3.2.2 双曲线的简单几何性质(2)

${\color{Red}{欢迎到学科网下载资料学习 }}$  

【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性必修第一册同步巩固,难度3颗星!

基础知识

直线与双曲线的位置关系

设直线\(l:Ax+By+C=0\),双曲线\(C:f(x,y)=0\),把两者方程联立得到方程组,消元\(y(\)\(x)\)得到一个关于\(x(\)\(y)\)的方程 \(ax^2+bx+c=0\)(或 \(ay^2+by+c=0\)).
① 当\(a≠0\)时,
\(∆>0⇔\)方程有两个不同的实数解,即直线与双曲线有两个交点\(⇔\)相交;
\(∆=0⇔\)方程有两个相同的实数解,即直线与双曲线有一个交点\(⇔\)相切;
\(∆<0⇔\)方程无实数解,即直线与双曲线无交点\(⇔\)相离.
② 当\(a=0\)\(b≠0\)时,即得到一个一次方程,则只有一个交点,此时直线\(l\)与双曲线的渐*线*行.
 

直线与圆锥曲线的弦长公式

(1)直线\(y=kx+b\)与双曲线相交于\(A(x_1,y_1 )\),\(B(x_2,y_2)\),则
\(A B=\sqrt{1+k^2} \cdot\left|x_1-x_2\right|=\sqrt{1+k^2} \cdot \sqrt{\left(x_1+x_2\right)^2-4 x_1 x_2}=\sqrt{1+k^2} \cdot \dfrac{\sqrt{\Delta}}{|a|}\)

\(A B=\sqrt{1+\dfrac{1}{k^2}} \cdot\left|y_1-y_2\right|=\sqrt{1+\dfrac{1}{k^2}} \cdot \sqrt{\left(y_1+y_2\right)^2-4 y_1 y_2}=\sqrt{1+\dfrac{1}{k^2}} \cdot \dfrac{\sqrt{\Delta}}{|a|}\)
(\(∆=b^2-4ac\),注意对公式推导的理解,其本质是两点距离公式)
 

中点弦

① 涉及到中点弦问题可用点差法求解,在处理双曲线的中点弦问题要注意检验!
② “点差法”的常见题型:求中点弦方程、求(过定点、*行弦)弦中点轨迹、垂直*分线问题.
 

双曲线常见的结论

(选学内容,证明可见另一专题《圆锥曲线常见二级结论》)
(1)双曲线点\(P\)处的切线\(PT\)*分\(△PF_1 F_2\)在点\(P\)处的内角.
\(\qquad\)
(2) 双曲线 \(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的焦半径公式:
\(\qquad\)\(M(x_0,y_0)\)在右支上时, \(MF_1=ex_0+a\), \(MF_2=ex_0-a\).
\(\qquad\)\(M(x_0,y_0)\)在左支上时, \(MF_1=-ex_0+a\), \(MF_2=-ex_0-a\).
(3) \(AB\)是双曲线 \(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的不*行于对称轴的弦, \(M(x_0,y_0)\)\(AB\)的中点,
\(\qquad\)\(k_{O M} \cdot k_{A B}=\dfrac{b^2}{a^2}\),即 \(k_{A B}=\dfrac{b^2 x_0}{a^2 y_0}\).
(4) 已知双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)\(O\)为坐标原点,\(P\)\(Q\)为双曲线上两动点,且\(OP⊥OQ\).
\(\qquad\)(i) \(\dfrac{1}{O P^2}+\dfrac{1}{O Q^2}=\dfrac{1}{a^2}-\dfrac{1}{b^2}\)\(\qquad \qquad\) (ii) \(O P^2+O Q^2\)的最小值为 \(\dfrac{4 a^2 b^2}{b^2-a^2}\)(或\(\dfrac{4 a^2 b^2}{a^2-b^2}\)).
(5) 若\(P_0 (x_0,y_0)\)在双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)上,则过\(P_0\)的双曲线的切线方程是 \(\dfrac{x_0 x}{a^2}-\dfrac{y_0 y}{b^2}=1\).
(6) 过双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)上任意一点\(P\)(不是其顶点)作椭圆切线\(PA\),则有\(k_{P A} \cdot k_{O P}=e^2-1\) .
(7) 过直线\(mx+ny=1(m≠0)\)且在双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)外一点\(M\)向双曲线引两条切线,切点分别为\(A\),\(B\)
\(\qquad\)则直线\(AB\)必过定点 \(N\left(m a^2, n b^2\right)\).
 

基本方法

【题型1】直线与双曲线的位置关系与弦长问题

【典题1】已知双曲线 \(x^2-\dfrac{y^2}{4}=1\),过点\(P(1,1)\)的直线\(l\)与双曲线只有一个公共点,求直线\(l\)的方程.
解析 方法1 代数法
(1)当直线\(l\)的斜率不存在时,直线\(l\)的方程为\(x=1\),与双曲线 \(x^2-\dfrac{y^2}{4}=1\)只有一个交点,满足题意;
(2)当直线\(l\)的斜率存在时,设直线\(l\)方程为\(y=k(x-1)+1\)
联立方程得 \(\left\{\begin{array}{c} y=k(x-1)+1 \\ x^2-\dfrac{y^2}{4}=1 \end{array}\right.\)\((4-k^2 ) x^2+(2k^2-2k)x-k^2+2k-5=0 (*)\)
(i)当\(4-k^2=0\)时,\(k=±2\),方程\((*)\)变成\(4x-5=0\)\(12x-13=0\),方程只有一个根,
即直线\(l\)与双曲线只有一个交点,满足题意,
此时直线\(l\)的方程为\(2x-y-1=0\)\(2x+y-3=0\)
(ii) 当\(4-k^2≠0\),即\(k≠±2\)时,要满足题意则要\(△=0\),解得 \(k=\dfrac{5}{2}\)
此时直线方程为 \(y=\dfrac{5}{2} x-\dfrac{3}{2}\),即\(5x-2y-3=0\)
综上所述,直线\(l\)的方程为\(x=1\)\(2x-y-1=0\)\(2x+y-3=0\)\(5x-2y-3=0\)

方法2 几何法
双曲线 \(x^2-\dfrac{y^2}{4}=1\)的渐*线方程为\(y=±2x\)
(1)直线\(l:x=1\)与双曲线只有一个公共点;
(2) 直线\(l\)*行于渐*线\(y=±2x\)时,直线\(l\)与双曲线只有一个公共点,
方程为\(y-1=±2(x-1)\),即\(2x-y-1=0\)\(2x+y-3=0\)
(3) 直线\(l\)不*行于渐*线\(y=±2x\)时,设过\(P\)的直线方程为\(y-1=k(x-1)\)\((k≠±2)\)
\(\left\{\begin{array}{c} y=k(x-1)+1 \\ x^2-\dfrac{y^2}{4}=1 \end{array}\right.\)\((4-k^2 ) x^2+(2k^2-2k)x-k^2+2k-5=0\)
只有一个交点,即\(△=0\),解得 \(k=\dfrac{5}{2}\)
此时直线方程为 \(y=\dfrac{5}{2} x-\dfrac{3}{2}\),即\(5x-2y-3=0\)
故直线\(l\)的方程为\(x=1\)\(2x-y-1=0\)\(2x+y-3=0\)\(5x-2y-3=0\)
点拨 从几何的角度看,直线与双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的位置关系与渐*线 \(y=\dfrac{b}{a} x\)有关,
(1) 当点\(P\)在双曲线上或内,
\(k=\dfrac{b}{a}\)\(k=-\dfrac{b}{a}\)时,只有\(1\)个交点;当 \(k \neq \pm \dfrac{b}{a}\)时,只有\(2\)个交点;

(2) 当点\(P\)在双曲线外,
\(k=\dfrac{b}{a}\)\(k=-\dfrac{b}{a}\)时,只有\(0\)\(1\)个交点;
\(k>\dfrac{b}{a}\)\(k<-\dfrac{b}{a}\)时,只有\(0\)\(2\)个交点;
\(0<k<\dfrac{b}{a}\)\(-\dfrac{b}{a}<k<0\)时,只有\(2\)个交点.

