5.4.2 正弦函数、余弦函数的性质2 (单调性与最值)

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第一册同步巩固,难度2颗星!

基础知识

正弦函数,余弦函数的图像与性质

表中的\(k∈Z\)

\(y=\sin x\) \(y=\cos x\)
图像
定义域 \(R\) \(R\)
值域 \(\left[-1 ,1\right]\) \(\left[-1 ,1\right]\)
周期性 \(2π\) \(2π\)
对称中心 \((kπ ,0)\) \(\left(kπ+\dfrac{\pi}{2},0\right)\)
对称轴 \(x=kπ+\dfrac{\pi}{2}\) \(x=kπ\)
单调性 \(\left[-\dfrac{\pi}{2}+2kπ ,\dfrac{\pi}{2}+2kπ\right]\)上是增函数;
\(\left[\dfrac{\pi}{2}+2kπ ,3\dfrac{\pi}{2}+2kπ\right]\)上是减函数.
\(\left[-π+2kπ ,2kπ\right]\)上是增函数;
\(\left[2kπ ,π+2kπ\right]\)上是减函数.
最值 \(x=\dfrac{\pi}{2}+2kπ\)时,\(y_{\max}=1\)
\(x=-\dfrac{\pi}{2}+2kπ\)时,\(y_{\min}=-1\).
\(x=2kπ\)时,\(y_{\max}=1\)
\(x=π+2kπ\)时,\(y_{\min}=-1\).

解释
如何理解三角函数的单调性、最值?
主要是结合图象及其周期性,比如如何理解正弦函数\(f(x)=\sin ⁡x\)\(\left[-\dfrac{\pi}{2}+2kπ ,\dfrac{\pi}{2}+2kπ\right]\)单调递增?
① 在一个周期\(\left[-\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)\)内,找到一个单调增区间\(\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\)
② 接着每隔一个周期\(2π\)个单位就有一个增区间,则\(\left[-\dfrac{\pi}{2}+2kπ ,\dfrac{\pi}{2}+2kπ\right]\)\(f(x)=\sin ⁡x\)的增区间.
类似可得到正弦函数的减区间与最值,余弦函数的单调性与最值.
(也可以利用单位圆的性质研究正弦函数、余弦函数的性质)
 

【例】 求正弦函数\(f(x)=\sin ⁡x\)、余弦函数\(f(x)=\cos ⁡x\)\(\left[0,2π\right]\)的单调性.
解 结合图象可得,正弦函数\(f(x)=\sin ⁡x\)的增区间是\(\left[0,\dfrac{\pi}{2}\right)\)\(\left[\dfrac{3\pi}{2},2π\right]\),减区间是\(\left[\dfrac{\pi}{2},\dfrac{3\pi}{2}\right]\)
余弦函数\(f(x)=\cos ⁡x\)的增区间是\(\left(π,2π\right]\),减区间是\([0,π)\).
 

基本方法

【题型1】 单调性

【典题1】 求下列函数的单调递减区间.
  (1) \(y=\cos \left(2x+\dfrac{\pi}{3}\right)\);$\qquad \qquad $ (2)\(y=2\sin \left(\dfrac{\pi}{4}-x\right)\)
解析 (1) 令\(z=2x+\dfrac{\pi}{3}\),而函数\(y=\cos ⁡z\) 的递减区间是\(\left[2kπ,2kπ+π\right](k∈Z)\)
\(\therefore\)原函数递减时,可得\(2kπ≤2x+\dfrac{\pi}{3}≤2kπ+π(k∈Z)\)
解得\(kπ-\dfrac{\pi}{6}≤x≤kπ+\dfrac{\pi}{3}(k∈Z)\)
\(\therefore\) 原函数的递减区间是\(\left[kπ-\dfrac{\pi}{6},kπ+\dfrac{\pi}{3}\right](k∈Z)\)
(2)\(y=2\sin \left(\dfrac{\pi}{4}-x \right)=-2\sin \left(x-\dfrac{\pi}{4} \right)\)
\(z=x-\dfrac{\pi}{4}\)
而函数\(y=-2\sin z\)的递减区间是\(\left[2kπ-\dfrac{\pi}{2},2kπ+\dfrac{\pi}{2}\right](k∈Z)\)
\(\therefore\) 原函数递减时,得\(2kπ-\dfrac{\pi}{2}≤x-\dfrac{\pi}{4}≤2kπ+\dfrac{\pi}{2}(k∈Z)\)
\(2kπ-\dfrac{\pi}{4}≤x≤2kπ+\dfrac{3\pi}{4}(k∈Z)\)
\(\therefore\)原函数的递减区间是\(\left[2kπ-\dfrac{\pi}{4},2kπ+\dfrac{3\pi}{4}\right](k∈Z)\)
点拨 求三角函数\(f(x)=A\sin (ωx+φ)(ω>0)\)的单调性,利用换元法\(z=ωx+φ\),把\(ωx+φ\)代入\(y=\sin ⁡z\)对应的单调区间;而由复合函数的单调性“同增异减”,\(y=2\sin \left(\dfrac{\pi}{4}-x \right)\)\(y=2\sin \left(x-\dfrac{\pi}{4} \right)\)的单调性相反.
 

【典题2】 下列关系式中正确的是(  )
 A.\(\sin ⁡11°<\cos ⁡10°<\sin ⁡168°\) \(\qquad \qquad \qquad \qquad\) B.\(\sin ⁡168°<\sin ⁡11°<\cos ⁡10°\) \(\qquad \qquad \qquad \qquad\)
 C.\(\sin ⁡11°<\sin ⁡168°<\cos ⁡10°\) \(\qquad \qquad \qquad \qquad\) D.\(\sin ⁡168°<\cos ⁡10°<\sin ⁡11°\)
解析 \(\cos ⁡10°=\sin ⁡80°,\sin ⁡168°=\sin ⁡12°\)
因为\(y=\sin ⁡x\)\(\left[0,\dfrac{\pi}{2}\right]\)上递增,所以\(\sin ⁡11°<\sin ⁡12°<\sin ⁡80°\)
\(\sin ⁡11°<\sin ⁡168°<\cos ⁡10°\),故选\(C\).
点拨 本题利用函数的单调性比较大小,思路是统一函数名,把角度限制在一范围.
 

【典题3】 已知函数\(y=\sin \left(ωx+\dfrac{\pi}{3} \right)(ω>0)\)在区间\(\left(-\dfrac{\pi}{6},\dfrac{\pi}{3} \right)\)上单调递增,则\(ω\)的取值范围是( )
 A.\(\left(0,\dfrac{1}{2}\right]\) \(\qquad \qquad \qquad \qquad\) B.\(\left[\dfrac{1}{2},1\right]\) \(\qquad \qquad \qquad \qquad\) C.\(\left(\dfrac{1}{3}, \dfrac{3}{2} \right]\) $\qquad \qquad \qquad \qquad $ D.\(\left[\dfrac{3}{2} ,2\right]\)
解析\(2kπ-\dfrac{\pi}{2}≤ωx+\dfrac{\pi}{3}≤2kπ+\dfrac{\pi}{2}\),\(k∈Z\)
\(2kπ-\dfrac{5\pi}{6}≤ωx≤2kπ+\dfrac{\pi}{6}\),\(k∈Z\)
\(\dfrac{2 k \pi-\dfrac{5 \pi}{6}}{\omega} \leq x \leq \dfrac{2 k \pi+\dfrac{\pi}{6}}{\omega}\),\(k∈Z\)
\(\because f(x)\)在区间\(\left(-\dfrac{\pi}{6},\dfrac{\pi}{3} \right)\)上单调递增,\(\therefore\)此时函数单调递增区间经过原点,
则当\(k=0\)时,增区间为\(\left[-\dfrac{5\pi}{6ω},\dfrac{\pi}{6ω}\right]\)
此时满足 \(\left\{\begin{array}{l} -\dfrac{5 \pi}{6 \omega} \leq-\dfrac{\pi}{6} \\ \dfrac{\pi}{6 \omega} \geq \dfrac{\pi}{3} \end{array}\right.\),得 \(\left\{\begin{array}{l} \omega \leq 5 \\ \omega \leq \dfrac{1}{2} \end{array}\right.\),解得\(0<ω≤\dfrac{1}{2}\)
\(ω\)的取值范围是\(\left(0,\dfrac{1}{2}\right]\)
故选:\(A\)
 

