1.4.1(2) 用空间向量研究直线、平面的平行

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性必修第一册同步巩固,难度2颗星!

基础知识

线线平行

设直线\(l_1\),\(l_2\)的方向向量分别是\(\vec{a}\),\(\vec{b}\),则要证明\(l_1 || l_2\),只需证明\(\vec{a}|| \vec{b}\),即 \(\vec{a}=k \vec{b}(k \in R)\).

 

线面平行

设直线\(l\) 的方向向量是\(\vec{a}\),平面\(α\)的法向量是\(\vec{n}\),且\(l⊄α\)
则要证明\(l||α\),只需证明\(\vec{a}⊥ \vec{n}\),即\(\vec{a}⋅ \vec{n}=0\).

 

【例】\(\vec{u}=(2,2,-1)\)是平面\(α\)的法向量,\(\vec{a}=(-3,4, 2)\)是直线\(l\)的方向向量,则直线\(l\)\(α\)的位置关系是   ( )
 A.\(l//α\) \(\qquad \qquad\) B.\(l⊥α\) \(\qquad \qquad\) C.\(l⊂α\) \(\qquad \qquad\) D.\(l⊂α\)\(l//α\)
\(\vec{u}\cdot \vec{a}=-6+8-2=0\)\(∴\vec{u}⊥\vec{a}\)\(∴l⊂α\)\(l//α\).故选:\(D\)
 

面面平行

若平面\(α\) 的法向量为 \(\overrightarrow{n_{1}}\),平面\(β\)的法向量为 \(\overrightarrow{n_{2}}\),要证\(α||β\) ,只需证 \(\overrightarrow{n_{1}} \| \overrightarrow{n_{2}}\),即证 \(\overrightarrow{n_{1}}=\lambda \overrightarrow{n_{2}}\).

 

【例】若两个不同平面\(α\)\(β\)的法向量分别为 \(\vec{u}=(1,2,-1)\), \(\vec{v}=(-3,-6,3)\),则 ( )
 A.\(α//β\) \(\qquad \qquad\) B.\(α⊥β\) \(\qquad \qquad\) C.\(α,β\)相交但不垂直 \(\qquad \qquad\) D.以上均不正确
\(\because \vec{v}=-3 \vec{u}\)\(\therefore \vec{v} / / \vec{u}\).故\(α//β\).故选:\(A\)
 

基本方法

【典题1】如图,在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(AD=AA_1=2\)\(AB=6\)\(E\),\(F\)分别为\(A_1 D_1\),\(D_1 C_1\)的中点.分别以\(DA\)\(DC\)\(DD_1\)所在直线为\(x\)轴、\(y\)轴、\(z\)轴建立空间直角坐标系\(D-xyz\)
(1)求点\(E,F\)的坐标;(2)求证:\(EF//\)平面\(ACD_1\)
image.png
解析 (1)解:由题意,\(AD=AA_1=2\)\(AB=6\)\(E,F\)分别为\(A_1 D_1\),\(D_1 C_1\)的中点
\(∴E(1,0,2)\),\(F(0,3,2)\).
(2)证明:\(∵A(2,0,0)\),\(C(0,6,0)\)\(\therefore \overrightarrow{A C}=(-2,6,0)\)
\(∵E(1,0,2)\),\(F(0,3,2)\)\(\therefore \overrightarrow{E F}=(-1,3,0)\)
\(\therefore \overrightarrow{A C}=2 \overrightarrow{E F}\)\(∴AC//EF\)
\(∵EF⊂\)\(ACD_1\)\(AC⊂\)平面\(ACD_1\)
\(∴EF//\)平面\(ACD_1\)
 