做题时注意特殊情况:斜率\(k\)不存在的直线.
 

【典题2】已知双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的离心率为\(2\),焦点到渐*线的距离等于\(\sqrt{3},\),过右焦点\(F_2\)的直线\(l\)交双曲线于\(A\)\(B\)两点,\(F_1\)为左焦点.
  (1) 求双曲线的方程;
  (2) 若\(△F_1 AB\)的面积等于 \(6 \sqrt{2}\),求直线\(l\)的方程.
解析 (1)\(∵\)双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的渐*线方程为\(bx±ay=0\)
\(∴\)双曲线焦点\((±c,0)\)到渐*线的距离为 \(\dfrac{|b c|}{\sqrt{b^2+a^2}}=b=\sqrt{3}\)
\(∵\)双曲线离心率 \(e=\dfrac{c}{a}=2\)
\(∴c=2a\),*方得 \(c^2=a^2+b^2=a^2+3=4a^2\),解得\(a=1\)
因此双曲线的方程为 \(x^2-\dfrac{y^2}{3}=1\).
(2) 方法1 \(A(x_1,y_1 )\),\(B(x_2,y_2 )\)
当直线\(l\)的斜率不存在,则直线\(l\)的方程\(x=2\),此时易得 \(S_{\triangle F_1 A B}=12 \neq 6 \sqrt{2}\)
故可设直线\(l\)的方程为\(y=k(x-2)\)
\(\left\{\begin{array}{c} y=k(x-2) \\ x^2-\dfrac{y^2}{3}=1 \end{array}\right.\),消元得 \((k^2-3) x^2-4k^2 x+4k^2+3=0\)
\(∵\)有两个交点, \(\therefore k \neq \pm \sqrt{3}\),且 \(x_1+x_2=\dfrac{4 k^2}{k^2-3}\), \(x_1 x_2=\dfrac{4 k^2+3}{k^2-3}\)
\(\therefore|A B|=\sqrt{1+k^2} \cdot \sqrt{\left(x_1+x_2\right)^2-4 x_1 x_2}=\sqrt{1+k^2} \cdot \dfrac{6 \sqrt{k^2+1}}{k^2-3}=\dfrac{6\left(k^2+1\right)}{k^2-3}\)
\(∵F_1 (-2,0)\)到直线\(l\)的距离为: \(d=\dfrac{4|k|}{\sqrt{1+k^2}}\)
\(∴△F_1 AB\)的面积 \(S=\dfrac{1}{2} \cdot d \cdot|A B|=\dfrac{1}{2} \cdot \dfrac{4|k|}{\sqrt{1+k^2}} \cdot \dfrac{6\left(k^2+1\right)}{k^2-3}=12|k| \cdot \dfrac{\sqrt{k^2+1}}{k^2-3}=6 \sqrt{2}\)
\(∴k^4+8k^2-9=0\),解得\(k=±1\)
\(∴\)所以直线\(l\)的方程为\(y=±(x-2)\)
方法2 \(A(x_1,y_1 )\),\(B(x_2,y_2 )\)
同方法1可得: \(k \neq \pm \sqrt{3}\),且 \(x_1+x_2=\dfrac{4 k^2}{k^2-3}\), \(x_1 x_2=\dfrac{4 k^2+3}{k^2-3}\)
\(∴y_1-y_2=k(x_1-x_2)\)
\(∴△F_1 AB\)的面积 \(S=\dfrac{1}{2}\left|F_1 F_2\right|\left|y_1-y_2\right|=2|k|\left|x_1-x_2\right|\)\(=2|k| \dfrac{\sqrt{\left(4 k^2\right)^2-4\left(k^2-3\right)\left(4 k^2+3\right)}}{\left|k^2-3\right|}=12|k| \dfrac{\sqrt{k^2+1}}{\left|k^2-3\right|}=6 \sqrt{2}\)
两边去分母并且*方整理,得 \(k^4+8k^2-9=0\),解之得\(k^2=1\)
\(∴k=±1\),得直线\(l\)的方程为\(y=±(x-2)\).

点拨
1.过一定点设直线方程为\(y=kx+m\),但要注意斜率是否存在,也设直线方程为\(x=ty+m\)
2.求三角形面积可以用 \(S_{\triangle}=\dfrac{1}{2} \cdot A B \cdot d\)_,_其中\(AB\)为弦长,\(d\)\(F_2\)到直线\(AB\)的距离;或用\(S_△= \dfrac{1}{2}\left|F_1 F_2\right|\left|y_1-y_2\right|\).
 

巩固练习

1.双曲线 \(x^2-y^2=1\)与直线\(x-y=1\)交点的个数为(  )
 A.\(0\) \(\qquad \qquad\) B.\(1\) \(\qquad \qquad\) C.\(2\) \(\qquad \qquad\) D.\(4\)
 

2.已知双曲线 \(\dfrac{x^2}{12}-\dfrac{y^2}{4}=1\)的右焦点为\(F\),若过点\(F\)的直线与双曲线的右支有且只有一个交点,则该直线斜率的取值范围是(  )
 A. \(\left(-\dfrac{\sqrt{3}}{3}, \dfrac{\sqrt{3}}{3}\right)\) \(\qquad \qquad\) B. \((-\sqrt{3}, \sqrt{3})\) \(\qquad \qquad\) C. \(\left[-\dfrac{\sqrt{3}}{3}, \dfrac{\sqrt{3}}{3}\right]\) \(\qquad \qquad\) D. \([-\sqrt{3}, \sqrt{3}]\)
 

3.已知双曲线 \(C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的离心率为 \(\sqrt{5}\),虚轴长为\(4\)
  (1)求双曲线的标准方程;
  (2)过点\((0,1)\),倾斜角为\(45°\)的直线\(l\)与双曲线\(C\)相交于\(A\)\(B\)两点,\(O\)为坐标原点,求\(∆OAB\)的面积.
 
