5.2.1 三角函数的概念

${\color{Red}{欢迎到学科网下载资料学习 }}$  

【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第一册同步巩固,难度2颗星!

基础知识

任意角的三角函数的概念

\(α\)是一个任意角,\(α∈R\),它的终边\(OP\)与单位圆相交于点\(P(x,y)\).
① 把点\(P\)的纵坐标\(y\)叫做\(α\)的正弦函数,记作\(\sinα\),即\(y=\sinα\)
② 把点\(P\)的纵坐标\(x\)叫做\(α\)的余弦函数,记作\(\cosα\),即\(x=\cosα\)
③ 把点\(P\)的纵坐标 \(\dfrac{y}{x}\)叫做\(α\)的正切函数,记作\(\tanα\),即 \(\dfrac{y}{x}=\tan \alpha(x \neq 0)\).

正弦函数\(f(x)=\sin x\),\(x∈R\);余弦函数\(f(x)=\cos x\),\(x∈R\)
正切函数\(f(x)=\tan x\), \(x \neq \dfrac{\pi}{2}+k \pi(k \in Z)\),它们统称三角函数.
解释
(1) 一般地,任意给定一个角\(α∈R\),它的终边\(OP\)与单位圆的交点是确定的,则点\(P\)的横坐标\(x\)、纵坐标\(y\)都是角\(α\)的函数;
(2) 当\(α=\dfrac{\pi}{2}+kπ(k∈Z)\)时,\(α\)的终边在\(y\)轴上,这时点\(P\)横坐标\(x=0\),此时 \(\dfrac{y}{x}=\tan \alpha\)没意义.
(3) 设\(α\)是一个任意角,它的终边上任意一点\(P\)(不与原点\(O\)重合)的坐标为\((x,y)\),点\(P\)与原点的距离为\(r\)
\(\sin \alpha=\dfrac{y}{r}\)\(\cos \alpha=\dfrac{x}{r}\)\(\tan \alpha=\dfrac{y}{x}\).显然其中\(r=\sqrt{x^2+y^2}\).
 

【例】 \(\sin \dfrac{2 \pi}{3}\)\(\cos \dfrac{2 \pi}{3}\)\(\tan \dfrac{2 \pi}{3}\).
解析 下图中,\(\dfrac{2 \pi}{3}\)的终边\(OP\)与单位圆交于点\(P\),过点\(P\)\(PH⊥x\)轴,
\(Rt∆OPH\)中,\(OP=1\)\(\angle P O H=\dfrac{\pi}{3}\)
\(O H=\dfrac{1}{2}\)\(P H=\dfrac{\sqrt{3}}{2}\),即\(P\left(-\dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right)\)
\(\sin \dfrac{2 \pi}{3}=\dfrac{\sqrt{3}}{2}\)\(\cos \dfrac{2 \pi}{3}=-\dfrac{1}{2}\)\(\tan \dfrac{2 \pi}{3}=-\sqrt{3}\).

 

三角函数在各个象限的符号

判断三角函数在各个象限的符号的方法
(1) 三角函数定义
\(α\)的终边上一点\(P(x,y)\)\(\sinα\)符号看\(y\)\(\cos α\)符号看\(x\)\(\tan α\)符号看 \(\dfrac{y}{x}\).

各象限点坐标的符号 $α$ 第一象限 第二象限 第三象限 第四象限
$\sinα$ $+$ $+$ $-$ $-$
$\cos α$ $+$ $-$ $-$ $+$
$\tan α$ $+$ $-$ $+$ $-$
 

(2) 巧记方法: \(QSRC\)--全是天才
如下图,第一象限是\(Q\),第二象限是\(S\),第一象限是\(T\),第一象限是\(C\)\(QSRC\)是“全是天才”各字拼音首字母.\(S\)代表"\(\sin\)",\(T\)代表"\(\tan\) ",\(C\)代表"\(\cos\) ",\(Q\)代表全部三种函数.
则第一象限中三个函数符号都是正,第二象限中只有\(\sinα\)的符号是正,第三象限中只有\(\tan α\)的符号是正,第四象限只有\(\cos α\)的符号是正.

PS 建议学数学还是要有“逻辑性”地系统建立起知识体系,方法1好;方法2这种“取巧” 的分式不太建议,但挺佩服想到这方法那个人的想象能力.
 