【典题2】 如图,在直三棱柱\(ABC-A_1 B_1 C_1\)中,\(A_1 B_1=A_1 C_1\)\(F\)\(B_1 C_1\)的中点,\(D\)\(E\)分别是棱\(BC\)\(CC_1\)上的点,且\(AD⊥BC\)
  (1) 求证:直线\(A_1 F∥\)平面\(ADE\)
  (2) 若\(∆ABC\)是正三角形,\(E\)\(C_1 C\)中点,能否在线段\(B_1 B\)上找一点\(N\),使得\(A_1 N∥\)平面\(ADE\)?若存在,确定该点位置;若不存在,说明理由.
image.png
解析 (1)证明:在直三棱柱\(ABC-A_1 B_1 C_1\)中,
\(∵AB=AC\),\(AD⊥BC\)\(∴D\)\(BC\)的中点,
\(∵F\)\(B_1 C_1\)的中点 \(∴DF//AA_1\)
\(∴\)四边形\(DFA_1 A\)是平行四边形,\(∴A_1 F∥AD\)
\(∵A_1 F⊄\)平面\(ADE\)\(AD⊂\)平面\(ADE\)\(∴A_1 F∥\)平面\(ADE\)
(2)在直线\(B_1 B\)上找一点\(N\),使得\(A_1 N∥\)平面\(ADE\),证明如下:
在直三棱柱\(ABC-A_1 B_1 C_1\)中,\(∵DF//AA_1\) \(∴DF⊥AD\),\(DF⊥DC\)
\(∵AD⊥BC\) \(∴DA\)\(DC\),\(DF\)两两垂直,
\(D\)为原点,\(DA\)\(x\)轴,\(DC\)\(y\)轴,\(DF\)\(z\)轴,建立空间直角坐标系,
\(A_1 B_1=2\)\(AA_1=2t\)
\(∵N\)在线段\(B_1 B\)上,设\(BN=λBB_1\)\(0≤λ≤1\),则\(N(0,-1,2λt)\)
\(A(\sqrt{3}, 0,0)\)\(D(0,0,0)\)\(E(0,1,t)\)\(B(0,-1,0)\)\(B_1 (0,-1,2t)\)\(A_1 (\sqrt{3},0,2t)\)
\(\overrightarrow{D A}=(\sqrt{3}, 0,0)\)\(\overrightarrow{D E}=(0,1, t)\)\(\overrightarrow{A_{1} N}=(-\sqrt{3}, \quad-1,(2 \lambda-2) t)\)
设平面\(ADE\)的法向量\(\vec{n}=(x,y,z)\)
\(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{D A}=\sqrt{3} x=0 \\ \vec{n} \cdot \overrightarrow{D E}=y+t z=0 \end{array}\right.\),取\(z=1\),得\(\vec{n}=(0,-t,1)\)
\(∵A_1 N∥\)平面\(ADE\)\(\therefore \overrightarrow{A_{1}} N \cdot \vec{n}=0+t+(2 \lambda-2) t=0\),解得 \(\lambda=\dfrac{1}{2}\)
\(∴\)在直线\(B_1 B\)上存在一点\(N\),且 \(B N=\dfrac{1}{2} B B_{1}\),使得\(A_1 N∥\)平面\(ADE\)
image.png

 

【典题3】 证明“平面与平面平行的判定定理”:若一个平面内两条相交直线与另一个平面平行,则这两个平面平行.
已知:如图,\(a⊂β\),\(b⊂β\),\(a∩b=P\),\(a//α\),\(b//α\),求证:\(α//β\).
image.png
证明 如图,取平面\(α\)的法向量\(\vec{n}\),直线\(a,b\)的方向向量\(\vec{u}\)\(\vec{v}\)
因为\(a//α\),\(b//α\),所以\(\vec{n}\cdot \vec{u}=0\)\(\vec{n}\cdot \vec{v}=0\)
因为\(a⊂β\),\(b⊂β\),\(a∩b=P\)
所以对任意点\(Q∈β\),存在\(x,y∈R\),使得 \(\overrightarrow{P Q}=x \vec{u}+y \vec{v}\)
从而 \(\vec{n} \cdot \overrightarrow{P Q}=\vec{n} \cdot(x \vec{u}+y \vec{v})=x \vec{n} \cdot \vec{u}+y \vec{n} \cdot \vec{v}=0\)
所以向量 \(\vec{n}\)也是平面β的法向量,故\(α//β\).
 