 

4.已知双曲线 \(C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的右焦点\(F(2,0)\),一条渐*线的倾斜角为 \(30^∘\)
  (1)求双曲线\(C\)的方程;
  (2)经过点\(F\)的直线与双曲线的右支交于\(A\),\(B\)两点,与\(y\)轴交于\(P\)点,点\(P\)关于原点的对称点为点\(Q\),求证: \(S_{\triangle Q A B}>\dfrac{4 \sqrt{3}}{3}\)
 
 

参考答案

  1. 答案 \(B\)
    解析 联立方程可得 \(\left\{\begin{array}{l} x^2-y^2=1 \\ x-y=1 \end{array}\right.\),消\(y\)可得 \(x^2-(x-1)^2=1\)
    \(2x-1=1\),故\(x=1\)
    故方程组有且只有一组解,
    故双曲线 \(x^2-y^2=1\)与直线\(x-y=1\)有且只有一个交点;
    故选:\(B\)
  2. 答案 \(C\)
    解析 渐*线方程 \(y=\pm \dfrac{\sqrt{3}}{3} x\),
    当过焦点的两条直线与两条渐*线*行时,
    这两条直线与双曲线右支分别只有一个交点(因为双曲线正在与渐*线无限接*中),
    那么在斜率是 \(\left[-\dfrac{\sqrt{3}}{3}, \dfrac{\sqrt{3}}{3}\right]\)两条直线之间的所有直线中,
    都与双曲线右支只有一个交点.
    此直线的斜率的取值范围 \(\left[-\dfrac{\sqrt{3}}{3}, \dfrac{\sqrt{3}}{3}\right]\)
    故选:\(C\)
  3. 答案 (1) \(x^2-\dfrac{y^2}{4}=1\) (2) \(\dfrac{4}{3}\)
    解析 (1)依题意可得 \(\left\{\begin{array}{c} \dfrac{c}{a}=\sqrt{5} \\ 2 b=4 \\ c^2=a^2+b^2 \end{array}\right.\) ,解得\(a=1\),\(b=2\), \(c=\sqrt{5}\)
    \(∴\)双曲线的标准方程为 \(x^2-\dfrac{y^2}{4}=1\)
    (2)直线\(l\)的方程为\(y=x+1\)
    \(A(x_1,y_1)\),\(B(x_2,y_2)\)
    \(\left\{\begin{array}{c} y=x+1 \\ x^2-\dfrac{y^2}{4}=1 \end{array}\right.\)可得\(3x^2-2x-5=0\)
    由韦达定理可得 \(x_1+x_2=\dfrac{2}{3}, x_1 x_2=-\dfrac{5}{3}\)
    \(|A B|=\sqrt{1+k^2} \cdot \sqrt{\left(x_1+x_2\right)^2-4 x_1 x_2}=\sqrt{2} \cdot \sqrt{\dfrac{4}{9}+\dfrac{20}{3}}=\dfrac{8 \sqrt{2}}{3}\)
    原点到直线\(l\)的距离为 \(d=\dfrac{\sqrt{2}}{2}\)
    于是 \(S_{\triangle O A B}=\dfrac{1}{2} \cdot|A B| \cdot d=\dfrac{1}{2} \cdot \dfrac{8 \sqrt{2}}{3} \cdot \dfrac{\sqrt{2}}{2}=\dfrac{4}{3}\)
    \(∴∆OAB\)的面积为 \(\dfrac{4}{3}\).
  4. 答案 (1) \(\dfrac{x^2}{3}-y^2=1\) (2)略
    解析 (1)由题意得\(c=2\)\(\dfrac{b}{a}=\tan 30^{\circ}=\dfrac{\sqrt{3}}{3}\)\(c^2=a^2+b^2\)
    解得 \(a^2=3\)\(b^2=1\)
    所以双曲线\(C\)的方程为 \(\dfrac{x^2}{3}-y^2=1\)
    (2)证明:由题意知直线的斜率存在,设直线方程为\(y=k(x-2)\),得\(P(0,-2k)\),\(Q(0,2k)\)
    \(A(x_1,y_1 )\),\(B(x_2,y_2 )\)
    联立 \(\left\{\begin{array}{l} \dfrac{x^2}{3}-y^2=1 \\ y=k(x-2) \end{array}\right.\),整理可得 \((3k^2-1) x^2-12k^2 x+12k^2+3=0\)
    \(x_1+x_2=\dfrac{12 k^2}{3 k^2-1}\)\(x_1 \cdot x_2=\dfrac{12 k^2+3}{3 k^2-1}\)
    所以 \(S_{\triangle Q A B}=\left|S_{\triangle Q P B}-S_{\triangle Q P A}\right|=\dfrac{1}{2}\left|P Q \| x_1-x_2\right|=2|k|\left|x_1-x_2\right|\)
    所以 \(S_{\triangle Q A B}^2=4 k^2\left[\left(x_1+x_2\right)^2-4 x_1 x_2\right]\)\(=4 k^2\left[\left(\dfrac{12 k^2}{3 k^2-1}\right)^2-\dfrac{4\left(12 k^2+3\right)}{3 k^2-1}\right]=\dfrac{48 k^2\left(k^2+1\right)}{\left(3 k^2-1\right)^2}\)
    直线与双曲线右支有两个交点,
    所以 \(x_1+x_2=\dfrac{12 k^2}{3 k^2-1}>0\), \(x_1 \cdot x_2=\dfrac{12 k^2+3}{3 k^2-1}>0\)
    所以\(3k^2>1\)
    \(t=3k^2-1>0\)
    \(S_{\triangle Q A B}^2=48 \dfrac{\dfrac{(t+1)}{3} \cdot\left(\dfrac{t+1}{3}+1\right)}{t^2}=\dfrac{16}{3}\left(\dfrac{4}{t^2}+\dfrac{5}{t}+1\right)=\dfrac{64}{3}\left(\dfrac{1}{t}+\dfrac{5}{8}\right)^2-3\)\(>\dfrac{64}{3} \times \dfrac{25}{64}-3=\dfrac{16}{3}\)
    所以 \(S_{\triangle Q A B}>\dfrac{4 \sqrt{3}}{3}\)
     

【题型2】直线与双曲线的综合题型

【典题1】 动点\(M(x,y)\)与定点\(F(4,0)\)的距离和\(M\)到定直线 \(l:x=\dfrac{9}{4}\)的距离的比是常数 \(\dfrac{4}{3}\),求动点\(M\)的轨迹,
解析 如图,设\(d\)是点\(M\)直线 \(l:x=\dfrac{9}{4}\)的距离,

根据题意,得 \(\dfrac{\sqrt{(x-4)^2+y^2}}{\left|x-\dfrac{9}{4}\right|}=\dfrac{4}{3}\),化简得 \(7x^2-9y^2=63\),即 \(\dfrac{x^2}{9}-\dfrac{y^2}{7}=1\),
所以动点\(M\)的轨迹是焦点在\(x\)轴上,实轴长为\(6\)、虚轴长为 \(2 \sqrt{7}\)的双曲线.
点拨 这是双曲线的第二定义,其中直线 \(l:x=\dfrac{9}{4}\)叫做准线,距离之比 \(\dfrac{4}{3}\)为双曲线离心率.
 