特殊角的三角函数值表

\(α\) \(0\) \(\dfrac{π}{6}\) \(\dfrac{π}{4}\) \(\dfrac{π}{3}\) \(\dfrac{π}{2}\) \(\dfrac{2π}{3}\) \(\dfrac{3π}{4}\) \(\dfrac{5π}{6}\) \(π\) \(\dfrac{3π}{2}\) \(2π\)
\(\sin⁡ α\) \(0\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(1\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{1}{2}\) \(0\) \(-1\) \(0\)
\(\cos ⁡α\) \(1\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{1}{2}\) \(0\) \(-\dfrac{1}{2}\) \(-\dfrac{\sqrt{2}}{2}\) \(-\dfrac{\sqrt{3}}{2}\) \(1\) \(0\) \(1\)
\(\tan ⁡α\) \(0\) \(\dfrac{\sqrt{3}}{3}\) \(1\) \(\sqrt{3}\) \(-\sqrt{3}\) \(-1\) \(-\dfrac{\sqrt{3}}{3}\) \(0\) \(0\)

 

利用三角函数的定义求\(α=0\)\(\dfrac{π}{2}\)\(π\)\(2π\)时对应的三角函数值.
PS 对特殊角的三角函数值,要理解切忌死记,后面学到诱导公式也可理解.
 

【例】 如图所示,\(α=π\)的终边在\(x\)轴的负半轴,与\(x\)轴交点为\(P(-1,0)\)
\(\sinπ=0\)\(\cos π=-1\)\(\tan π=0\).

 

终边相等的角的三角函数值

由三角函数的定义,易得:终边相等的角的同一三角函数的值相等.
\(\sin⁡ (α+k⋅2π)=\sinα\)\(\cos ⁡(α+k⋅2π)=\cos α\)\(\tan ⁡(α+k⋅2π)=\tan α\),其中\(k∈Z\).
这组公式属于诱导公式的公式一,后面我们还会学其他的公式二至六.
 

【例】 \(\cos \dfrac{9 \pi}{4}\)\(\tan \left(-\dfrac{11 \pi}{3}\right)\).
\(\cos \dfrac{9 \pi}{4}==\cos \left(\dfrac{\pi}{4}+2 \pi\right)=\cos \dfrac{\pi}{4}=\dfrac{\sqrt{2}}{2}\)\(\tan \left(-\dfrac{11 \pi}{3}\right)=\tan \left(-4 \pi+\dfrac{\pi}{3}\right)=\tan \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{3}\).
 

基本方法

【题型1】利用定义求角的三角函数值

【典题1】 已知点\(M\)是单位圆\(x^2+y^2=1\)上的点,以射线\(OM\)为终边的角\(α\)的正弦值为\(-\dfrac{\sqrt{2}}{2}\)
\(\cos α\)\(\tan α\)的值.
解析 设点\(M\)的坐标为\((x_1,y_1)\)
由题意可知,\(\sin \alpha=-\dfrac{\sqrt{2}}{2}\),即\(y_1=-\dfrac{\sqrt{2}}{2}\)
\(∵\)\(M\)是圆\(x^2+y^2=1\)上的点,
\(∴x_1^2+y_1^2=1\),即\(x_1^2+\left(-\dfrac{\sqrt{2}}{2}\right)^2=1\),解得\(x_1= \dfrac{\sqrt{2}}{2}\),或 \(x_1=-\dfrac{\sqrt{2}}{2}\)
\(M\left(\dfrac{\sqrt{2}}{2},-\dfrac{\sqrt{2}}{2}\right)\)\(M\left(-\dfrac{\sqrt{2}}{2},-\dfrac{\sqrt{2}}{2}\right)\)
\(\therefore \cos \alpha=\dfrac{\sqrt{2}}{2}\), \(\tan \alpha=-1\),或 \(\cos \alpha=-\dfrac{\sqrt{2}}{2}\), \(\tan \alpha=1\)
点拨 注意三角函数的定义,点\(M\)是否在单位圆上,若不是,则\(\sin \alpha=\dfrac{y}{\sqrt{x^2+y^2}}\)
\(\cos \alpha=\dfrac{x}{\sqrt{x^2+y^2}}\)\(\tan \alpha=\dfrac{y}{x}\).
 