【巩固练习】

1.函数\(f(x)=\sin \left(2x+\dfrac{\pi}{6} \right)\)的单调递增区间是(  )
 A.\(\left[kπ+\dfrac{\pi}{6},kπ+2\dfrac{\pi}{3}\right]\),\((k∈Z)\) \(\qquad \qquad \qquad \qquad\) B.\(\left[kπ,kπ+\dfrac{\pi}{2}\right]\),\((k∈Z)\)
 C.\(\left[kπ-\dfrac{\pi}{3},kπ+\dfrac{\pi}{6}\right]\),\((k∈Z)\) \(\qquad \qquad \qquad \qquad\) D.\(\left[kπ-\dfrac{\pi}{2},kπ\right]\),\((k∈Z)\)
 

2.已知函数\(f(x)=\cos (ωx+φ)(ω>0,0<φ<π)\)为奇函数,\(f(x)=f(2-x)\),当\(ω\)取最小值时,\(f(x)\)的一个单调递减区间是(  )
 A.\(\left[-1,1\right]\) $\qquad \qquad \qquad $ B.\(\left[- \dfrac{3}{2},\dfrac{1}{3}\right]\) \(\qquad \qquad \qquad\) C.\(\left[\dfrac{\pi}{3},\dfrac{5\pi}{6}\right]\) \(\qquad \qquad \qquad\) D.\(\left[0,\dfrac{\pi}{3}\right]\)
 

3.若\(f(x)=\sin \left(2x-\dfrac{\pi}{4} \right)\),则(  )
 A.\(f(1)>f(2)>f(3)\) \(\qquad\) B.\(f(3)>f(2)>f(1)\) \(\qquad\) C.\(f(2)>f(1)>f(3)\) \(\qquad\) D.\(f(1)>f(3)>f(2)\)
 

4.设\(f(x)=3\sin \left(ωx-\dfrac{\pi}{12} \right)+1\),若\(f(x)\)\(\left[-\dfrac{\pi}{3},\dfrac{\pi}{6}\right]\)上为增函数,则\(ω\)的取值范围是(  )
 A.\(\left[ \dfrac{5}{12}, \dfrac{7}{2}\right]\) \(\qquad \qquad\) B.\(\left[ \dfrac{5}{4}, \dfrac{7}{2}\right]\) \(\qquad \qquad\) C.\(\left(0, \dfrac{7}{4}\right]\) \(\qquad \qquad\) D.\(\left(0, \dfrac{5}{4}\right]\)
 

5.设函数\(f(x)=\sin (ωx+ϕ)\),\(A>0\),\(ω>0\),若\(f(x)\)在区间\(\left[\dfrac{\pi}{6},\dfrac{\pi}{2}\right]\)上单调,且\(f\left(\dfrac{\pi}{2} \right)=f\left(\dfrac{2\pi}{3} \right)=-f\left(\dfrac{\pi}{6} \right)\)
\(f(x)\)的最小正周期为\(\underline{\quad \quad}\)
 

参考答案

  1. 答案 \(C\)
    解析 对于函数\(f(x)=\sin \left(2x+\dfrac{\pi}{6} \right)\),令\(2kπ-\dfrac{\pi}{2}≤2x+\dfrac{\pi}{6}≤2kπ+\dfrac{\pi}{2}\)
    求得\(kπ-\dfrac{\pi}{3}≤x≤kπ+\dfrac{\pi}{6}\)
    故函数的单调增区间为\(\left[kπ-\dfrac{\pi}{3},kπ+\dfrac{\pi}{6}\right],k∈Z\)
    故选:\(C\)

  2. 答案 \(A\)
    解析 函数\(f(x)=\cos (ωx+φ)(ω>0,0<φ<π)\)为奇函数,
    \(φ=\dfrac{\pi}{2}\)\(f(x)=-\sin ωx\)\(ω>0\)
    \(f(x)=f(2-x)\)知函数\(f(x)\)的图象关于直线\(x=1\)对称,
    \(f(x)\)\(R\)上的奇函数知\(f(2-x)=-f(x-2)\)\(f(x-4)=-f(4-x)\)
    \(f(2-x)=f(x)\)中,以\(x-2\)\(x\)得:\(f(2-(x-2))=f(x-2)\)
    \(f(4-x)=f(x-2)\)
    所以\(f(x)=f(2-x)=-f(4-x)=f(x-4)\) , 即\(f(x+4)=f(x)\)
    所以\(f(x)\)是以\(4\)为周期的周期函数;
    所以 \(T=\dfrac{2 \pi}{\omega}=4\),解得\(ω=\dfrac{\pi}{2}\)
    \(ω\)取最小值\(\dfrac{\pi}{2}\)时,\(f(x)=-\sin \dfrac{\pi}{2} x\)
    \(-\dfrac{\pi}{2}+2kπ≤\dfrac{\pi}{2} x≤\dfrac{\pi}{2}+2kπ\)\(k∈Z\);解得\(-1+4k≤x≤1+4k\)\(k∈Z\)
    \(k=0\),得\(-1≤x≤1\)
    所以\(f(x)\)的一个单调递减区间是\(\left[-1,1\right]\)
    故选:\(A\)

  3. 答案 \(A\)
    解析 利用函数的单调性:由于函数\(f(x)\)在区间\(\left[\dfrac{\pi}{2},\dfrac{3\pi}{2}\right]\)上单调递减,
    故:\(\dfrac{\pi}{2}≤2x-\dfrac{\pi}{4}≤\dfrac{3\pi}{2}\),解得:\(\dfrac{3\pi}{8}≤x≤\dfrac{7\pi}{8}\)
    所以\(f(1)\)的值在\(x=\dfrac{3\pi}{8}\)的左边且离得比较近,接近于最大值,故\(f(1)\)最大,
    由于\(\dfrac{3\pi}{8}≤2<x<3≤\dfrac{7\pi}{8}\),故:\(f(2)>f(3)\)
    所以\(f(1)>f(2)>f(3)\)
    故选: \(A\)

  4. 答案 \(D\)
    解析\(f(x)=3\sin \left(ωx-\dfrac{\pi}{12} \right)+1\),在\(\left[-\dfrac{\pi}{3},\dfrac{\pi}{6}\right]\)上,\(\omega x-\dfrac{\pi}{12} \in\left[-\dfrac{\omega \pi}{3}-\dfrac{\pi}{12}, \dfrac{\omega \pi}{6}-\dfrac{\pi}{12}\right]\)
    由于\(f(x)\)为增函数, \(\therefore\left\{\begin{array}{l} -\dfrac{\omega \pi}{3}-\dfrac{\pi}{12} \geq-\dfrac{\pi}{2} \\ \dfrac{\omega \pi}{6}-\dfrac{\pi}{12} \leq \dfrac{\pi}{2} \end{array}\right.\),即 \(\left\{\begin{array}{l} \omega \leq \dfrac{5}{4} \\ \omega \leq \dfrac{7}{2} \end{array}\right.\),求得 \(0<\omega \leq \dfrac{5}{4}\)
    故选:\(D\)

  5. 答案 \(π\)
    解析 函数\(f(x)=\sin (ωx+ϕ)\),\(A>0\),\(ω>0\),若\(f(x)\)在区间\(\left[\dfrac{\pi}{6},\dfrac{\pi}{2}\right]\)上单调,
    \(\dfrac{T}{2}=\dfrac{\pi}{\omega} \geq \dfrac{\pi}{2}-\dfrac{\pi}{6}\)\(\therefore 0<ω≤3\)
    \(\because f\left(\dfrac{\pi}{2} \right)=f\left(\dfrac{2\pi}{3} \right)=-f\left(\dfrac{\pi}{6} \right)\)
    \(\therefore x=\dfrac{\dfrac{\pi}{2}+\dfrac{2 \pi}{3}}{2}=\dfrac{7 \pi}{12}\),为\(f(x)=\sin (ωx+φ)\)的一条对称轴,
    \(\left(\dfrac{\frac{\pi}{6}+\frac{\pi}{2}}{2}, 0\right)\)\((\dfrac{\pi}{3},0)\)\(f(x)=\sin (ωx+φ)\)的一个对称中心,
    \(\therefore \dfrac{T}{4}=\dfrac{1}{4} \cdot \dfrac{2 \pi}{\omega}=\dfrac{7 \pi}{12}-\dfrac{\pi}{3}=\dfrac{\pi}{4}\),解得\(ω=2∈\left(0,3\right]\)
    \(\therefore T=\dfrac{2\pi}{2}=π\)
    故答案为:\(π\)
     