【典题2】已知双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)渐*线方程为 \(y=\pm \sqrt{3} x\)\(O\)为坐标原点,点 \(M(-\sqrt{3}, \sqrt{3})\)在双曲线上.
  (1)求双曲线的方程;
  (2)已知\(P\)\(Q\)为双曲线上不同两点,点\(O\)在以\(PQ\)为直径的圆上,求 \(\dfrac{1}{|O P|^2}+\dfrac{1}{|O Q|^2}\)的值.
解析 (1)∵\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)渐*线方程为 \(y=\pm \sqrt{3} x\)
\(∴\)设双曲线方程为 \((y+\sqrt{3} x)(y-\sqrt{3} x)=\lambda\)\(λ≠0\),即 \(y^2-3x^2=λ\)
\(∵O\)为坐标原点,点 \(M(-\sqrt{3}, \sqrt{3})\)在双曲线上,
\(\therefore(\sqrt{3})^2-3(-\sqrt{3})^2=\lambda\),解得\(λ=-6\)
\(∴\)双曲线方程为 \(y^2-3x^2=-6\),即 \(\dfrac{x^2}{2}-\dfrac{y^2}{6}=1\)
(2)\(∵\)直线\(l\)与双曲线交于\(P\)\(Q\)两点,以弦\(PQ\)为直径的圆经过原点\(O\)
\(∴OP⊥OQ\)
设直线\(OP\)的方程为\(y=kx,(k≠0)\)
代入 \(\lambda^{x^2}-\dfrac{y^2}{6}=1\)中,得 \(\left\{\begin{array}{l} x^2=\dfrac{6}{3-k^2} \\ y^2=\dfrac{6 k^2}{3-k^2} \end{array}\right.\)
\(\therefore|O P|^2=x^2+y^2=\dfrac{6\left(k^2+1\right)}{3-k^2}\),同理,得 \(|O Q|^2=\dfrac{6\left(k^2+1\right)}{3 k^2-1}\)
\(\therefore \dfrac{1}{|O P|^2}+\dfrac{1}{|O Q|^2}=\dfrac{1}{3}\) .
点拨 这是定值问题,引入变量表示所求量,最后确定所求值与变量无关,这是常见解题思路.比如本题用\(k\)表示 \(|O P|^2\)\(|O Q|^2\),最后通过运算确定 \(\dfrac{1}{|O P|^2}+\dfrac{1}{|O Q|^2}\)的值与\(k\)无关.
 

【典题3】已知双曲线\(C\)过点 \((4, \sqrt{3})\),且渐*线方程为 \(y=\pm \dfrac{1}{2} x\),直线\(l\)与曲线\(C\)交于点\(M\)\(N\)两点.
  (1)求双曲线\(C\)的方程;
  (2)若直线\(l\)过点\((1,0)\),问在\(x\)轴上是否存在定点\(Q\),使得 \(\overrightarrow{Q M} \cdot \overrightarrow{Q N}\)为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.
解析 (1)因为双曲线\(C\)过点 \((4, \sqrt{3})\),且渐*线方程为 \(y=\pm \dfrac{1}{2} x\)
所以 \(\left\{\begin{array}{l} \dfrac{16}{a^2}-\dfrac{3}{b^2}=1 \\ \dfrac{b}{a}=\dfrac{1}{2} \end{array}\right.\),解得 \(b^2=1\)\(a^2=4\)
所以双曲线的方程为 \(\dfrac{x^2}{4}-y^2=1\)
(2)设直线\(l\)的方程为\(x=my+1\),设定点\(Q(t,0)\)
联立方程组 \(\left\{\begin{array}{l} \dfrac{x^2}{4}-y^2=1 \\ x=m y+1 \end{array}\right.\),消\(x\)可得\((m^2-4) y^2+2my-3=0\)
所以 \(m^2-4≠0\),且 \(△=4m^2+12(m^2-4)>0\),解得 \(m^2>3\)\(m^2≠4\)
\(M(x_1,y_1 )\),\(N(x_2,y_2 )\)
所以 \(y_1+y_2=-\dfrac{2 m}{m^2-4}\)\(y_1 y_2=-\dfrac{3}{m^2-4}\)
所以 \(x_1+x_2=m\left(y_1+y_2\right)+2=-\dfrac{2 m^2}{m^2-4}+2=\dfrac{-8}{m^2-4}\)
\(x_1 x_2=\left(m y_1+1\right)\left(m y_2+1\right)=m^2 y_1 y_2+m\left(y_1+y_2\right)+1\)
\(=-\dfrac{3}{m^2-4}-\dfrac{2 m}{m^2-4}+1=-\dfrac{4 m^2+4}{m^2-4}=-4-\dfrac{20}{m^2-4}\)
所以 \(\overrightarrow{Q M} \cdot \overrightarrow{Q N}=\left(x_1-t, y_1\right)\left(x_2-t, y_2\right)=\left(x_1-t\right)\left(x_2-t,\right)+y_1 y_2\)
\(=x_1 x_2-t\left(x_1+x_2\right)+y_1 y_2=x_1 x_2-t\left(x_1+x_2\right)+t^2+y_1 y_2\)
\(=-4-\dfrac{20}{m^2-4}+t \cdot \dfrac{8}{m^2-4}-\dfrac{3}{m^2-4}+t^2\)
\(=-4+t^2+\dfrac{8 t-23}{m^2-4}\)为常数,与\(m\)无关,
所以\(8t-23=0\),解得 \(t=\dfrac{23}{8}\)
此时 \(\overrightarrow{Q M} \cdot \overrightarrow{Q N}=\dfrac{273}{64}\)
点拨 这是定点问题,先设元(设定点坐标)再根据已知条件求出其元的值,从而确定定点.
 

巩固练习

1.双曲线\(E:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)被斜率为\(4\)的直线截得的弦\(AB\)的中点为\((2,1)\),则双曲线\(E\)的离心率为(  )
 A. \(\sqrt{2}\) \(\qquad \qquad\) B. \(\sqrt{3}\) \(\qquad \qquad\) C.\(2\) \(\qquad \qquad\) D. \(\sqrt{5}\)
 

2.已知双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的渐*线为 \(y=\pm \sqrt{3} x\),过右焦点\(F\)的直线\(l\)与双曲线交于\(A\)\(B\)两点且 \(\overrightarrow{A F}=3 \overrightarrow{F B}\),则直线\(l\)的斜率为(  )
 A. \(\pm \sqrt{3}\) \(\qquad \qquad\) B. \(\pm \sqrt{15}\) \(\qquad \qquad\) C.\(±1\) \(\qquad \qquad\) D. \(\pm \sqrt{5}\)
 

3.已知双曲线 \(Γ:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)\(O\)为坐标原点.
  (1)若\(Γ\)为等轴双曲线,且\(Γ\)的右焦点\(F\)到点\(O\)的距离为\(2\),求\(Γ\)的方程;
  (2) \(a=\sqrt{2}\)\(b=\sqrt{3}\),设斜率为\(1\)的直线\(l\)\(Γ\)\(P\)\(Q\)两点,且\(OP⊥OQ\),若\(l\)与圆 \(x^2+y^2=r^2 (r>0)\)相切,求\(r\)的值.
 
 

4.已知双曲线的方程 \(C:2x^2-y^2=1\)
  (1)求点\(P(0,1)\)到双曲线\(C\)上点的距离的最小值;
  (2)已知圆 \(M:x^2+y^2=1\)的切线\(l\)(直线\(l\)的斜率存在)与双曲线\(C\)交于\(A\)\(B\)两点,那么\(∠AOB\)是否为定值?如果是,求出定值;如果不是,请说明理由.
 