【典题2】 \(\sin \dfrac{3 \pi}{4}\)\(\cos \dfrac{3 \pi}{4}\)\(\tan \dfrac{3 \pi}{4}\).
解析 \(\dfrac{3 \pi}{4}\)的终边\(OP\)与单位圆交于点\(P\),过点\(P\)\(PH⊥x\)轴,
\(Rt∆OPH\)中,\(OP=1\)\(\angle P O H=\dfrac{\pi}{4}\)
\(O H=\dfrac{\sqrt{2}}{2}\)\(P H=\dfrac{\sqrt{2}}{2}\),即\(P\left(-\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2}\right)\)
\(\sin \dfrac{3 \pi}{4}=\dfrac{\sqrt{2}}{2}\)\(\cos \dfrac{3 \pi}{4}=-\dfrac{\sqrt{2}}{2}\)\(\tan \dfrac{3 \pi}{4}=-1\).

 

【巩固练习】

1.求 \(\sin \dfrac{\pi}{2}=\) \(\underline{\quad \quad}\)\(\cos \dfrac{\pi}{2}=\) \(\underline{\quad \quad}\)
 

2.已知角\(α\)的终边过点\(P(-4m,3m)(m≠0)\),则\(2\sinα+\cos α\)的值是(  )
 A.\(1\)\(-1\) \(\qquad \qquad\) B. \(\dfrac{2}{5}\)\(-\dfrac{2}{5}\) \(\qquad \qquad\) C.\(1\)\(-\dfrac{2}{5}\) \(\qquad \qquad\) D.\(-1\)\(\dfrac{2}{5}\)
 

3.求\(\sin \left(-\dfrac{\pi}{4}\right)\)\(\cos \left(-\dfrac{\pi}{4}\right)\)\(\tan \left(-\dfrac{\pi}{4}\right)\).
 

参考答案

  1. 答案 \(1\)\(0\)
    解析 利用单位圆,得到\(\sin⁡ \dfrac{\pi}{2}=1\)\(\cos \dfrac{\pi}{2}=0\).

  2. 答案 \(B\)
    解析 \(r=\sqrt{(-4 m)^2+(3 m)^2}=5|m|\)\(\therefore \sin \alpha=\dfrac{3 m}{5|m|}\)\(\cos \alpha=\dfrac{-4 m}{5|m|}\)
    \(\therefore 2 \sin \alpha+\cos \alpha=\dfrac{6 m-4 m}{5|m|}=\dfrac{2 m}{5|m|}=-\dfrac{2}{5}\)\(\dfrac{2}{5}\),故选\(B\)

  3. 答案 \(\sin \left(-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)\(\cos \left(-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)\(\tan \left(-\dfrac{\pi}{4}\right)=-1\).
    解析 \(-\dfrac{\pi}{4}\)的终边\(OP\)与单位圆交于点\(P\),过点\(P\)\(PH⊥x\)轴,
    \(Rt∆OPH\)中,\(OP=1\)\(\angle P O H=\dfrac{\pi}{4}\)
    \(O H=\dfrac{\sqrt{2}}{2}\)\(P H=\dfrac{\sqrt{2}}{2}\),即\(P\left(\dfrac{\sqrt{2}}{2},-\dfrac{\sqrt{2}}{2}\right)\)
    \(\sin \left(-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)\(\cos \left(-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)\(\tan \left(-\dfrac{\pi}{4}\right)=-1\).

 

【题型2】三角函数值的符号问题

【典题1】 判断下列各式的符号:
(1) \(\sinα⋅\tan α\),其中\(α\)是第四象限角;(2) \(\sin 3 \cdot \cos 4 \cdot \tan \left(-\dfrac{23 \pi}{4}\right)\).
解析 (1)\(∵α\)是第四象限角,\(∴\sinα<0\)\(\tan α<0\)
\(∴\sinα·\tan α>0\)
(2) \(\because \dfrac{\pi}{2}<3<\pi\)\(\pi<4<\dfrac{3 \pi}{2}\)\(∴\sin3>0\)\(\cos 4<0\)
\(\because-\dfrac{23 \pi}{4}=-6 \pi+\dfrac{\pi}{4}\)\(\therefore-\dfrac{23 \pi}{4}\)的终边与\(\dfrac{\pi}{4}\)的终边相同,
\(\because \tan \dfrac{\pi}{4}>0\)\(\therefore \tan \left(-\dfrac{23 \pi}{4}\right)>0\)
\(\therefore \sin 3 \cdot \cos 4 \cdot \tan \left(-\dfrac{23 \pi}{4}\right)<0\)
点拨 判断角\(α\)的三角函数的符号,先确定\(α\)终边在第几象限;设\(α\)的终边所在象限点坐标\((x,y)\)
\(\sinα\)符号看\(y\)\(\cos α\)符号看\(x\)\(\tan α\)符号看 \(\dfrac{y}{x}\).
 