【题型2】 最值

【典题1】 求使下列函数取得最大值、最小值的自变量\(x\)的集合,并分别写出最大值、最小值:
  (1)\(y=3-2\sin x\)\(\qquad \qquad\) (2)\(y=\cos \left(2x-\dfrac{\pi}{3} \right)\)\(x∈\left[\dfrac{\pi}{12},\dfrac{\pi}{2}\right]\)
解析 (1)\(\because -1≤\sin x≤1\)\(\therefore\)\(\ \sin x=-1\)
\(x=2kπ+\dfrac{3\pi}{2}\)\(k∈Z\)时,
\(y\)有最大值\(5\),相应\(x\)的集合为\(\{x∣x=2kπ+\dfrac{3\pi}{2},k∈Z\}\)
\(\sin x=1\),即\(x=2kπ+\dfrac{\pi}{2}\)\(k∈Z\)时,
\(y\)有最小值\(1\),相应\(x\)的集合为\(\{x∣x=2kπ+\dfrac{\pi}{2},k∈Z\}\)
(2)令\(z=2x-\dfrac{\pi}{3}\)
\(\because \dfrac{\pi}{12}≤x≤\dfrac{\pi}{2}\)
\(\therefore -\dfrac{\pi}{6}≤2x-\dfrac{\pi}{3}≤\dfrac{2\pi}{3}\),即\(-\dfrac{\pi}{6}≤z≤\dfrac{2\pi}{3}\)
\(\therefore -\dfrac{1}{2}≤\cos z≤1\)\(\therefore y=\cos ⁡\left(2x-\dfrac{\pi}{3} \right)\)\(x∈\left[\dfrac{\pi}{12},\dfrac{\pi}{2}\right]\)的最大值为\(1\),最小值为\(-\dfrac{1}{2}\)
\(z=0\)时,\(y=\cos z\)取得最大值;当\(z=\dfrac{2\pi}{3}\)时,\(y=\cos z\)取得最小值;
\(\therefore\)\(2x-\dfrac{\pi}{3}=0\),即\(x=\dfrac{\pi}{6}\)时, \(y=\cos ⁡\left(2x-\dfrac{\pi}{3} \right)\)取得最大值;
\(2x-\dfrac{\pi}{3}=\dfrac{2\pi}{3}\),即\(x=\dfrac{\pi}{2}\)时,\(y=\cos ⁡\left(2x-\dfrac{\pi}{3} \right)\)取得最小值.
 

【典题2】 求函数\(y=\cos ^2 x+2\sin x\)的值域.
解析 \(y=\cos ^2 x+2\sin x=-\sin ^2 x+2\sin x+1=-(\sin x-1)^2+2\)
\(t=\sin ⁡x\)
\(y=-(t-1)^2+2,(-1≤t≤1)\)
\(\therefore -2≤y≤2\)
即函数\(y=\cos ^2 x+2\sin x\)的值域为\(y∈\left[-2,2\right]\)
点拨 利用\(\sin ^2 x+\cos ^2 x=1\),把函数化为仅含\(\sin ⁡x\),再利用换元法(注意\(-1≤\sin ⁡x≤1\)取值范围)转化为二次函数的值域问题.
 

【巩固练习】

1.函数\(y=2 \sin \left(\dfrac{\pi x}{6}-\dfrac{\pi}{3}\right)(0 \leq x \leq 9)\)的最大值与最小值之和为(  )
 A.\(2-\sqrt{3}\) \(\qquad \qquad \qquad \qquad\) B.\(0\) \(\qquad \qquad \qquad \qquad\) C.\(-1\) \(\qquad \qquad \qquad \qquad\) D.\(-1-\sqrt{3}\)
 

2.函数\(y=\cos \left(x+\dfrac{\pi}{6} \right)\),\(x∈\left[0,\dfrac{\pi}{2}\right]\)的值域是\(\underline{\quad \quad}\) .
 

3.求函数\(y=\cos ^2 x-\sin x\),\(x∈\left[-\dfrac{\pi}{4},\dfrac{\pi}{4}\right]\)的值域 \(\underline{\quad \quad}\)

 

4.已知函数\(f(x)=\cos \left(ωx+\dfrac{\pi}{6} \right)(ω>0)\)在区间\(\left[0,π\right]\)上的值域为\(\left[-1, \dfrac{\sqrt{3}}{2}\right]\),则\(ω\)的取值范围为\(\underline{\quad \quad}\)
 

参考答案

  1. 答案 \(A\)
    解析\(0≤x≤9\)可得,\(-\dfrac{\pi}{3}≤\dfrac{\pi}{6} x-\dfrac{\pi}{3}≤7\dfrac{\pi}{6}\)
    所以\(-\sqrt{3}≤2\sin \left(\dfrac{\pi}{6} x-\dfrac{\pi}{3} \right)≤2\)
    所以最大值为\(2\),最小值为\(-\sqrt{3}\),最大值与最小值 之差为\(2-\sqrt{3}\)

  2. 答案 \(\left[-\dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right]\).
    解析\(x∈\left[0,\dfrac{\pi}{2}\right]\),可得\(x+\dfrac{\pi}{6}∈\left[\dfrac{\pi}{6},\dfrac{2\pi}{3}\right]\)\(\therefore\) 函数\(y=\cos \left(x+\dfrac{\pi}{6} \right)∈\left[-\dfrac{1}{2},\dfrac{\sqrt{3}}{2}\right]\).

  3. 答案 \(\left[\dfrac{1}{2}-\dfrac{\sqrt{2}}{2}, \dfrac{5}{4}\right]\)
    解析 \(y=\cos ^2 x-\sin x=1-\sin ^2 x-\sin x=-(\sin x+\dfrac{1}{2})^2+\dfrac{5}{4}\)
    \(\because -\dfrac{\pi}{4}≤x≤\dfrac{\pi}{4}\)
    \(\therefore\)\(x=-\dfrac{\pi}{6}\),即\(\sin x=-\dfrac{1}{2}\)时,\(y_{\max}=\dfrac{5}{4}\)
    \(x=\dfrac{\pi}{4}\),即 \(\sin x=\dfrac{\sqrt{2}}{2}\)时, \(y_{\min }=\dfrac{1}{2}-\dfrac{\sqrt{2}}{2}\)
    故函数\(y=\cos ^2 x-\sin x\)\(x∈\left[-\dfrac{\pi}{4},\dfrac{\pi}{4}\right]\)的值域为\(\left[\dfrac{1}{2}-\dfrac{\sqrt{2}}{2}, \dfrac{5}{4}\right]\).

  4. 答案 \(\left[\dfrac{5}{6}, \dfrac{5}{3}\right]\).
    解析 在区间\(\left[0,π\right]\)上,\(ωx+\dfrac{\pi}{6}∈\left[\dfrac{\pi}{6},ωπ+\dfrac{\pi}{6}\right]\)
    \(f(x)=\cos \left(ωx+\dfrac{\pi}{6} \right)\)的值域为 \(\left[-1, \dfrac{\sqrt{3}}{2}\right]\)
    \(\therefore ωπ+\dfrac{\pi}{6}∈\left[π,11\dfrac{\pi}{6}\right]\)\(\therefore ωπ∈\left[\dfrac{5\pi}{6},\dfrac{5\pi}{3}\right]\)\(\therefore ω∈\left[\dfrac{5}{6}, \dfrac{5}{3}\right]\).
     

【题型3】三角函数综合

【典题1】 设函数\(f(x)=\cos \left(2x-\dfrac{\pi}{3} \right)\),则下列结论错误的是(  )
 A.\(f(x)\)的一个周期为\(-π\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(f(x)\)的图象关于直线\(x=\dfrac{2\pi}{3}\)对称
 C.\(f\left(x+\dfrac{\pi}{2} \right)\)的一个零点为\(x=-\dfrac{\pi}{3}\) \(\qquad \qquad \qquad\) D.\(f(x)\)在区间\(\left[\dfrac{\pi}{3},\dfrac{\pi}{2}\right]\)上单调递减
解析 根据题意,依次分析选项:
对于 \(A\)\(f(x)=\cos \left(2x-\dfrac{\pi}{3} \right)\),其周期\(T=\dfrac{2\pi}{2}=π\)\(A\)正确;
对于\(B\)\(f(x)=\cos \left(2x-\dfrac{\pi}{3} \right)\),令\(2x-\dfrac{\pi}{3}=kπ\),解可得\(x=\dfrac{k\pi}{2}+\dfrac{\pi}{6}\)
\(y=f(x)\)的对称轴为\(x=\dfrac{k\pi}{2}+\dfrac{\pi}{6}\)
\(k=1\)时,\(x=\dfrac{2\pi}{3}\),即\(y=f(x)\)的图象关于直线\(x=\dfrac{2\pi}{3}\)对称,\(B\)正确;
对于\(C\)\(f\left(x+\dfrac{\pi}{2} \right)=\cos \left(2x+π-\dfrac{\pi}{3} \right)=\cos \left(2x+\dfrac{2\pi}{3} \right)\)
\(x=-\dfrac{\pi}{3}\)时,\(f\left(x+\dfrac{\pi}{2} \right)=\cos 0=1\)
\(x=-\dfrac{\pi}{3}\)不是\(f\left(x+\dfrac{\pi}{2} \right)\)的零点,\(C\)错误;
对于\(D\)\(f(x)=\cos \left(2x-\dfrac{\pi}{3} \right)\)\(2kπ≤2x-\dfrac{\pi}{3}≤2kπ+π\)
解可得\(kπ+\dfrac{\pi}{6}≤x≤kπ+\dfrac{2\pi}{3}\),即函数\(f(x)\)的递减区间为\(\left[kπ+\dfrac{\pi}{6},kπ+\dfrac{2\pi}{3}\right]\)
则函数在\(\left[\dfrac{\pi}{6},\dfrac{2\pi}{3}\right]\)上递减,
又由\(\left[\dfrac{\pi}{3},\dfrac{\pi}{2}\right]∈\left[\dfrac{\pi}{6},\dfrac{2\pi}{3}\right]\),则\(f(x)\)在区间\(\left[\dfrac{\pi}{3},\dfrac{\pi}{2}\right]\)上递减,\(D\)正确;
故选:\(C\)
 