 

参考答案

  1. 答案 \(B\)
    解析\(A(x_1,y_1 )\),\(B(x_2,y_2 )\)代入双曲线方程作差有 \(\dfrac{\left(x_1-x_1\right)\left(x_1+x_2\right)}{a^2}=\dfrac{\left(y_1-y_2\right)\left(y_1+y_2\right)}{b^2}\)
    双曲线 \(E:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)被斜率为\(4\)的直线截得的弦\(AB\)的中点为\((2,1)\)
    所以\(x_1+x_2=4\),\(y_1+y_2=2\)
    \(\dfrac{b^2}{a^2}=\dfrac{\left(y_1-y_2\right)\left(y_1+y_2\right)}{\left(x_1-x_2\right)\left(x_1+x_2\right)}=2\),所以 \(\dfrac{c^2}{a^2}=3\)\(e=\sqrt{3}\)
    故选:\(B\)
  2. 答案
    解析 双曲线\(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的渐*线为 \(y=\pm \sqrt{3} x\),可得 \(b=\sqrt{3} a\)\(c=2a\),
    双曲线的方程即为 \(3x^2-y^2=3a^2\),
    \(\overrightarrow{A F}=3 \overrightarrow{F B}\),可得\(A,F,B\)三点共线,且\(A,B\)均在双曲线的右支上,
    \(A,B\)的纵坐标分别为\(y_1\)\(y_2\),可得\(-y_1=3y_2\),①
    可设直线\(l\)的方程为\(x=my+c\),即\(x=my+2a\)
    联立双曲线的方程 \(3x^2-y^2=3a^2\),可得 \((3m^2-1) y^2+12amy+9a^2=0\)
    可得 \(y_1+y_2=-\dfrac{12 a m}{3 m^2-1}\)\(y_1 y_2=\dfrac{9 a^2}{3 m^2-1}\),②
    联立①②可得 \(-3 \cdot \dfrac{36 a^2 m^2}{\left(3 m^2-1\right)^2}=\dfrac{9 a^2}{3 m^2-1}\)
    化为\(15m^2=1\),解得 \(m=\pm \dfrac{\sqrt{15}}{15}\)
    则直线\(l\)的斜率为 \(\pm \sqrt{15}\)
    故选:\(B\)
  3. 答案 (1) \(\dfrac{x^2}{2}-\dfrac{y^2}{2}=1\) (2) \(\sqrt{6}\)
    解析 (1)\(Γ\)为等轴双曲线,可得\(a=b\)
    \(Γ\)的右焦点\(F(c,0)\)到点\(O\)的距离为\(2\),可得\(c=2\),即 \(a^2+b^2=4\)
    解得 \(a=b=\sqrt{2}\)
    则双曲线的方程为 \(\dfrac{x^2}{2}-\dfrac{y^2}{2}=1\)
    (2)由题意可得 \(\Gamma: \dfrac{x^2}{2}-\dfrac{y^2}{3}=1,\),设直线\(l:y=x+m\)\(P(x_1,y_1 )\)\(Q(x_2,y_2 )\)
    将直线方程代入双曲线方程,并化简得 \(x^2-4mx-(2m^2+6)=0\)
    \(△=16m^2-4(2m^2+6)>0\),解得 \(m>\sqrt{3}\)\(m<-\sqrt{3}\)
    \(x_1+x_2=4m\)\(x_1 x_2=-2m^2-6\)\((*)\)
    \(∵OP⊥OQ\)
    \(∴x_1 x_2+y_1 y_2=x_1 x_2+(x_1+m)(x_2+m)=2x_1 x_2+m(x_1+x_2)+m^2=0\)
    \((*)\)代入,得\(m^2=12\)
    \(\therefore m=\pm 2 \sqrt{3}\)
    又直线\(l\)与圆相切,可得 \(r=d=\dfrac{|m|}{\sqrt{2}}=\sqrt{6}\)
  4. 答案 (1) \(\dfrac{\sqrt{30}}{6}\) (2) \(90°\)
    解析 (1)设\(Q(a,b)\)为双曲线上的点,则 \(2a^2-b^2=1\)
    \(|P Q|=\sqrt{a^2+(b-1)^2}=\sqrt{\dfrac{3}{2} b^2-2 b+\dfrac{3}{2}}=\sqrt{\dfrac{3}{2}\left(b-\dfrac{2}{3}\right)^2+\dfrac{5}{6}}\)
    \(b=\dfrac{2}{3}\)\(|PQ|\)最小,且为 \(\dfrac{\sqrt{30}}{6}\)
    所以点\(P(0,1)\)到双曲线\(C\)上点的距离的最小值为 \(\dfrac{\sqrt{30}}{6}\)
    (2)设直线\(l\)的方程为\(y=kx+t\)
    由直线\(l\)与圆相切,可得 \(d=\dfrac{|t|}{\sqrt{1+k^2}}=1\),即 \(t^2=1+k^2\)
    \(A(x_1,y_1 )\),\(B(x_2,y_2 )\),联立 \(\left\{\begin{array}{l} y=k x+t \\ 2 x^2-y^2=1 \end{array}\right.\)
    可得 \((2-k^2 ) x^2-2ktx-t^2-1=0\)
    \(2-k^2≠0\)\(x_1+x_2=\dfrac{2 k t}{2-k^2}\)\(x_1 x_2=-\dfrac{t^2+1}{2-k^2}=-\dfrac{2+k^2}{2-k^2}\)
    所以 \(y_1 y_2=\left(k x_1+t\right)\left(k x_2+t\right)=k^2 x_1 x_2+k t\left(x_1+x_2\right)+t^2\)
    \(=\dfrac{-k^2 t^2-k^2+2 k^2 t^2+2 t^2-k^2 t^2}{2-k^2}=\dfrac{2 t^2-k^2}{2-k^2}=\dfrac{2+k^2}{2-k^2}\)
    所以 \(\overrightarrow{O A} \cdot \overrightarrow{O B}=x_1 x_2+y_1 y_2=-\dfrac{2+k^2}{2-k^2}+\dfrac{2+k^2}{2-k^2}=0\)
    所以\(∠AOB\)为定值\(90°\).
     

分层练习

【A组---基础题】

1.直线\(y=kx(k>0)\)与双曲线 \(\dfrac{x^2}{2}-\dfrac{y^2}{6}=1\)没有交点,则\(k\)的取值范围为(  )
  A. \(\left[\dfrac{\sqrt{3}}{3},+\infty\right)\) \(\qquad \qquad\) B.\((2,+∞)\) \(\qquad \qquad\) C. \([\sqrt{3},+\infty)\) \(\qquad \qquad\) D. \((0, \sqrt{3})\)
 

2.过双曲线 \(\dfrac{x^2}{3}-y^2=1\)的右焦点\(F\),作倾斜角为\(60°\)的直线\(l\),交双曲线的渐*线于点\(A\)\(B\)\(O\)为坐标原点,则\(△OAB\)的面积为(  )
 A. \(\sqrt{3}\) \(\qquad \qquad\) B.\(3\) \(\qquad \qquad\) C. \(\dfrac{3 \sqrt{3}}{2}\) \(\qquad \qquad\) D.\(6\)
 

3.已知倾斜角为 \(\dfrac{\pi}{4}\)的直线与双曲线 \(C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)相交于\(A\)\(B\)两点,\(M(4,2)\)是弦\(AB\)的中点,则双曲线的离心率为\(\underline{\quad \quad}\) .
 

4.已知曲线 \(C:x^2-y^2=1\)及直线\(l:y=kx-1\).且直线\(l\)与双曲线\(C\)有两个不同的交点\(A\),\(B\)
  (1)求实数\(k\)的取值范围;
  (2)\(O\)是坐标原点,且\(△AOB\)的面积为 \(\sqrt{2}\),求实数k的值.
 