【典题4】 如图,在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(AB=3\)\(AA_1=4\)\(AD=5\).
求证:平面\(A_1 BD//\)平面\(B_1 D_1 C\).
image.png
证明 如图,证明如图,以\(D\)为坐标原点,分别以\(DA\)\(DC\)\(DD_1\)所在直线为\(x\)轴,\(y\)轴,\(z\)轴,建立空间直角坐标系\(D-xyz\)
\(D(0,0,0)\),\(A_1 (5,0,4)\)\(B(5,3,0)\),\(D_1 (0,0,4)\)\(B_1 (5,3,4)\),\(C(0,3,0)\)
\(\therefore \overrightarrow{A_{1} D}=(-5,0,-4)\)\(\overrightarrow{A_{1} B}=(0,3,-4)\)\(\overrightarrow{D_{1} C}=(0,3,-4)\)\(\overrightarrow{B_{1} C}=(-5,0,-4)\)
设平面\(A_1 BD\)的一个法向量为\(\vec{m}=(x,y,z)\)
\(\left\{\begin{array}{l} \vec{m} \perp \overrightarrow{A_{1} D} \\ \vec{m} \perp \overrightarrow{A_{1} B} \end{array}\right.\),即 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{A_{1} D}=-5 x-4 z=0 \\ \vec{m} \cdot \overrightarrow{A_{1} B}=3 y-4 z=0 \end{array}\right.\)
\(z=1\),得 \(x=-\dfrac{4}{5}, y=\dfrac{4}{3}\),则 \(\vec{m}=\left(-\dfrac{4}{5}, \dfrac{4}{3}, 1\right)\)
设平面\(B_1 D_1 C\)的一个法向量为\(\vec{n}=(a,b,c)\)
\(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{\bar{D}_{1} C}=0 \\ \vec{n} \cdot \overrightarrow{B_{1} C}=0 \end{array}\right.\),得 \(\vec{n}=\left(-\dfrac{4}{5}, \dfrac{4}{3}, 1\right)\)
\(∵\vec{m}//\vec{n}\)\(∴\)平面\(A_1 BD//\)平面\(B_1 D_1 C\).
image.png
 

巩固练习

1已知\(\vec{u}=(1,2,1)\)是直线\(l\)的方向向量,\(\vec{v}=(2,y,2)\)为平面\(α\)的法向量,若\(l//α\),则\(y\)的值为\(\underline{\quad \quad}\).
 

2 设平面\(α\)的法向量为\(\vec{a}=(x,1,-2)\),平面\(β\)的法向量为\(\vec{b}=(1,x,x-3)\),若\(α//β\),则 \(x\)的值为\(\underline{\quad \quad}\).
 

3 如图,在正方体\(ABCD-A'B'C'D'\)中,\(E\),\(F\)分别是面\(AB'\),面\(A'C'\)的中心,求证:\(EF//\)平面\(ACD'\).
image.png
 

4 已知正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱长为\(2\)\(E\),\(F\)分别是\(BB_1\),\(DD_1\)的中点,求证:
  (1) \(FC_1//\)平面\(ADE\);(2)平面\(ADE∥\)平面\(B_1 C_1 F\)
 

参考答案

  1. 答案 \(-2\)
    解析 \(\vec{u}=(1,2,1)\)是直线\(l\)的方向向量,\(\vec{v}=(2,y,2)\)为平面\(α\)的法向量,\(l//α\)
    \(∴\vec{u}⊥\vec{v}\)\(∴\vec{u}\cdot \vec{v}=1×2+2y+1×2=0\),解得\(y=-2\)

  2. 答案 \(1\)
    解析 设平面\(α\)的法向量为\(\vec{a}=(x,1,-2)\),平面\(β\)的法向量为\(\vec{b}=(1,x,x-3)\)
    \(α//β\),则\(\vec{a}//\vec{b}\)\(\therefore \dfrac{x}{1}=\dfrac{1}{x}=\dfrac{-2}{x-3}\),解得\(x=1\)