【典题2】 已知\(f(x)=-\dfrac{\sqrt{2}}{2} \sin \left(2 x+\dfrac{\pi}{4}\right)+2\),求:
  (1)\(f(x)\)的最小正周期及对称轴方程;
  (2)\(f(x)\)的单调递增区间;
  (3)若方程\(f(x)-m+1=0\)\(x∈\left[0,\dfrac{\pi}{2}\right]\)上有解,求实数\(m\)的取值范围.
解析 (1)由于 \(f(x)=-\dfrac{\sqrt{2}}{2} \sin \left(2 x+\dfrac{\pi}{4}\right)+2\),它的最小正周期为\(\dfrac{2\pi}{2}=π\)
\(2x+\dfrac{\pi}{4}=kπ+\dfrac{\pi}{2}\),求得\(x=\dfrac{k\pi}{2}+\dfrac{\pi}{8}\)\(k∈Z\)
故函数\(f(x)\)的图象的对称轴方程为\(x=\dfrac{k\pi}{2}+\dfrac{\pi}{8}\)\(k∈Z\)
(2)令\(2kπ+\dfrac{\pi}{2}≤2x+\dfrac{\pi}{4}≤2kπ+\dfrac{3\pi}{2}\),求得 \(kπ+\dfrac{\pi}{8}≤x≤kπ+\dfrac{5\pi}{8}\)
可得函数\(f(x)\)的增区间为\(\left[kπ+\dfrac{\pi}{8},kπ+\dfrac{5\pi}{8}\right]\)\(k∈Z\)
(3)若方程\(f(x)-m+1=0\)\(x∈\left[0,\dfrac{\pi}{2}\right]\)上有解,
则函数\(f(x)\)的图象和直线\(y=m-1\)\(x∈\left[0,\dfrac{\pi}{2}\right]\)上有交点.
\(\because x∈\left[0,\dfrac{\pi}{2}\right]\)\(\therefore 2x+\dfrac{\pi}{4}∈\left[\dfrac{\pi}{4},\dfrac{5\pi}{4}\right]\)\(\sin ⁡\left(2x+\dfrac{\pi}{4} \right)∈\left[-\dfrac{\sqrt{2}}{2},1\right]\)
\(\therefore f(x) \in\left[2-\dfrac{\sqrt{2}}{2}, \dfrac{5}{2}\right]\)
\(m-1∈\left[2-\dfrac{\sqrt{2}}{2}, \dfrac{5}{2}\right]\)
\(\therefore m \in\left[3-\dfrac{\sqrt{2}}{2}, \dfrac{7}{2}\right]\)
 

【巩固练习】

1.已知函数\(f(x)=3\sin \left(2x-\dfrac{\pi}{3} \right)\),下列结论中正确的是(  )
 A.函数\(f(x)\)的最小正周期为\(2π\) \(\qquad \qquad \qquad \qquad\) B.函数\(f(x)\)的图象关于直线\(x=\dfrac{\pi}{6}\)对称
 C.函数\(f(x)\)的图象关于点\(\left(-\dfrac{\pi}{6},0 \right)\)对称 \(\qquad \qquad\) D.函数\(f(x)\)\(\left(-\dfrac{\pi}{12},\dfrac{5\pi}{12} \right)\)内是增函数
 

2.同时具有以下性质:①最小正周期是\(π\);②图象关于直线\(x=\dfrac{\pi}{3}\)对称;③在\(\left[-\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)上是增函数;
④一个对称中心为\(\left(\dfrac{\pi}{12},0 \right)\)的一个函数是(  )
 A.\(y=\sin \left(\dfrac{x}{2}+\dfrac{\pi}{6} \right)\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(y=\sin \left(2x+\dfrac{\pi}{3} \right)\)
 C.\(y=\sin \left(2x-\dfrac{\pi}{6} \right)\) \(\qquad \qquad \qquad \qquad \qquad\) D.\(y=\sin \left(2x-\dfrac{\pi}{3} \right)\)
 

3.设函数\(f(x)=\sin \left(2x+\dfrac{2\pi}{3} \right)\),则下列结论中正确的是(  )
 A.\(f(x)\)的图象关于点\(\left(\dfrac{\pi}{3},0 \right)\)对称 \(\qquad \qquad \qquad\) B.\(f(x)\)的图象关于直线\(x=\dfrac{\pi}{3}\)对称
 C.\(f(x)\)\(\left[0,\dfrac{\pi}{3}\right]\)上单调递减 \(\qquad \qquad \qquad \qquad\) D.\(f(x)\)\(\left[-\dfrac{\pi}{6},0\right]\)上的最小值为\(0\)
 

4.若函数\(f(x)=\cos ⁡(ωx+φ)\left(ω>0,|φ|<\dfrac{\pi}{2} \right)\)的一个零点和与之相邻的对称轴之间的距离为\(\dfrac{\pi}{4}\)
且当\(x=\dfrac{2\pi}{3}\)时,\(f(x)\)取得最小值.
  (1)求\(f(x)\)的解析式及其单调递减区间;
  (2)若\(x∈\left[\dfrac{\pi}{4},\dfrac{5\pi}{6}\right]\),求\(f(x)\)的值域.
 

参考答案

  1. 答案 \(D\)
    解析 \(A\)错,最小正周期为\(π\),当\(x=\dfrac{\pi}{6}\)时,\(f(x)≠1\)\(B\)错,
    \(f\left(-\dfrac{\pi}{6} \right)=3\sin \left(-\dfrac{2\pi}{3} \right)≠0\)\(C\)错,
    \(x∈\left(-\dfrac{\pi}{12},\dfrac{5\pi}{12} \right)\)时,\(2x-\dfrac{\pi}{3}∈(-\dfrac{\pi}{2},\dfrac{\pi}{2})\)\(f(x)\)单调递增,\(D\)成立,
    故选:\(D\)

  2. 答案 \(C\)
    解析 由“①最小正周期是\(π\),可得\(ω=2\),排除 \(A\)
    ②图象关于直线\(x=\dfrac{\pi}{3}\)对称;可得:\(\dfrac{2\pi}{3}+φ=\dfrac{\pi}{3}+kπ\)\(k∈Z\)
    对于\(D\)选项:\(φ=-\dfrac{\pi}{3}\),不满足,排除\(D\)
    ④一个对称中心为\(\left(\dfrac{\pi}{12},0 \right)\)带入函数y中,\(B\)选项不满足.排除\(B\)
    故选:\(C\)

  3. 答案 \(C\)
    解析 对于函数\(f(x)=\sin \left(2x+\dfrac{2\pi}{3} \right)\),令\(x=\dfrac{\pi}{3}\),求得\(f(x)=-\sqrt{3}\),不是最值,
    可得\(y=f(x)\)的图象不关于点\(\left(\dfrac{\pi}{3},0 \right)\)对称,也不关于直线\(x=\dfrac{\pi}{3}\)对称,故\(A\)\(B\)都不正确;
    \(\left[0,\dfrac{\pi}{3}\right]\)上,\(2x+\dfrac{2\pi}{3}∈\left[\dfrac{2\pi}{3},\dfrac{4\pi}{3}\right]\),故\(f(x)\)\(\left[0,\dfrac{\pi}{3}\right]\)上单调递减,故\(C\)正确;
    \(\left[-\dfrac{\pi}{6},0\right]\)上,\(2x+\dfrac{2\pi}{3}∈\left[\dfrac{\pi}{3},\dfrac{2\pi}{3}\right]\)
    \(f(x)\)\(\left[0,\dfrac{\pi}{3}\right]\)上没有单调性,最小值为\(f(-\dfrac{\pi}{6})=f(0)=\dfrac{\sqrt{3}}{2}\),故\(D\)不正确,
    故选:\(C\)