 

5.已知双曲线 \(C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\)的焦距为 \(2 \sqrt{5}\),且过点 \(A(2 \sqrt{2},-1)\),直线\(l\)与曲线\(C\)右支相切(切点不为右项点),且\(l\)分别交双曲线\(C\)的两条渐*线与\(M\),\(N\)两点,\(O\)为坐标原点.
  (1)求双曲线\(C\)的方程;
  (2)求证:\(△MON\)面积为定值,并求出该定值.
image.png
 
 

6.已知\(F_1 (-2,0)\),\(F_2 (2,0)\),点\(P\)满足\(|PF_1 |-|PF_2 |=2\),记点\(P\)的轨迹为\(E\)
  (1)求轨迹\(E\)的方程;
  (2)若直线\(l\)过点\(F_2\)且与轨迹\(E\)交于\(P\)\(Q\)两点.无论直线\(l\)绕点\(F_2\)怎样转动,在\(x\)轴上总存在定点\(M(m,0)\),使\(MP⊥MQ\)恒成立,求实数\(m\)的值.
 
 

参考答案

  1. 答案 \(C\)
    解析 双曲线 \(\dfrac{x^2}{2}-\dfrac{y^2}{6}=1\)的渐*线方程为: \(y=\pm \sqrt{3} x\)
    根据双曲线的性质可知直线\(y=kx(k>0)\)与双曲线 \(\dfrac{x^2}{2}-\dfrac{y^2}{6}=1\)没有交点,满足 \(k \geq \sqrt{3}\)
    故选:\(C\)

  2. 答案 \(C\)
    解析 不妨设点\(A\)在第一象限,点\(B\)在第四象限,因为\(∠OFB=60°\),
    双曲线 \(\dfrac{x^2}{3}-y^2=1\)的渐*线方程 \(y=\pm \dfrac{\sqrt{3}}{3} x\)
    所以\(∠AOF=30°\),所以\(∠FOB=30°\)
    所以\(∠OBA=∠OBF=90°\),所以 \(|O B|=|O F| \cos 30^{\circ}=\sqrt{3}\)
    \(∠AOB=60°\),则\(∠OAB=30°\),所以 \(|O A|=2|O B|=2 \sqrt{3}\),所以\(|AB|=3\)
    从而\(△OAB\)的面积为: \(\dfrac{1}{2} \cdot|O A||O B| \sin 60^{\circ}=\dfrac{3 \sqrt{3}}{2}\)
    故选:\(C\)
    image.png

  3. 答案 \(\dfrac{\sqrt{6}}{2}\)
    解析\(A\)\(B\)的坐标分别为\((x_1,y_1 )\),\((x_2,y_2 )\)
    \(\left\{\begin{array}{l} \dfrac{x_1^2}{a^2}-\dfrac{y_1^2}{b^2}=1 \\ \dfrac{x_2^2}{a^2}-\dfrac{y_2^2}{b^2}=1 \end{array}\right.\),两式相减,整理得, \(\dfrac{y_1-y_2}{x_1-x_2}=\dfrac{b^2\left(x_1+x_2\right)}{a^2\left(y_1+y_2\right)}\)
    \(∵\)直线\(AB\)的倾斜角为 \(\dfrac{\pi}{4}\),且弦\(AB\)的中点为\(M(4,2)\)
    \(\therefore \tan \dfrac{\pi}{4}=\dfrac{b^2 \times 4}{a^2 \times 2}\),得 \(\dfrac{b^2}{a^2}=\dfrac{1}{2}\)
    \(∴\)离心率 \(e=\sqrt{\dfrac{c^2}{a^2}}=\sqrt{1+\dfrac{b^2}{a^2}}=\sqrt{1+\dfrac{1}{2}}=\dfrac{\sqrt{6}}{2}\)

  4. 答案 (1) \(\{k \mid-\sqrt{2}<k<\sqrt{2} \text {, 且 } k \neq \pm 1\}\) (2) \(\pm \dfrac{\sqrt{6}}{2}\)
    解析 (1)设\(A(x_1,y_1 )\),\(B(x_2,y_2 )\)
    联立 \(\left\{\begin{array}{l} y=k x-1 \\ x^2-y^2=1 \end{array}\right.\),整理可得\((1-k^2 ) x^2+2kx-2=0\)
    \(\left\{\begin{array}{l} 1-k^2 \neq 0 \\ \Delta=4 k^2-4\left(1-k^2\right)(-2)>0 \end{array}\right.\)时,直线\(l\)与双曲线由两个不同的交点,
    \(\left\{\begin{array}{l} k \neq 1 \text { 且 } k \neq-1 \\ -\sqrt{2}<k<\sqrt{2} \end{array}\right.\)
    所以\(k\)的取值范围为 \(\{k \mid-\sqrt{2}<k<\sqrt{2} \text {, 且 } k \neq \pm 1\}\)
    (2)由(1)可知 \(x_1+x_2=\dfrac{-2 k}{1-k^2}\), \(x_1 x_2=-\dfrac{2}{1-k^2}\)
    所以弦长\(|A B|=\sqrt{1+k^2} \cdot \sqrt{\left(x_1+x_2\right)^2-4 x_1 x_2}=\sqrt{1+k^2} \cdot \sqrt{\dfrac{4 k^2}{\left(1-k^2\right)^2}-4 \cdot \dfrac{-2}{1-k^2}}\)
    \(=\sqrt{1+k^2} \cdot \dfrac{\sqrt{8-4 k^2}}{\left|1-k^2\right|}\)
    原点\(O\)到直线\(AB\)的距离 \(d=\dfrac{1}{\sqrt{1+k^2}}\)
    所以 \(S_{\triangle A O B}=\dfrac{1}{2} \cdot|A B| \cdot d=\dfrac{1}{2} \cdot \sqrt{1+k^2} \cdot \dfrac{\sqrt{8-4 k^2}}{\left|1-k^2\right|} \cdot \dfrac{1}{\sqrt{1+k^2}}=\sqrt{\dfrac{2-k^2}{\left(1-k^2\right)^2}}\)
    由题意 \(\sqrt{2}=\sqrt{\dfrac{2-k^2}{\left(1-k^2\right)^2}}\),解得: \(k=\pm \dfrac{\sqrt{6}}{2}\)符合题意,
    所以实数\(k\)的值为 \(\pm \dfrac{\sqrt{6}}{2}\)
    image.png