  3. 证明 如图所示,建立空间直角坐标系,
    image.png
    设正方体的边长为\(1\),则 \(E\left(1, \dfrac{1}{2}, \dfrac{1}{2}\right)\), \(F\left(\dfrac{1}{2}, \dfrac{1}{2}, 1\right)\), \(A(1,0,0)\),\(C(0,1,0)\)\(D' (0,0,1)\),\(D(0,0,0)\)\(B'(1,1,1)\),
    \(\therefore \overrightarrow{E F}=\left(-\dfrac{1}{2}, 0, \dfrac{1}{2}\right)\), \(\overrightarrow{A C}=(-1,1,0)\), \(\overrightarrow{O D}=(0,-1,1)\), \(\overrightarrow{D B}=(1,1,1)\)
    \(∴\)设平面\(ACD'\)的法向量为\(\vec{n}=(x,y,z)\)
    \(\therefore\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A C}=0 \\ \vec{n} \cdot \overrightarrow{C D^{\prime}}=0 \end{array}\right.\),取\(x=1\),则\(y=1\)\(z=1\)\(∴\vec{n}=(1.1.1)\)
    \(\therefore \overrightarrow{E F} \cdot \vec{n}=\left(-\dfrac{1}{2}, 0, \dfrac{1}{2}\right) \cdot(1,1,1)=0\)
    \(∴EF//\)平面\(ACD'\).

  4. 证明 如图所示建立空间直角坐标系\(D-xyz\)
    image.png
    则有\(D(0,0,0)\),\(A(2,0,0)\),\(C(0,2,0)\),\(C_1 (0,2,2)\)\(E(2,2,1)\),\(F(0,0,1)\),\(B_1 (2,2,2)\)
    所以 \(\overrightarrow{F C}_{1}=(0,2,1), \overrightarrow{D A}=(2,0,0), \overrightarrow{A E}=(0,2,1)\)
    (1)设 \(\vec{n}_{1}=\left(x_{1}, y_{1}, z_{1}\right)\)是平面\(ADE\)的法向量,
    \(\overrightarrow{n_{1}} \perp \overrightarrow{D A}\), \(\overrightarrow{n_{1}} \perp \overrightarrow{A E}\)
    \(\left\{\begin{array} { l } { \vec { n _ { 1 } } \cdot \vec { D A } = 2 x _ { 1 } } \\ { \vec { n _ { 1 } } \cdot \vec { A E } = 2 y _ { 1 } + z _ { 1 } } \end{array} \Rightarrow \left\{\begin{array}{l} x_{1}=0 \\ z_{1}=-2 y_{1} \end{array}\right.\right.\),令\(z_1=2⇒y_1=-1\)
    所以 \(\overrightarrow{n_{1}}=(0,-1,2)\)
    因为 \(\overrightarrow{n_{1}} \cdot \overrightarrow{F C_{1}}=-2+2=0\),所以 \(\overrightarrow{n_{1}} \perp \overrightarrow{F C_{1}}\)
    又因为\(FC_1⊄\)平面\(ADE\)
    \(FC_1∥\)平面\(ADE\)
    (2)因为 \(\overrightarrow{C_{1} B_{1}}=(2,0,0)\),设 \(\overrightarrow{n_{2}}=\left(x_{2}, y_{2}, z_{2}\right)\)是平面\(B_1 C_1 F\)的一个法向量.
    \(\vec{n}_{2} \perp \overrightarrow{F C_{1}}\)\(\vec{n}_{2} \perp \overrightarrow{C_{1} B_{1}}\),得 \(\left\{\begin{array} { l } { \vec { n _ { 2 } } \cdot \vec { F C _ { 1 } } = 2 y _ { 2 } + z _ { 2 } = 0 } \\ { \vec { n _ { 2 } } \cdot \vec { C _ { 1 } B _ { 1 } } = 2 x _ { 2 } = 0 } \end{array} \Rightarrow \left\{\begin{array}{l} x_{2}=0 \\ z_{2}=-2 y_{2} \end{array}\right.\right.\)
    \(z_2=2⇒y_2=-1\),所以\(\overrightarrow{n_{2}}=(0,-1,2)\)
    所以 \(\overrightarrow{n_{1}}=\overrightarrow{n_{2}}\),所以平面\(ADE∥\)平面\(B_1 C_1 F\)

分层练习

【A组---基础题】

1 已知直线\(l\)的方向向量\(\vec{a}=(-2,3,1)\),平面\(α\)的一个法向量为\(\vec{e}=(4,0,8)\),则直线\(l\)与平面\(α\)的位置关系是( )
 A.平行 \(\qquad \qquad\) B.垂直\(\qquad \qquad\) C.在平面内 \(\qquad \qquad\) D.平行或在平面内
 