  4. 答案 (1)\(f(x)=\cos \left(2x-\dfrac{\pi}{3} \right)\)\(\left[kπ+\dfrac{\pi}{6},kπ+\dfrac{2\pi}{3}\right]\),\(k∈Z\); (2) \(\left[-1,\dfrac{\sqrt{3}}{2}\right]\).
    解析 (1)由题意,函数\(f(x)\)的一个零点和与之相邻的对称轴之间的距离为\(\dfrac{\pi}{4}\)
    可得\(f(x)\)的周期\(T=π\),即 \(\dfrac{2 \pi}{\omega}=\pi\),解得\(ω=2\)
    又因为当\(x=\dfrac{2\pi}{3}\)时,\(f(x)\)取得最小值,
    所以\(f\left(\dfrac{2\pi}{3} \right)=\cos ⁡\left(\dfrac{4\pi}{3}+φ \right)=-1\)
    所以\(\dfrac{4\pi}{3}+φ=2kπ+π\),\(k∈Z\),解\(φ=2kπ-\dfrac{\pi}{3}\),\(k∈Z\)
    因为\(|φ|<\dfrac{\pi}{2}\),所以\(φ=-\dfrac{\pi}{3}\),所以\(f(x)=\cos ⁡(2x-\dfrac{\pi}{3})\)
    \(2kπ≤2x-\dfrac{\pi}{3}≤2kπ+π\),\(k∈Z\),解得\(kπ+\dfrac{\pi}{6}≤x≤kπ+\dfrac{2\pi}{3}\),\(k∈Z\)
    所以\(f(x)\)的单调递减区间为\(\left[kπ+\dfrac{\pi}{6},kπ+\dfrac{2\pi}{3}\right]\),\(k∈Z\)
    (2)因为\(x∈\left[\dfrac{\pi}{4},\dfrac{5\pi}{6}\right]\),可得\(\dfrac{\pi}{6}≤2x-\dfrac{\pi}{3}≤\dfrac{4\pi}{3}\)
    所以当\(2x-\dfrac{\pi}{3}=π\)时,\(f(x)\)取得最小值\(-1\)
    \(2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}\)时,\(f(x)\)取得最大值为 \(\dfrac{\sqrt{3}}{2}\)
    所以函数\(f(x)\)的值域是\(\left[-1,\dfrac{\sqrt{3}}{2}\right]\)
     

分层练习

【A组---基础题】

1.下列区间中是函数\(y=\sin \left(x+\dfrac{\pi}{4} \right)\)的单调递增区间的是(  )
 A.\(\left[\dfrac{\pi}{2},π\right]\) $\qquad \qquad \qquad \qquad $ B.\(\left[0,\dfrac{\pi}{4}\right]\) $\qquad \qquad \qquad \qquad $ C.\(\left[-π,0\right]\) $\qquad \qquad \qquad \qquad $ D.\(\left[\dfrac{\pi}{4}, \dfrac{\pi}{2}\right]\)
 

2.函数\(y=2\sin 2x\)\(x∈\left[0,\dfrac{\pi}{6}\right]\)的值域为(  )
 A.\(\left[-2,2\right]\) $\qquad \qquad \qquad \qquad $ B.\(\left[-1,0\right]\) $\qquad \qquad \qquad \qquad $ C.\(\left[0,\sqrt{3}\right]\) $\qquad \qquad \qquad \qquad $ D.\(\left[0,1\right]\)
 

3.函数\(f(x)=\cos \left(2x-\dfrac{\pi}{3} \right)\)\(\left[0,\dfrac{\pi}{2}\right]\)上的最小值是(  )
 A.\(-\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(1\)
 

4.下列函数中,以\(π\)为周期且在区间\(\left(\dfrac{\pi}{2},π \right)\)单调递增的是(  )
 A.\(f(x)=|\cos 2x|\) \(\qquad \qquad\) B.\(f(x)=|\sin 2x|\) \(\qquad \qquad\) C.\(f(x)=|\cos x|\) \(\qquad \qquad\) D.\(f(x)=|\sin x|\)
 

5.已知函数\(f(x)=\sin x+|\sin x|\),则下列结论正确的是(  )
 A.\(f(x+π)=f(x)\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.\(f(x)\)的值域为\(\left[0,1\right]\)
 C.\(f(x)\)\(\left[\dfrac{\pi}{2},π\right]\)上单调递减 \(\qquad \qquad \qquad \qquad\) D.\(f(x)\)的图象关于点\((π,0)\)对称
 

6.函数\(f(x)=\cos \left(ωx+\dfrac{\pi}{6} \right)(ω>0)\)的最小正周期为\(π\),则\(f(x)\)满足(  )
 A.在\(\left(0,\dfrac{\pi}{3} \right)\)上单调递增 \(\qquad \qquad \qquad \qquad\) B.图象关于直线\(x=\dfrac{\pi}{6}\)对称
 C.\(f\left(\dfrac{\pi}{3} \right)=\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad \qquad\) D.当\(x=\dfrac{5\pi}{12}\)时有最小值\(-1\)
 

7.关于函数\(f(x)=|\sin x|+\cos x\)有下述四个结论:
\(f(x)\)是周期函数;\(\qquad \qquad \qquad\)\(f(x)\)的最小值为\(-\sqrt{2}\)
\(f(x)\)的图象关于\(y\)轴对称;\(\qquad \qquad\)\(f(x)\)在区间\(\left(\dfrac{\pi}{4},\dfrac{\pi}{2} \right)\)单调递增.
其中所有正确结论的编号是(  )
 A.①② \(\qquad \qquad \qquad \qquad\) B.①③ \(\qquad \qquad \qquad \qquad\) C.②③ \(\qquad \qquad \qquad \qquad\) D.②④
 

8.已知函数\(f(x)=\sin (ωx+φ)\left(ω>0,0<φ<\dfrac{\pi}{2} \right)\)的最小正周期为\(π\),且关于\(\left(-\dfrac{\pi}{8},0 \right)\)中心对称,则下列结论正确的是(  )
 A.\(f(1)<f(0)<f(2)\) \(\qquad \qquad \qquad \qquad\) B.\(f(0)<f(2)<f(1)\)
 C.\(f(2)<f(0)<f(1)\) \(\qquad \qquad \qquad \qquad\) D.\(f(2)<f(1)<f(0)\)
 

9.已知函数\(f(x)=\sin ωx\)的图象关于点\(\left(\dfrac{2\pi}{3},0 \right)\)对称,且\(f(x)\)\(\left[0,\dfrac{\pi}{4}\right]\)上为增函数,则\(ω=\)\(\underline{\quad \quad}\).
 

10.若\(f(x)=2\sin (2x+φ)(φ>0)\)的图象关于直线\(x=\dfrac{\pi}{12}\)对称,且当\(φ\)取最小值时,\(∃x_0∈\left(0,\dfrac{\pi}{2} \right)\),使得\(f(x_0)=a\),则\(a\)的取值范围是\(\underline{\quad \quad}\)
 

11.已知点\(A\left(\dfrac{\pi}{24},0 \right)\)在函数\(f(x)=\cos (2ωx+φ)(ω>0\)\(ω∈N^*,0<φ<π)\)的图象上,直线\(x=\dfrac{\pi}{6}\)是函数\(f(x)\)的图象的一条对称轴.若\(f(x)\)在区间\(\left(\dfrac{\pi}{6},\dfrac{\pi}{3} \right)\)内单调,则\(φ=\)\(\underline{\quad \quad}\)
 

12.已知\(f(x)=\sqrt{2} \sin \left(2x+\dfrac{\pi}{4} \right)\)
  (1)求函数\(f(x)\)图象的对称轴方程.
  (2)求\(f(x)\)的单调递增区间.
  (3)当\(x∈\left[\dfrac{\pi}{4},\dfrac{3\pi}{4}\right]\)时,求函数\(f(x)\)的最大值和最小值.
 