【巩固练习】

1.已知\(\sin4\cdot \tan 2\)的值 (  )
 A.不大于\(0\) \(\qquad \qquad \qquad\) B.大于\(0\) \(\qquad \qquad \qquad\) C.不小于\(0\) \(\qquad \qquad \qquad\) D.小于\(0\)
 

2.已知\(\{x∣x≠\dfrac{kπ}{2},k∈Z\}\),则函数\(y=\dfrac{|\sin x|}{\sin x}+\dfrac{|\cos x|}{\cos x}-\dfrac{2|\tan x|}{\tan x}\) 的值可能是(  )
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(-4\) \(\qquad \qquad \qquad \qquad\) C.\(4\) \(\qquad \qquad \qquad \qquad\) D.\(-2\)
 

3.若\(\cos θ<0\)\(\tan θ<0\),则\(\dfrac{θ}{2}\)终边在(  )
 A.第一象限 \(\qquad \qquad\) B.第二象限 \(\qquad \qquad\) C.第一或第三象限 \(\qquad \qquad\) D.第三或第四象限
 

参考答案

  1. 答案 \(B\)
    解析 \(4rad\)在第三象限,\(\sin4<0\);\(2rad\)在第二象限,\(\tan 2<0\),则\(\sin4\tan 2>0\).故选\(B\).

  2. 答案 \(B\)
    解析\(x\)在第一象限时: \(y=\dfrac{|\sin x|}{\sin x}+\dfrac{|\cos x|}{\cos x}-\dfrac{2|\tan x|}{\tan x}=1+1-2=0\)
    \(x\)在第二象限时: \(y=\dfrac{|\sin x|}{\sin x}+\dfrac{|\cos x|}{\cos x}-\dfrac{2|\tan x|}{\tan x}=1-1+2=2\)
    \(x\)在第三象限时: \(y=\dfrac{|\sin x|}{\sin x}+\dfrac{|\cos x|}{\cos x}-\dfrac{2|\tan x|}{\tan x}=-1-1-2=-4\)
    \(x\)在第四象限时: \(y=\dfrac{|\sin x|}{\sin x}+\dfrac{|\cos x|}{\cos x}-\dfrac{2|\tan x|}{\tan x}=-1+1+2=2\)
    故选:\(B\)

  3. 答案 \(C\)
    解析 \(∵\cos θ<0\) ,\(∴θ\)是第二或三象限,
    \(∵\tan θ<0\)\(∴θ\)是第二或四象限,
    \(∴θ\)是第二象限,即 \(2 k \pi+\dfrac{\pi}{2}<\theta<2 k \pi+\pi\)
    \(\therefore k \pi+\dfrac{\pi}{4}<\dfrac{\theta}{2}<k \pi+\dfrac{\pi}{2}\)
    \(∴\)可得 \(\dfrac{θ}{2}\)终边在第一或第三象限.
    故选:\(C\)
     

【题型3】诱导公式一的应用

【典题1】 求值 \(\cos \dfrac{7 \pi}{3}+\sin \dfrac{25 \pi}{6}+\tan \left(-\dfrac{15 \pi}{4}\right)\).
解析 \(\cos \dfrac{7 \pi}{3}+\sin \dfrac{25 \pi}{6}+\tan \left(-\dfrac{15 \pi}{4}\right)=\cos \left(2 \pi+\dfrac{\pi}{3}\right)+\sin \left(4 \pi+\dfrac{\pi}{6}\right)+\tan \left(-4 \pi+\dfrac{\pi}{4}\right)\)
\(=\cos \dfrac{\pi}{3}+\sin \dfrac{\pi}{6}+\tan \dfrac{\pi}{4}=\dfrac{1}{2}+\dfrac{1}{2}+1=2\).
点拨 \(\sin⁡ (α+k⋅2π)=\sinα\)\(\cos ⁡(α+k⋅2π)=\cos α\)\(\tan ⁡(α+k⋅2π)=\tan α\)
其中\(k∈Z\). 即终边相等的角的同一三角函数的值相等.
 