2 已知\(\vec{u}=(1,2,1)\)是直线\(l\)的方向向量,\(\vec{v}=(2,y,2)\)为平面\(α\)的法向量,若\(l//α\),则\(y\)的值为( )
 A.\(-2\) \(\qquad \qquad\) B.\(-\dfrac{1}{2}\) \(\qquad \qquad\) C.4 \(\qquad \qquad\) D. \(\dfrac{1}{4}\)
 

3 已知平面\(α,β\)的法向量分别为 \(\overrightarrow{n_{1}}=(x, 1,-1)\)\(\overrightarrow{n_{2}}=(6, y, 3)\),且\(α//β\),则\(x+y=\) \(\underline{\quad \quad}\) .
 

4用向量方法证明“直线与平面平行的判定定理”:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
已知:直线\(l\)\(m\)和平面\(α\),其中\(l⊄α\)\(m⊂α\)\(l//m\)
求证:\(l//α\).
 

5 在正方体\(ABCD-A_1 B_1 C_1 D_1\)\(E\)是棱\(DD_1\)的中点.在棱\(C_1 D_1\)上是否存在一点\(F\),使\(B_1 F//\)平面\(A_1 BE\)?证明你的结论.
 

6 如图,在四棱锥\(P-ABCD\)中,\(PA⊥\)平面\(ABCD\)\(PB\)与底面所成的角为\(45°\),底面\(ABCD\)为直角梯形,\(∠ABC=∠BAD=90^∘\)\(P A=B C=\dfrac{1}{2} A D=1\),问在棱\(PD\)上是否存在一点\(E\),使\(CE∥\)平面\(PAB\)?若存在,求出\(E\)点的位置;若不存在,请说明理由.
image.png
 
 

7 如图所示,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E,F,G,H\)分别是\(BC\),\(CC_1\),\(C_1 D_1\),\(A_1 A\)的中点,
求证:(1)\(BF//HD_1\);(2)\(EG//\)平面\(BB_1 D_1 D\);(3)平面\(BDF//\)平面\(B_1 D_1 H\).
image.png
 
 

参考答案

  1. 答案 \(D\)
    解析 直线\(l\) 的方向向量\(\vec{a}=(-2,3,1)\),平面\(α\)的一个法向量为\(\vec{e}=(4,0,8)\)
    \(\vec{a}⋅\vec{e}=-8+0+8=0\)
    \(∴\)直线\(l\)与平面\(α\)的位置关系是平行或在平面内.
    故选:\(D\)

  2. 答案 \(A\)
    解析 \(\vec{u}=(1,2,1)\)是直线\(l\)的方向向量,\(\vec{v}=(2,y,2)\)为平面\(α\)的法向量,\(l//α\)
    \(∴\vec{u}⊥\vec{v}\)\(∴\vec{u}\cdot ⋅\vec{v}=1×2+2y+1×2=0\),解得\(y=-2\)
    故选:\(A\)

  3. 答案 \(-5\)
    解析 \(∵\)平面\(α,β\)的法向量分别为 \(\overrightarrow{n_{1}}=(x, 1,-1)\)\(\overrightarrow{n_{2}}=(6, y, 3)\),且\(α//β\)
    \(\therefore \overrightarrow{n_{1}} / / \overrightarrow{n_{2}}\)\(\therefore \dfrac{6}{x}=\dfrac{y}{1}=\dfrac{3}{-1}\),解得\(x=-2\),\(y=-3\)
    \(∴x+y=-5\)

  4. 证明 设直线\(l\)\(m\)的方向向量分别为\(\vec{a}\),\(\vec{b}\),平面\(α\)的法向量为\(\vec{u}\)
    \(∵l//m\)\(∴\vec{a}=k\vec{b}\),\(k∈R\)
    \(∵\)平面\(α\)的法向量为\(\vec{u}\)\(∴\vec{u}⊥α\)
    \(∵m⊂α\), 直线\(m\)的方向向量分别为\(\vec{b}\)
    \(\therefore \vec{u} \perp \vec{b}\), \(\therefore \vec{u} \cdot \vec{b}=0\)
    \(\therefore \vec{u} \cdot \vec{a}=\vec{u} \cdot(k \vec{b})=k \vec{u} \cdot \vec{b}=0\)\(\therefore \vec{u} \perp \vec{a}\)
    \(∵l⊄α\)\(∴l//α\).