 
 

参考答案

  1. 答案 \(B\)
    解析 \(\because\)函数\(y=\sin x\)的单调递增区间为\(\left[2kπ-\dfrac{\pi}{2},2kπ+\dfrac{\pi}{2}\right](k∈Z)\)
    \(2kπ-\dfrac{\pi}{2}≤x+\dfrac{\pi}{4}≤2kπ+\dfrac{\pi}{2}\),得\(2kπ-\dfrac{3\pi}{4}≤x≤2kπ+\dfrac{\pi}{4}(k∈Z)\)
    \(k=0\),得\(-\dfrac{3\pi}{4}≤x≤\dfrac{\pi}{4}\)
    \(\therefore\)只有\(\left[0,\dfrac{\pi}{4}\right]⊆\left[-\dfrac{3\pi}{4},\dfrac{\pi}{4}\right]\),故选\(B\)

  2. 答案 \(C\)
    解析 \(\because 0≤x≤\dfrac{\pi}{6}\)\(\therefore 0≤2x≤\dfrac{\pi}{3}\)\(\therefore 0≤\sin ⁡2x≤\dfrac{\sqrt{3}}{2}\)\(\therefore y∈\left[0,\sqrt{3}\right]\)

  3. 答案 \(A\)
    解析 \(x∈\left[0,\dfrac{\pi}{2}\right]\)时,\(2x-\dfrac{\pi}{3}∈\left[-\dfrac{\pi}{3},\dfrac{2\pi}{3}\right]\)
    \(\therefore x=\dfrac{\pi}{2}\)时,\(\cos \left(2x-\dfrac{\pi}{3} \right)=\cos \dfrac{2\pi}{3}=-\dfrac{1}{2}\)
    \(\therefore\)函数\(f(x)=\cos \left(2x-\dfrac{\pi}{3} \right)\)\(\left[0,\dfrac{\pi}{2}\right]\)上的最小值是\(-\dfrac{1}{2}\)
    故选: \(A\)

  4. 答案 \(C\)
    解析 由于\(f(x)=|\cos 2x|\)的周期为\(\dfrac{1}{2}\cdot \dfrac{2\pi}{2}=\dfrac{\pi}{2}\),故 \(A\)不满足条件;
    由于\(f(x)=|\sin 2x|\)的周期为\(\dfrac{1}{2}\cdot \dfrac{2\pi}{2}=\dfrac{\pi}{2}\),故\(B\)不满足条件;
    由于\(f(x)=|\cos x|\)的最小正周期为\(\dfrac{1}{2}\cdot 2π=π\)
    在区间\(\left(\dfrac{\pi}{2},π \right)\)上,\(f(x)=|\cos x|=-\cos x\)单调递增,故\(C\)满足条件;
    由于\(f(x)=|\sin x|\)的最小正周期为\(\dfrac{1}{2}\cdot 2π=π\)
    在区间\(\left(\dfrac{\pi}{2},π \right)\)上,\(f(x)=\sin x\)单调递减,故\(D\)不满足条件,
    故选:\(C\)

  5. 答案 \(C\)
    解析 函数 \(f(x)=\sin x+|\sin x|=\left\{\begin{array}{l} 2 \sin x, x \in[0, \pi] \\ 0, x \in(\pi, 2 \pi] \end{array}\right.\)
    故函数的周期为\(2π\),即\(f(x+2π)=f(x)\),故排除 \(A\)
    显然,函数的值域为\(\left[0,2\right]\),故排除\(B\)
    \(\left[\dfrac{\pi}{2},π\right]\)上,函数\(t=\sin x\)单调递减,故函数\(y=2\sin x\)单调递减,故\(C\)正确;
    根据故函\(f(x)\)的图象特征,可得它的图象不关于点\((π,0)\)对称,故排除\(D\)
    故选:\(C\)

  6. 答案 \(D\)
    解析 函数\(f(x)=\cos \left(ωx+\dfrac{\pi}{6} \right)(ω>0)\)的最小正周期为 \(T=\dfrac{2 \pi}{\omega}=\pi\)\(\therefore ω=2\)
    \(\therefore f(x)=\cos (2x+\dfrac{\pi}{6})\)
    \(x∈\left(0,\dfrac{\pi}{3} \right)\)时,\(2x+\dfrac{\pi}{6}∈\left(\dfrac{\pi}{6},\dfrac{5\pi}{6} \right)\)\(f(x)\)单调递减,\(\therefore A\)错误;
    \(x=\dfrac{\pi}{6}\)时,\(2x+\dfrac{\pi}{6}=\dfrac{\pi}{2}\)\(f\left(\dfrac{\pi}{6} \right)=0\),其图象不关于直线\(x=\dfrac{\pi}{6}\)对称,\(B\)错误;
    \(f\left(\dfrac{\pi}{3} \right)=\cos \left(2×\dfrac{\pi}{3}+\dfrac{\pi}{6} \right)=-\dfrac{\sqrt{3}}{2}\)\(C\)错误;
    \(x=\dfrac{5\pi}{12}\)时,\(f(x)=\cos (2×\dfrac{5\pi}{12}+\dfrac{\pi}{6})=-1\)\(D\)正确.
    故选:\(D\)

  7. 答案 \(B\)
    解析 函数\(f(x)=|\sin x|+\cos x\),其中\(|\sin x|\)的周期为\(π\)\(\cos 2x\)的周期为\(2π\)
    所以函数的最小正周期为\(2π\),故函数为周期函数.①\(f(x)\)是周期函数;正确.
    ②函数的最小值为\(-1\),所以:\(f(x)\)的最小值为\(-\sqrt{2}\);错误.
    ③由于\(f(-x)=f(x)\)\(f(x)\)的图象关于\(y\)轴对称;
    \(f(x)\)在区间\(\left(\dfrac{\pi}{4},\dfrac{\pi}{2} \right)\)单调递减.故错误.
    故选:\(B\)

  8. 答案 \(D\)
    解析 \(\because\)函数的最小周期是\(π\)\(\therefore \dfrac{2 \pi}{\omega}=\pi\),得\(ω=2\),则\(f(x)=\sin (2x+φ)\)
    \(\because f(x)\)关于\(\left(-\dfrac{\pi}{8},0 \right)\)中心对称,
    \(\therefore 2×\left(-\dfrac{\pi}{8} \right)+φ=kπ\)\(k∈Z\),即\(φ=kπ+\dfrac{\pi}{4}\)\(k∈Z\)
    \(\because 0<φ<\dfrac{\pi}{2}\)\(\therefore\)\(k=0\)时,\(φ=\dfrac{\pi}{4}\),即\(f(x)=\sin \left(2x+\dfrac{\pi}{4} \right)\)
    则函数在\(\left[-\dfrac{\pi}{8}, \dfrac{\pi}{8}\right]\)上递增,在\(\left[\dfrac{\pi}{8},\dfrac{5\pi}{8}\right]\)上递减,\(f(0)=f\left(\dfrac{\pi}{4} \right)\)
    \(\because \dfrac{\pi}{4}<1<2\)\(\therefore f\left(\dfrac{\pi}{4} \right)>f(1)>f(2)\),即\(f(2)<f(1)<f(0)\)
    故选:\(D\)

  9. 答案 \(\dfrac{3}{2}\)
    解析 依题意:\(f\left(\dfrac{2\pi}{3} \right)=\sin \left(\dfrac{2\pi}{3} ω \right)=0\)\(\therefore \dfrac{2\pi}{3} ω=kπ\)\(k∈Z\)
    \(\therefore \omega=\dfrac{3 k}{2}\)\(k∈Z\)
    \(f(x)=\sin ωx\)\(\left[0,\dfrac{\pi}{4}\right]\)上递增,
    \(\therefore 0<ω⋅\dfrac{\pi}{4}≤\dfrac{\pi}{2}\),即\(0<ω≤2\)
    \(\therefore k=1\)\(ω=\dfrac{3}{2}\).

  10. 答案 \(\left(-\sqrt{3},2\right]\)
    解析 \(f(x)=2\sin (2x+φ)(φ>0)\)的图象关于直线\(x=\dfrac{\pi}{12}\)对称,
    所以\(2×\dfrac{\pi}{12}+φ=kπ+\dfrac{\pi}{2}(k∈Z)\),解得\(φ=kπ+\dfrac{\pi}{3}\)
    \(k=0\)时,\(φ=\dfrac{\pi}{3}\).所以\(f(x)=2\sin \left(2x+\dfrac{\pi}{3} \right)\)
    由于\(∃x_0∈\left(0,\dfrac{\pi}{2} \right)\),所以\(\dfrac{\pi}{3}<2x_0+\dfrac{\pi}{3}<\dfrac{4\pi}{3}\)
    所以\(-\sqrt{3}<f(x_0)≤2\),即\(a\)的范围为\(\left(-\sqrt{3},2\right]\)

