰有\(2×14+1=29\)个零点.
    \(\therefore \left(14π+a ,b\right]\)至少有一个零点.
    \(\therefore b-\left(14π+a\right)≥\dfrac{\pi}{3}\),即\(b-a≥14π+\dfrac{\pi}{3} =\dfrac{43\pi}{3}\)
    检验可知,在\(\left[\dfrac{5\pi}{12} ,\dfrac{5\pi}{12} +\dfrac{43\pi}{4} \right]\)恰有\(30\)个零点,满足题意(可有可无)
    \(\therefore b-a\)的最小值为\(\dfrac{43\pi}{3}\)
    \(\left(3\right)\)由题意得\(m\left(3\sin \dfrac{x}{2} +1\right)≤3\sin ^2 \dfrac{x}{2} -2\)
    \(\because x∈\left[0 ,2π\right]\)\(\therefore \dfrac{x}{2} ∈\left[0 ,π\right]\)
    \(\therefore \sin \dfrac{x}{2} ∈\left[0 ,1\right]\)\(m \leq \dfrac{3 \sin ^2 \dfrac{x}{2}-2}{3 \sin \dfrac{x}{2}+1}\)
    \(t=3\sin \dfrac{x}{2} +1\)\(t∈\left[1 ,4\right]\).则 \(\sin \dfrac{x}{2}=\dfrac{t-1}{3}\)
    \(y=\dfrac{3 \sin ^2 \dfrac{x}{2}-2}{3 \sin \dfrac{x}{2}+1}\)
    \(y=\dfrac{3 \cdot \dfrac{1}{9}(t-1)^2-2}{t}=\dfrac{t^2-2 t-5}{3 t}=\dfrac{1}{3}\left(t-\dfrac{5}{t}-2\right)\)\(t∈\left[1 ,4\right]\)上是增函数.
    \(\therefore\)\(t=1\)时, \(y_{\min }=-2\)\(\therefore m≤-2\)
    故实数\(m\)的取值范围是\(\left(-∞ ,-2\right]\)
     
posted @ 2022-12-03 21:41  贵哥讲数学  阅读(545)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