【典题2】 \(α\)终边与单位圆交于点 \(A\left(-\dfrac{3}{5}, \dfrac{4}{5}\right)\),则 \(\sin (\alpha+4 \pi)+2 \tan (-2 \pi+\alpha)=\) \(\underline{\quad \quad}\) .
解析 \(∵\)\(α\)终边与单位圆交于点 \(A\left(-\dfrac{3}{5}, \dfrac{4}{5}\right)\)
\(\therefore \sin \alpha=\dfrac{4}{5}\)\(\tan \alpha=-\dfrac{4}{3}\)
\(\therefore \sin (\alpha+4 \pi)+2 \tan (-2 \pi+\alpha)=\sin \alpha+2 \tan \alpha=\dfrac{4}{5}+2 \cdot\left(-\dfrac{4}{3}\right)=-\dfrac{28}{15}\)
 

【巩固练习】

1.求值 \(\cos \dfrac{13 \pi}{6}+\sin \dfrac{7 \pi}{3}+\tan \left(-\dfrac{7 \pi}{4}\right)\).
 

2.已知角\(α\)终边上点\(P\)的坐标为\(\left(\dfrac{4}{5},-\dfrac{3}{5}\right)\),则 \(3 \sin (\alpha-2 \pi)-2 \cos (6 \pi+\alpha)=\) \(\underline{\quad \quad}\) .
 

参考答案

  1. 答案 \(\sqrt{3}+1\)
    解析 \(\cos \dfrac{13 \pi}{6}+\sin \dfrac{7 \pi}{3}+\tan \left(-\dfrac{7 \pi}{4}\right)=\cos \left(2 \pi+\dfrac{\pi}{6}\right)+\sin \left(2 \pi+\dfrac{\pi}{3}\right)+\tan \left(-2 \pi+\dfrac{\pi}{4}\right)\)\(=\cos \dfrac{\pi}{6}+\sin \dfrac{\pi}{3}+\tan \dfrac{\pi}{4}=\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}+1=\sqrt{3}+1\).

  2. 答案 \(-\dfrac{17}{5}\)
    解析 \(∵\)\(α\)终边上点\(P\)的坐标为\(\left(\dfrac{4}{5},-\dfrac{3}{5}\right)\)
    \(\therefore x=\dfrac{4}{5}\)\(y=-\dfrac{3}{5}\)\(r=|OA|=1\)
    \(\therefore \sin \alpha=-\dfrac{3}{5}\)\(\cos \alpha=\dfrac{4}{5}\)
    \(\therefore 3 \sin (\alpha-2 \pi)-2 \cos (6 \pi+\alpha)=3 \sin \alpha-2 \cos \alpha=-\dfrac{9}{5}-\dfrac{8}{5}=-\dfrac{17}{5}\)
     

分层练习

【A组---基础题】

1.有下列命题,其中正确的个数是(  )
 ①终边相同的角的同名三角函数值相等;
 ②同名三角函数值相等的角也相等;
 ③终边不相同,它们的同名三角函数值一定不相等;
 ④不相等的角,同名三角函数值也不相等.
 A.\(0\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(3\)
 

2.已知角\(α\)的项点与坐标原点重合,始边与\(x\)轴的非负半轴重合,若点\(P(2,-1)\)在角\(α\)的终边上,则\(\tan α=\)(  )
 A.\(2\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) C. \(-\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(-2\)
 

3.已知\(\sin \alpha=\dfrac{3}{5}\), \(\cos \alpha=-\dfrac{4}{5}\),则角\(α\)所在的象限是(  )
  A.第一象限 \(\qquad \qquad \qquad\) B.第二象限 \(\qquad \qquad \qquad\) C.第三象限 \(\qquad \qquad \qquad\) D.第四象限
 