  11. 答案 \(\dfrac{\pi}{3}\)
    解析 由题意得, \(\dfrac{\pi}{6}-\dfrac{\pi}{24}=\dfrac{\pi}{8} \geq \dfrac{T}{4}\),得 \(\dfrac{1}{4} \times \dfrac{2 \pi}{2 \omega} \leq \dfrac{\pi}{8}\),得\(ω≥2\)
    又因为\(f(x)\)在区间\(\left(\dfrac{\pi}{6},\dfrac{\pi}{3} \right)\)内单调,
    所以 \(\dfrac{\pi}{3}-\dfrac{\pi}{6} \leq \dfrac{T}{2}\),得 \(\dfrac{1}{2} \times \dfrac{2 \pi}{2 \omega} \geq \dfrac{\pi}{6}\),得\(ω≤3\).所以\(2≤ω≤3\)
    又因为\(ω∈N^*\),所以\(ω=2\)\(3\)
    \(ω=2\)时,\(\cos \left(4×\dfrac{\pi}{24}+φ \right)=0\),得\(φ=kπ+\dfrac{\pi}{3}\)
    \(0<φ<π\),所以\(φ=\dfrac{\pi}{3}\)
    此时直线\(x=\dfrac{\pi}{6}\)是函数\(f(x)\)的图象的一条对称轴,且\(f(x)\)在区间\(\left(\dfrac{\pi}{6},\dfrac{\pi}{3} \right)\)内单调.
    所以\(φ=\dfrac{\pi}{3}\)
    \(ω=3\)时,\(\cos \left(6×\dfrac{\pi}{24}+φ \right)=0\),得\(φ=kπ+\dfrac{\pi}{4}\)
    \(0<φ<π\),所以\(φ=\dfrac{\pi}{4}\),此时\(\cos \left(6×\dfrac{\pi}{6}+\dfrac{\pi}{4} \right)=-\dfrac{\sqrt{2}}{2}≠±1\)
    所以直线\(x=\dfrac{\pi}{6}\)不是函数\(f(x)\)的图象的一条对称轴.
    所以\(ω=2\)\(φ=\dfrac{\pi}{3}\).

  12. 答案 (1) \(x=\dfrac{k\pi}{2}+\dfrac{\pi}{8}\)\(k∈Z\); (2) \(\left[kπ-\dfrac{3\pi}{8},kπ+\dfrac{\pi}{8}\right]\)\(k∈Z\)
    (3)最大值为 \(1\),最小值为\(-\sqrt{2}\).
    解析 (1)由\(f(x)=\sqrt{2} \sin \left(2x+\dfrac{\pi}{4} \right)\)
    \(2x+\dfrac{\pi}{4}=kπ+\dfrac{\pi}{2}\)\(k∈Z\),解得\(x=\dfrac{k\pi}{2}+\dfrac{\pi}{8}\)\(k∈Z\)
    所以函数\(f(x)\)图象的对称轴方程是\(x=\dfrac{k\pi}{2}+\dfrac{\pi}{8}\)\(k∈Z\)
    (2)令\(2kπ-\dfrac{\pi}{2}≤2x+\dfrac{\pi}{4}≤2kπ+\dfrac{\pi}{2}\)\(k∈Z\),解得\(kπ-\dfrac{3\pi}{8}≤x≤kπ+\dfrac{\pi}{8}\)\(k∈Z\)
    所以\(f(x)\)的单调递增区间为\(\left[kπ-\dfrac{3\pi}{8},kπ+\dfrac{\pi}{8}\right]\)\(k∈Z\)
    (3)当\(x∈\left[\dfrac{\pi}{4},\dfrac{3\pi}{4}\right]\)时,\(\dfrac{3\pi}{4}≤2x+\dfrac{\pi}{4}≤\dfrac{7\pi}{4}\)
    所以\(-1≤\sin \left(2x+\dfrac{\pi}{4} \right)≤\dfrac{\sqrt{2}}{2}\),所以\(-\sqrt{2}≤f(x)≤1\)
    所以当\(x∈\left[\dfrac{\pi}{4},\dfrac{3\pi}{4}\right]\)时,函数\(f(x)\)的最大值为\(1\),最小值为\(-\sqrt{2}\)
     

【B组---提高题】

1.已知函数\(f(x)=\left|\cos \left(ω x+\dfrac{\pi}{3} \right) \right|(ω>0)\)在区间\(\left[-\dfrac{\pi}{3},\dfrac{5\pi}{6}\right]\)上单调,则\(ω\)的取值范围为(  )
 A.\(\left(0,\dfrac{12}{15} \right]\) \(\qquad \qquad \qquad \qquad\) B.\(\left(0,\dfrac{1}{5} \right]\) \(\qquad \qquad \qquad \qquad\) C.\(\left[\dfrac{1}{5} ,\dfrac{12}{15} \right]\) \(\qquad \qquad \qquad \qquad\) D.\(\left[\dfrac{12}{15} ,1\right]\)
 

2.已知函数\(f(x)=\sin \left(ωx+\dfrac{\pi}{3} \right),(ω>0)\)在区间\(\left[-\dfrac{2\pi}{3},\dfrac{5\pi}{6}\right]\)上是增函数,且在区间\(\left[0,π\right]\)上恰好取得一次最大值\(1\),则\(ω\)的取值范围是(  )
 A. \(\left(0,\dfrac{1}{5} \right]\) \(\qquad \qquad \qquad \qquad\) B.\(\left[\dfrac{1}{2},\dfrac{3}{5}\right]\) \(\qquad \qquad \qquad \qquad\) C.\(\left[\dfrac{1}{6},\dfrac{1}{5}\right]\) \(\qquad \qquad \qquad \qquad\) D.\(\left[\dfrac{1}{2},\dfrac{5}{2}\right)\)
 

3.若方程\(\sin \left(2x-\dfrac{\pi}{6} \right)=\dfrac{3}{5}\)\((0,π)\)上的解为\(x_1\)\(x_2\),且\(x_1>x_2\),则\(\sin (x_1-x_2)=\) \(\underline{\quad \quad}\)
 
 

参考答案

  1. 答案 \(B\)
    解析 \(y=|\cos x|\)的单调递减区间为\(\left[kπ,kπ+\dfrac{\pi}{2}\right]\),\(k∈Z\)
    \(kπ≤ωx+\dfrac{\pi}{3}≤kπ+\dfrac{\pi}{2}\),\(k∈Z\),得 \(\dfrac{k \pi-\frac{\pi}{3}}{\omega} \leq x \leq \dfrac{k \pi+\frac{\pi}{6}}{\omega}\)
    即函数的单调递减区间为 \(\left[\dfrac{k \pi-\frac{\pi}{3}}{\omega}, \dfrac{k \pi+\frac{\pi}{6}}{\omega}\right]\)\(k∈Z\)
    \(f(x)\)在区间\(\left[-\dfrac{\pi}{3},\dfrac{5\pi}{6}\right]\)上单调递减,
    \(\dfrac{k \pi-\dfrac{\pi}{3}}{\omega} \leq-\dfrac{\pi}{3}\)\(\dfrac{k \pi+\dfrac{\pi}{6}}{\omega} \geq \dfrac{5 \pi}{6}\),得 \(\left\{\begin{array}{l} \omega \leq \dfrac{6}{5} k+\dfrac{1}{5} \\ \omega \leq-3 k+1 \end{array}\right.\)\(k∈Z\)
    \(k=0\)时, \(\left\{\begin{array}{l} \omega \leq \dfrac{1}{5} \\ \omega \leq 1 \end{array}\right.\),即\(0<ω≤\dfrac{1}{5}\),即\(ω\) 的取值范围是 \(\left(0,\dfrac{1}{5} \right]\)
    \(f(x)\)在区间\(\left[-\dfrac{\pi}{3},\dfrac{5\pi}{6}\right]\)上单调递增时,\(ω\)无解,
    故选:\(B\)

  2. 答案 \(C\)
    解析 方法一(复合函数法):令\(X=ωx+\dfrac{\pi}{3}\)\(-\dfrac{2\pi}{3}≤x≤\dfrac{5\pi}{6}\)
    \(-\dfrac{2 \pi \omega}{3}+\dfrac{\pi}{3} \leq X \leq \dfrac{5 \pi \omega}{6}+\dfrac{\pi}{3}\)
    \(\therefore\)函数\(y=\sin X\)在区间 上\(\left[-\dfrac{2 \pi \omega}{3}+\dfrac{\pi}{3}, \dfrac{5 \pi \omega}{6}+\dfrac{\pi}{3}\right]\)单调递增,
    \(\therefore\left[-\dfrac{2 \pi \omega}{3}+\dfrac{\pi}{3}, \dfrac{5 \pi \omega}{6}+\dfrac{\pi}{3}\right] \subseteq\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\)\(\therefore ω≤\dfrac{1}{5}\)
    \(0≤x≤π\)时,\(\dfrac{\pi}{3}≤X≤πω+\dfrac{\pi}{3}\)
    \(\therefore\)函数\(y=\sin X\)在区间\(\left[\dfrac{\pi}{3},πω+\dfrac{\pi}{3}\right]\)恰好取一次最大值\(1\)
    \(\therefore \dfrac{\pi}{2}≤πω+\dfrac{\pi}{3}<\dfrac{5\pi}{2}\)\(\therefore \dfrac{1}{6} \leq \omega \leq \dfrac{13}{6}\),
    综上所知 \(\dfrac{1}{6} \leq \omega \leq \dfrac{1}{5}\),故选\(C\)
    方法二(特殊值法):当\(ω=\dfrac{1}{2}\)时,令 \(X=\dfrac{x}{2}+\dfrac{\pi}{3}\)\(-\dfrac{2 \pi}{3} \leq x \leq \dfrac{5 \pi}{6}\)
    \(0≤X≤\dfrac{3\pi}{4}\),则函数\(y=\sin X\)在区间\(\left[0,\dfrac{3\pi}{4}\right]\)上不单调,
    \(\therefore ω=\dfrac{1}{2}\)不合题意,排除\(BD\)
    \(\omega=\dfrac{1}{12}\)时,令 \(X=\dfrac{x}{12}+\dfrac{\pi}{3}\)\(0≤x≤π\),
    \(\dfrac{\pi}{3}≤X≤\dfrac{5\pi}{12}\),则函数\(y=\sin X\)在区间\(\left[\dfrac{\pi}{3},\dfrac{5\pi}{12}\right]\)取不到最大值\(1\)
    \(\therefore \omega=\dfrac{1}{12}\)不合题意,排除 \(A\)
    故选:\(C\)