  5. 答案 (1) \(\dfrac{x^2}{4}-y^2=1\) (2) \(2\)
    解析 (1)设双曲线的焦距为\(2c\),由题意可得 \(\left\{\begin{array}{l} 2 c=2 \sqrt{5} \\ c^2=a^2+b^2 \\ \dfrac{8}{a^2}-\dfrac{1}{b^2}=1 \end{array}\right.\),解得 \(a^2=4\)\(b^2=1\)
    所以双曲线的方程为 \(\dfrac{x^2}{4}-y^2=1\)
    (2)证明:设直线\(l\)的方程:\(y=kx+m\),直线与曲线的右支相切(切点表示右顶点)
    \(\left\{\begin{array}{l} y=k x+m \\ \dfrac{x^2}{4}-y^2=1 \end{array}\right.\),整理可得: \((4k^2-1) x^2+8kmx+4m^2+4=0\)
    \(△=64k^2 m^2-4(4k^2-1)(4m^2+4)=0\),可得 \(4k^2=m^2+1\),①
    设直线\(l\)\(x\)轴交于一点\(D\),则 \(O D=-\dfrac{m}{k}\)
    \(S_{\triangle O M N}=S_{\triangle M O D}+S_{\triangle N O D}=\dfrac{1}{2}|O D|\left|y_M-y_N\right|=\dfrac{-m}{2 k}|k|\left|x_M-x_N\right|\)
    双曲线的渐*线的方程为 \(y=\pm \dfrac{1}{2} x\)
    联立 \(\left\{\begin{array}{l} y=\dfrac{1}{2} x \\ y=k x+m \end{array}\right.\),可得 \(M\left(\dfrac{2 m}{1-2 k}, \dfrac{m}{1-2 k}\right)\)
    同理可得 \(N\left(\dfrac{-2 m}{1+2 k}, \dfrac{m}{1+2 k}\right)\)
    \(S_{\triangle M O N}=\dfrac{-m}{2 k}|k|\left|\dfrac{2 m}{1-2 k}+\dfrac{2 m}{1+2 k}\right|=\dfrac{-m}{2 k}|k|\left|\dfrac{4 m}{1-4 k^2}\right|\)
    由①及直线\(l\)与曲线\(C\)右支相切,\(m\)\(k\)异号,
    \(S_{\triangle M O N}=2\)

  6. 答案 (1) \(x^2-\dfrac{y^2}{3}=1(x \geq 1)\) (2) \(-1\)
    解析 (1)由\(|PF_1 |-|PF_2 |=2<|F_1 F_2 |\)知,点\(P\)的轨迹\(E\)是以\(F_1\)\(F_2\)为焦点的双曲线右支,
    \(c=2\)\(2a=2\)\(∴b^2=3\),故轨迹\(E\)的方程为 \(x^2-\dfrac{y^2}{3}=1(x \geq 1)\)
    (2)当直线\(l\)的斜率存在时,设直线方程为\(y=k(x-2)\)\(P(x_1,y_1 )\),\(Q(x_2,y_2 )\)
    与双曲线方程联立消\(y\)\((k^2-3) x^2-4k^2 x+4k^2+3=0\)
    \(\therefore\left\{\begin{array}{l} k^2-3 \neq 0 \\ \Delta>0 \\ x_1+x_2=\dfrac{4 k^2}{k^2-3}>0 \\ x_1 \cdot x_2=\dfrac{4 k^2+3}{k^2-3}>0 \end{array}\right.\),解得 \(k^2>3\)
    \(\because \overrightarrow{M P} \cdot \overrightarrow{M Q}=\left(x_1-m\right)\left(x_2-m\right)+y_1 y_2\)
    \(=\left(x_1-m\right)\left(x_2-m\right)+k^2\left(x_1-2\right)\left(x_2-2\right)\)
    \(=\left(k^2+1\right) x_1 x_2-\left(2 k^2+m\right)\left(x_1+x_2\right)+m^2+4 k^2\)
    \(=\dfrac{\left(k^2+1\right)\left(4 k^2+3\right)}{k^2-3}-\dfrac{4 k^2\left(2 k^2+m\right)}{k^2-3}+m^2+4 k^2\)
    \(=\dfrac{3-(4 m+5) k^2}{k^2-3}+m^2\)
    \(∵MP⊥MQ\)\(\therefore \overrightarrow{M P} \cdot \overrightarrow{M Q}=0\)
    故得\(3(1-m^2 )+k^2 (m2-4m-5)=0\)对任意的 \(k^2>3\)恒成立,
    \(\therefore\left\{\begin{array}{l} 1-m^2=0 \\ m^2-4 m-5=0 \end{array}\right.\),解得\(m=-1\)
    \(∴\)\(m=-1\)时,\(MP⊥MQ\)
    当直线\(l\)的斜率不存在时,由\(P(2,3)\)\(Q(2,-3)\)\(M(-1,0)\)知结论也成立,
    综上,当\(m=-1\)时,\(MP⊥MQ\)
    image.png

【B组---提高题】

1.已知\(F_1\)\(F_2\)为双曲线 \(C: x^2-\dfrac{y^2}{b^2}=1(b>0)\)的左、右焦点,过\(F_2\)作垂直于\(x\)轴的垂线,在\(x\)轴上方交双曲线\(C\)于点\(M\),且\(∠MF_1 F_2=30°\)
  (1)求双曲线\(C\)的两条渐*线的夹角\(θ\)的正切值;
  (2)过点\(F_2\)的直线\(l\)和双曲线\(C\)的右支交于\(A\)\(B\)两点,求\(△AF_1 B\)的面积最小值;
  (3)过双曲线\(C\)上任意一点\(Q\)分别作该双曲线两条渐*线的*行线,它们分别交两条渐*线于\(Q_1\)\(Q_2\)两点,求*行四边形\(OQ_1 QQ_2\)的面积.
 
 

参考答案

  1. 答案 (1) \(2 \sqrt{2}\) (2) \(4 \sqrt{3}\) (3) \(\dfrac{\sqrt{2}}{2}\)
    解析 (1)双曲线 \(C: x^2-\dfrac{y^2}{b^2}=1(b>0)\)\(a=1\)\(c=\sqrt{1+b^2}\)
    可令\(x=c\),解得 \(y=b \sqrt{c^2-1}=b^2\),设\(M(c,b^2)\)
    \(∠MF_1 F_2=30°\),可得 \(b^2=2 \operatorname{ctan} 30^{\circ}=\dfrac{2 \sqrt{3}}{3} \sqrt{1+b^2}\),解得 \(b=\sqrt{2}\)
    则双曲线的方程为 \(x^2-\dfrac{y^2}{2}=1\)
    可得双曲线的方程为 \(y=\pm \sqrt{2} x\)
    即有 \(\tan \theta=\left|\dfrac{\sqrt{2}+\sqrt{2}}{1-\sqrt{2} \times \sqrt{2}}\right|=2 \sqrt{2}\)
    (2)当直线\(AB\)的斜率不存在,可得 \(A(\sqrt{3}, 2), B(\sqrt{3},-2)\)
    可得\(△AF_1 B\)的面积为 \(\dfrac{1}{2} \times 2 \sqrt{3} \times 4=4 \sqrt{3}\)
    直线\(AB\)的斜率存在,设过点\(F_2\)的直线\(l\)设为 \(y=k(x-\sqrt{3})\)
    联立双曲线方程 \(2x^2-y^2=2\)
    可得\((2-k^2 ) x^2+2√3 k^2 x-3k^2-2=0\),设\(A(x_1,y_1 )\),\(B(x_2,y_2 )\)
    \(x_1+x_2=-\dfrac{2 \sqrt{3} k^2}{2-k^2}>0\)\(x_1 x_2=-\dfrac{3 k^2+2}{2-k^2}>0\),可得\(k^2>2\)
    可得\(△AF_1 B\)的面积为 \(S=\dfrac{1}{2} \cdot 2 c \cdot\left|y_1-y_2\right|=\sqrt{3} \cdot\left|k\left(x_1-x_2\right)\right|\)
    \(=\sqrt{3} \cdot|k| \cdot \sqrt{\left(-\dfrac{2 \sqrt{3} k^2}{2-k^2}\right)^2+4 \cdot \dfrac{3 k^2+2}{2-k^2}}=\sqrt{3}|k| \cdot \dfrac{4 \sqrt{1+k^2}}{k^2-2}\)
    \(t=k^2-2(t>0)\),可得 \(S=4 \sqrt{3} \cdot \dfrac{\sqrt{(2+t)(3+t)}}{t}=4 \sqrt{3} \cdot \sqrt{1+\dfrac{5}{t}+\dfrac{6}{t^2}}>4 \sqrt{3}\)
    综上可得\(△AF_1 B\)的面积的最小值为 \(4 \sqrt{3}\)
    (3)设\(Q(m,n)\),可得 \(2m^2-n^2=2\)
    双曲线的渐*线方程为 \(y=\pm \sqrt{2} x\)
    \(Q\)到直线 \(y= \sqrt{2} x\)的距离为 \(d=\dfrac{|\sqrt{2} m-n|}{\sqrt{3}}\)
    由*行于直线 \(y=- \sqrt{2} x\)的直线 \(y=-\sqrt{2}(x-m)+n\)
    联立直线 \(y= \sqrt{2} x\),可得 \(Q_2\left(\dfrac{n+\sqrt{2} m}{2 \sqrt{2}}, \dfrac{n+\sqrt{2} m}{2}\right)\)
    \(\left|O Q_2\right|=\dfrac{\sqrt{6}}{4}|n+\sqrt{2} m|\)
    即有行四边形\(OQ_1 QQ_2\)的面积为
    \(d \cdot\left|O Q_2\right|=\dfrac{\sqrt{6}}{4}|n+\sqrt{2} m| \cdot \dfrac{|\sqrt{2} m-n|}{\sqrt{3}}=\dfrac{\sqrt{2}}{4} \cdot\left|2 m^2-n^2\right|=\dfrac{\sqrt{2}}{4} \cdot 2=\dfrac{\sqrt{2}}{2}\)
     