4.已知\(\alpha=\dfrac{16 \pi}{5}\),则下列结论正确的是(  )
 A. \(\sin⁡ α<0\),\(\cos ⁡α>0\) $ \qquad \qquad \qquad \qquad$ B. \(\sin⁡ α<0\),\(\cos ⁡α<0\)
 C.\(\sin⁡ α<0\),\(\cos ⁡α<0\) \(\qquad \qquad \qquad \qquad\) D.\(\sin⁡ α>0\),\(\cos ⁡α>0\)
 

5.若\(\sinα·\cos α<0\),则\(α\)的终边在(  )
 A.第一或第二象限 \(\qquad \qquad\) B.第一或第三象限 \(\qquad \qquad\) C.第一或第四象限 \(\qquad \qquad\) D.第二或第四象限
 

6.\(\sin495°=\)(  )
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B. \(-\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{\sqrt{2}}{2}\)
 

7.已知角\(α\)的终边与单位圆的交点为\(P\left(-\dfrac{4}{5}, \dfrac{3}{5}\right)\),则\(2\cos α+\tan α=\)\(\underline{\quad \quad}\).
 

8.已知\(P\left(\sin \dfrac{5 \pi}{4}, \cos \dfrac{3 \pi}{4}\right)\)落在角\(θ\)的终边上,且\(θ∈[0,2π)\),则\(θ\)是第\(\underline{\quad \quad}\)象限角.
 

9.已知函数\(f(x)=a \sin (\pi x+\alpha)+b \cos (\pi x+\beta)\),且\(f(2)=2\),则\(f(2020)\)的值为\(\underline{\quad \quad}\).
 
 

10.求值\(\sin \left(-\dfrac{11 \pi}{6}\right)+\cos \dfrac{7 \pi}{3}+\tan \left(-\dfrac{5 \pi}{3}\right)\).

 
 

11.已知角\(α\)终边上点\(P\)的坐标为\((2,-1)\),求\(3 \tan (\alpha+2 \pi)+\sin (-4 \pi+\alpha)\).
 
 
 

参考答案

  1. 答案 \(B\)
    解析 对于①,由诱导公式一可得正确;
    对于②,由 \(\sin 30^{\circ}=\sin 150^{\circ}=\dfrac{1}{2}\),但\(30°≠150°\),所以②错误;
    对于③,如\(α=60°\)\(β=120°\)的终边不相同,但 \(\sin 60^{\circ}=\sin 120^{\circ}=\dfrac{\sqrt{3}}{2}\)
    所以③错误;对于④,由③中的例子可知④错误.

  2. 答案 \(C\)
    解析 \(∵\)\(P(2,-1)\)在角\(α\)的终边上, \(\therefore \tan \alpha=\dfrac{-1}{2}=-\dfrac{1}{2}\),故选:\(C\)

  3. 答案 \(B\)
    解析\(\sin \alpha=\dfrac{3}{5} >0\)得角\(α\)的终边在第一或第二象限;
    \(\cos \alpha=-\dfrac{4}{5}<0\)得角\(α\)的终边在第二或第三象限.
    综上,角\(α\)所在的象限是第二象限.

  4. 答案 \(C\)
    解析 \(\because \alpha=\dfrac{16 \pi}{5}=2 \pi+\pi+\dfrac{\pi}{5}\),终边落在第三象限,
    \(∴\sin⁡ α<0\),\(\cos ⁡α<0\),故选:\(C\).

  5. 答案 \(D\)
    解析 \(∵\sinα·\cos α<0\)\(∴\sinα\)\(\cos α\)异号,
    \(∴α\)的终边在第二或第四象限.

  6. 答案 \(D\)
    解析 \(\sin⁡ 495^∘=\sin⁡ (360^∘+135^∘ )=\sin⁡ 135^∘=\dfrac{\sqrt{2}}{2}\),故选\(D\).

  7. 答案 \(\dfrac{9}{20}\)
    解析\(α\)的终边与单位圆的交点为\(P\left(-\dfrac{4}{5}, \dfrac{3}{5}\right)\),则 \(\cos \alpha=-\dfrac{4}{5}\)
    \(2 \sin \alpha+\tan \alpha=\dfrac{6}{5}+\dfrac{\frac{3}{5}}{-\frac{4}{5}}=\dfrac{9}{20}\)

  8. 答案
    解析 \(\because \sin \dfrac{5 \pi}{4}<0\)\(\cos \dfrac{3 \pi}{4}<0\)\(∴P\)在第三象限,\(∴θ\)在第三象限角.