  3. 答案 \(\left[2-\sqrt{2},2\sqrt{2}\right]\)
    解析\(2x-\dfrac{\pi}{6}=\dfrac{1}{2} π+kπ\)可得,\(x=\dfrac{1}{3} π+\dfrac{1}{2} kπ\)
    由于\(y=\sin \left(2x-\dfrac{\pi}{6} \right)=\dfrac{3}{5}\)\((0,π)\)上的解为\(x_1\)\(x_2\),且\(x_1>x_2\)
    \(x_1\),\(x_2\)关于\(x=\dfrac{1}{3} π\)对称,即\(x_1+x_2=\dfrac{2\pi}{3}\)\(\therefore x_2=\dfrac{2\pi}{3}-x_1\)
    \(\because x_1>x_2\)\(\therefore π>x_1>\dfrac{2\pi}{3}-x_1>0\),解可得\(\dfrac{1}{3} π<x_1<\dfrac{2\pi}{3}\)
    又因为\(\sin (2x_1-\dfrac{\pi}{6})=\dfrac{3}{5}\)\(2 x_1-\dfrac{1}{6} \pi \in\left(\dfrac{1}{2} \pi, \dfrac{7 \pi}{6}\right)\)
    \(\cos (2x_1-\dfrac{\pi}{6})=-\dfrac{4}{5}\)
    \(\sin ⁡(x_1-x_2 )=\sin \left(2x_1-\dfrac{2\pi}{3}\right)=\sin \left(2x_1-\dfrac{\pi}{6}-\dfrac{1}{2} π\right)\)\(=-\cos ⁡\left(2x_1-\dfrac{\pi}{6}\right)=\dfrac{4}{5}\)
    故答案为: \(\dfrac{4}{5}\)
     

【C组---拓展题】

1.已知函数\(f(x)=2\cos \left(2x-\dfrac{\pi}{3}\right)\)\(\left[a-\dfrac{\pi}{4},a\right](a∈R)\)上的最大值为\(y_1\),最小值为\(y_2\),则\(y_1-y_2\)的取值范围是\(\underline{\quad \quad}\) .
 

2.已知函数\(f(x)=\cos \left(ωx+\dfrac{\pi}{3}\right)(ω>0)\),图象上任意两条相邻对称轴间的距离为\(\dfrac{\pi}{2}\)
  (1)求函数的单调区间和对称中心.
  (2)若关于\(x\)的方程\(2 \sin ^2⁡x-m\cos x-4=0\)\(x∈\left(0 ,\dfrac{\pi}{2}\right)\)上有实数解,求实数\(m\)的取值范围.
 

参考答案

  1. 答案 \(\left[2-\sqrt{2},2\sqrt{2}\right]\)
    解析 函数\(f(x)=2\cos \left(2x-\dfrac{\pi}{3}\right)\)的周期为\(π\)
    且对称轴为\(x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\),对称中心\(\left(\dfrac{5\pi}{12}+kπ,0\right)\)\(k∈Z\)
    \(f(x)\)的图象大致如图所示;
    image.png
    区间\(\left[a-\dfrac{\pi}{4},a\right]\)正好是函数\(\dfrac{1}{4}\)个周期,在一个周期内讨论就行,
    \(\left[a-\dfrac{\pi}{4},a\right]\)的中点为\(P\)
    由图可知,当点\(P\)落在对称轴上,即\(a-\dfrac{\pi}{8}=\dfrac{\pi}{6}\)时,\(y_1=2\)\(y_2=\sqrt{2}\)
    此时\(y_1-y_2\)取得最小值为\(2-\sqrt{2}\)
    当点\(P\)落在对称中心上,即\(a-\dfrac{\pi}{8}=\dfrac{5\pi}{12}\)时, \(y_1=\sqrt{2}\)\(y_2=-\sqrt{2}\)
    此时\(y_1-y_2\)的值为\(2\sqrt{2}\)
    \(\therefore y_1-y_2\)的取值范围是\(\left[2-\sqrt{2},2\sqrt{2}\right]\)

  2. 答案 (1)单调递增区间\(\left[kπ-\dfrac{2\pi}{3} ,kπ-\dfrac{\pi}{6}\right]\) ,单调递减区间\(\left[kπ-\dfrac{\pi}{6} ,kπ+\dfrac{\pi}{3}\right]\) , 对称中心为\(\left(\dfrac{1}{2} kπ+\dfrac{\pi}{12} ,0\right)\), \(k∈Z\), (2)\(\{m|m<-4\}.\)
    解析 (1)函数\(f(x)=\cos \left(ωx+\dfrac{\pi}{3}\right)(ω>0)\),图象上任意两条相邻对称轴间的距离为\(\dfrac{\pi}{2}\)
    \(\therefore\)周期\(\dfrac{1}{2} T=\dfrac{\pi}{2}\),即\(T=π\),那么 \(\dfrac{2 \pi}{\omega}=\pi\),可得\(ω=2\)
    \(\therefore f(x)=\cos (2x+\dfrac{\pi}{3})\),
    \(2kπ-π≤2x+\dfrac{\pi}{3}≤2kπ\)\(k∈Z\),可得\(kπ-\dfrac{2\pi}{3}≤x≤kπ-\dfrac{\pi}{6}\)
    \(\therefore\)可得函数的单调递增区间\(\left[kπ-\dfrac{2\pi}{3},kπ-\dfrac{\pi}{6}\right]\),\(k∈Z\)
    \(2kπ≤2x+\dfrac{\pi}{3}≤2kπ+π\)\(k∈Z\)
    可得\(kπ-\dfrac{\pi}{6}≤x≤kπ+\dfrac{\pi}{3}\)
    \(\therefore\)可得函数的单调递减区间\(\left[kπ-\dfrac{\pi}{6},kπ+\dfrac{\pi}{3}\right]\),\(k∈Z\)
    \(2x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+kπ\),可得\(x=\dfrac{1}{2} kπ+\dfrac{\pi}{12}\)
    可得函数的对称中心为\(\left(\dfrac{1}{2} kπ+\dfrac{\pi}{12},0 \right)\), \(k∈Z\)
    (2)方程\(2 \sin ^2⁡x-m\cos x-4=0\)\(x∈\left(0,\dfrac{\pi}{2}\right)\)上有实数解,
    \(\because \sin ^2⁡x=1-\cos ^2⁡x\)\(\therefore 2(1-\cos ^2⁡x )-m\cos x-4=0\)
    \(2 \cos ^2⁡x+m\cos x+2=0\)
    \(t=\cos x\)
    \(\because x∈(0,\dfrac{\pi}{2})\)上,
    \(\therefore t∈(0,1)\),则\(2t^2+mt+2=0\)\((0,1)\)上有解, \(m=-2\left(t+\dfrac{1}{t}\right)\)
    \(f(t)=t+\dfrac{1}{t} \geq 2 \sqrt{t \cdot \dfrac{1}{t}}=2\),当且仅当\(t=1\)时,取等号.
    \(-2\left(t+\dfrac{1}{t}\right) \leq-4\)
    任取\(0<t_1<t_2<1\),有 \(f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(1-\dfrac{1}{t_1 \cdot t_2}\right)>0\)
    因此\(f(t)\)\((0,1)\)上单调递减,因此\(m<-2k(1)=-4\)
    所以\(m\)范围\(\{m|m<-4\}\)
     

posted @ 2022-12-03 18:51  贵哥讲数学  阅读(398)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