【C组---拓展题】

1.在*面直角坐标系\(xOy\)中,已知点 \(F_1(-\sqrt{17}, 0)\), \(F_2(\sqrt{17}, 0)\),点\(M\)满足\(|MF_1 |-|MF_2 |=2\).记\(M\)的轨迹为\(C\)
  (1)求\(C\)的方程;
  (2)设点\(T\)在直线 \(x=\dfrac{1}{2}\)上,过\(T\)的两条直线分别交\(C\)\(A\),\(B\)两点和\(P\),\(Q\)两点,且\(|TA|\cdot|TB|=|TP|\cdot |TQ|\),求直线\(AB\)的斜率与直线\(PQ\)的斜率之和.
 
 

参考答案

  1. 答案 (1) \(x^2-\dfrac{y^2}{16}=1(x \geq 1)\) (2) \(0\)
    解析 (1)由双曲线的定义可知,\(M\)的轨迹\(C\)是双曲线的右支,
    \(C\)的方程为 \(\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0, b>0)\),\(x≥1\)
    根据题意 \(\left\{\begin{array}{l} c=\sqrt{17} \\ 2 a=2 \\ c^2=a^2+b^2 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a=1 \\ b=4 \\ c=\sqrt{17} \end{array}\right.\)
    \(∴C\)的方程为 \(x^2-\dfrac{y^2}{16}=1(x \geq 1)\)
    (2)(法一)设 \(T\left(\dfrac{1}{2}, m\right)\),直线\(AB\)的参数方程为 \(\left\{\begin{array}{l} x=\dfrac{1}{2}+t \cos \theta \\ y=m+t \sin \theta \end{array}\right.\)
    将其代入\(C\)的方程并整理可得,
    \(\left(16 \cos ^2 \theta-\sin ^2 \theta\right) t^2+(16 \cos \theta-2 m \sin \theta) t-\left(m^2+12\right)=0\)
    由参数的几何意义可知,\(|TA|=t_1\),\(|TB|=t_2\),则 \(t_1 t_2=\dfrac{m^2+12}{\sin ^2 \theta-16 \cos ^2 \theta}=\dfrac{m^2+12}{1-17 \cos ^2 \theta}\)
    设直线\(PQ\)的参数方程为 \(\left\{\begin{array}{l} x=\dfrac{1}{2}+\lambda \cos \beta \\ y=m+\lambda \sin \beta \end{array}\right.\)\(|T P|=\lambda_1,|T Q|=\lambda_2\)
    同理可得, \(\lambda_1 \lambda_2=\dfrac{m^2+12}{1-17 \cos ^2 \beta}\)
    依题意, \(\dfrac{m^2+12}{1-17 \cos ^2 \theta}=\dfrac{m^2+12}{1-17 \cos ^2 \beta}\),则 \(\cos ^2 \theta=\cos ^2 \beta\)
    \(θ≠β\),故\(cosθ=-cosβ\),则\(cosθ+cosβ=0\)
    即直线\(AB\)的斜率与直线\(PQ\)的斜率之和为\(0\)
    (法二)设 \(T\left(\dfrac{1}{2}, t\right)\),直线\(AB\)的方程为 \(y=k_1\left(x-\dfrac{1}{2}\right)+t\)
    \(A(x_1,y_1 )\),\(B(x_2,y_2 )\),设 \(\dfrac{1}{2}<x_1<x_2\)
    将直线\(AB\)方程代入\(C\)的方程化简并整理可得
    \(\left(16-k_1^2\right) x^2+\left(k_1^2-2 t k_1\right) x-\dfrac{1}{4} k_1^2+k_1 t-t^2-16=0\)
    由韦达定理有, \(x_1+x_2=\dfrac{k_1^2-2 k_1 t}{k_1^2-16}\), \(x_1 x_2=\dfrac{-\dfrac{1}{4} k_1^2+k_1 t-t^2-16}{16-k_1^2}\)
    又由 \(A\left(x_1, k_1 x_1-\dfrac{1}{2} k_1+t\right)\), \(T\left(\dfrac{1}{2}, t\right)\)可得 \(\mid A T \mid=\sqrt{1+k_1^2}\left(x_1-\dfrac{1}{2}\right)\)
    同理可得 \(|B T|=\sqrt{1+k_1^2}\left(x_2-\dfrac{1}{2}\right)\)
    \(\therefore|A T||B T|=\left(1+k_1^2\right)\left(x_1-\dfrac{1}{2}\right)\left(x_2-\dfrac{1}{2}\right)=\dfrac{\left(1+k_1{ }^2\right)\left(t^2+12\right)}{k_1{ }^2-16}\)
    设直线\(PQ\)的方程为 \(y=k_2\left(x-\dfrac{1}{2}\right)+t\),\(P(x_3,y_3)\),\(Q(x_4,y_4)\),设 \(\dfrac{1}{2}<x_3<x_4\)
    同理可得 \(|P T||Q T|=\dfrac{\left(1+k_2^2\right)\left(t^2+12\right)}{k_2^2-16}\)
    \(|A T||B T|=|P T||Q T|\),则 \(\dfrac{1+k_1^2}{k_1^2-16}=\dfrac{1+k_2^2}{k_2^2-16}\),化简可得 \(k_1^2=k_2^2\)
    \(k_1≠k_2\),则\(k_1=﹣k_2\),即\(k_1+k_2=0\),即直线\(AB\)的斜率与直线\(PQ\)的斜率之和为\(0\)
posted @ 2022-09-29 19:43  贵哥讲数学  阅读(512)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