  9. 答案 \(2\)
    解析 \(∵f(2)=a \sin⁡ (2π+α)+b \cos ⁡(2π+β)=a\sin⁡ α+b\cos ⁡β\)\(∴a \sin⁡ α+b \cos ⁡β=2\)
    \(f(2020)=a \sin⁡ (2020x+α)+b \cos ⁡(2020x+β)=a \sin⁡ α+b \cos ⁡β=2\).

  10. 答案 \(\sqrt{3}+1\)
    解析 \(\sin \left(-\dfrac{11 \pi}{6}\right)+\cos \dfrac{7 \pi}{3}+\tan \left(-\dfrac{7 \pi}{3}\right)=\sin \left(-2 \pi+\dfrac{\pi}{6}\right)+\cos \left(2 \pi+\dfrac{\pi}{3}\right)+\tan \left(-2 \pi+\dfrac{\pi}{3}\right)\)
    \(=\sin \dfrac{\pi}{6}+\cos \dfrac{\pi}{3}+\tan \dfrac{\pi}{3}=\dfrac{1}{2}+\dfrac{1}{2}+\sqrt{3}=\sqrt{3}+1\).

  11. 答案 \(-\dfrac{3}{2}-\dfrac{\sqrt{5}}{5}\)
    解析 \(∵\)\(α\)终边上点\(P\)的坐标为\((2,-1)\)
    \(∴x=2\)\(y=-1\)\(r=|O A|=\sqrt{5}\)
    \(\therefore \sin \alpha=\dfrac{y}{r}=-\dfrac{\sqrt{5}}{5}\)\(\tan \alpha=\dfrac{y}{x}=-\dfrac{1}{2}\)
    \(\therefore 3 \tan (\alpha+2 \pi)+\sin (-4 \pi+\alpha)=3 \tan \alpha+\sin \alpha=-\dfrac{3}{2}-\dfrac{\sqrt{5}}{5}\)
     

【B组---提高题】

1.若\(θ\)为第二象限角,则下列结论一定成立的是(  )
 A. \(\sin \dfrac{\theta}{2}>0\) \(\qquad \qquad \qquad\) B.\(\cos \dfrac{\theta}{2}>0\) \(\qquad \qquad \qquad\) C.\(\tan \dfrac{\theta}{2}>0\) \(\qquad \qquad \qquad\) D.\(\sin \dfrac{\theta}{2} \cos \dfrac{\theta}{2}<0\)
 

2.若\(\sin \left(-\dfrac{7 \pi}{3}+\theta\right)=-\dfrac{3}{5}\),则\(\sin \left(\theta-\dfrac{\pi}{3}\right)=\) \(\underline{\quad \quad}\) .
 
 

参考答案

  1. 答案 \(C\)
    解析 \(∵θ\)为第二象限角, \(\therefore \dfrac{\pi}{2}+2 k \pi<\theta<\pi+2 k \pi\)\(k∈Z\)
    \(\dfrac{\pi}{4}+k \pi<\dfrac{\theta}{2}<\dfrac{\pi}{2}+k \pi\)\(k∈Z\)
    \(∴θ\)为一或三象限角,得 \(\tan \dfrac{\theta}{2}>0\)
    故选:\(C\)

  2. 答案 \(-\dfrac{3}{5}\)
    解析 \(\sin \left(\theta-\dfrac{\pi}{3}\right)=\sin \left[2 \pi+\left(-\dfrac{7 \pi}{3}+\theta\right)\right]=\sin \left(-\dfrac{7 \pi}{3}+\theta\right)=-\dfrac{3}{5}\).
     

【C组---拓展题】

1.若 \(0<x<\dfrac{\pi}{2}\),证明 \(\sin x<x<\tan x\).
 
 

参考答案

  1. 解析 如上图,在单位圆中,\(\sin x=AB\)\(\tan x=CD\)\(x=\widehat{A D}\)
    显然\(\sin x<x<\tan x\).

     
posted @ 2022-12-02 19:09  贵哥讲数学  阅读(466)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