  5. 证明\(A\)为坐标原点,如图建立坐标系,
    image.png
    设正方形的棱长为\(2\),则\(B(2,0,0)\),\(E(0,2,1)\),\(A_1 (0,0,2)\),\(B_1 (2,0,2)\)
    \(\therefore \overrightarrow{B E}=(-2,2,1)\), \(\overrightarrow{B A_{1}}=(-2,0,2)\)
    设面\(BEA_1\)的法向量为\(\vec{m}=(x,y,z)\),
    \(\vec{m} \cdot \overrightarrow{B E}=-2 x+2 y+z=0\)\(\vec{m} \cdot \overrightarrow{B A_{1}}=2 x+2 z=0\)
    \(x=1\),则\(z=-1\)\(y=\dfrac{3}{2}\)\(\therefore \vec{m}=\left(1, \dfrac{3}{2},-1\right)\)
    假设在棱\(C_1 D_1\)上存在一点\(F\),使\(B_1 F//\)平面\(A_1 BE\)
    \(F(x_0,2,2)(0⩽x_0⩽2)\),则\(BF=(x_0-2,2,2)\)
    \(\vec{m} \cdot B F=1 \times\left(x_{0}-2\right)+\dfrac{3}{2} \times 2+(-1) \times 2=0\),解得\(x_0=1\)
    \(∴\)\(F\)\(C_1 D_1\)中点时,\(B_1 F//\)平面\(A_1 BE\).

  6. 答案 存在点\(E\),当点\(E\)\(PD\)的中点时,\(CE∥\)平面\(PAB\).
    解析 存在点\(E\)使\(CE∥\)平面\(PAB\).
    \(A\)为坐标原点,分别以\(AB,AD,AP\)所在直线为\(x\)轴,\(y\)轴,\(z\)轴建立空间直角坐标系\(Axyz\)
    image.png
    \(∴P(0,0,1)\),\(C(1,1,0)\),\(D(0,2,0)\)
    \(E(0,y,z)\),则 \(\overrightarrow{P E}=(0, y, z-1)\)\(\overrightarrow{P D}=(0,2,-1)\)
    \(\because \overrightarrow{P E} / / \overrightarrow{P D}\)\(∴y(-1)-2(z-1)=0\) ①;
    \(\because \overrightarrow{A D}=(0,2,0)\)是平面\(PAB\)的法向量,
    \(\overrightarrow{CE}=(-1, y-1, z)\)\(CE∥\)平面\(PAB\)
    \(\therefore \overrightarrow{C E} \perp \overrightarrow{A D}\)\(∴(-1,y-1,z)⋅(0,2,0)=0\), \(∴y=1\),
    代入①得 \(z=\dfrac{1}{2}\)\(∴E\)\(PD\)的中点,
    \(∴\)存在点\(E\),当点\(E\)\(PD\)的中点时,\(CE∥\)平面\(PAB\).

  7. 证明 设正方体棱长为\(1\),以\(DA,DC,DD_1\)所在直线为\(x,y,z\)轴建立空间直角坐标系.
    (1)\(∵B(1,1,0)\), \(F\left(0,1, \dfrac{1}{2}\right)\), \(H\left(1,0, \dfrac{1}{2}\right)\),\(D_1 (0,0,1)\)
    \(\therefore \overrightarrow{B F}=\left(-1,0, \dfrac{1}{2}\right)\), \(\overrightarrow{H D_{1}}=\left(-1,0, \dfrac{1}{2}\right)\)
    \(\therefore \overrightarrow{B F} / / \overrightarrow{H D_{1}}\),\(∴BF//HD_1\).
    (2) \(\because E\left(\dfrac{1}{2}, 1,0\right), G\left(0, \dfrac{1}{2}, 1\right)\)\(\therefore \overrightarrow{E G}=\left(-\dfrac{1}{2},-\dfrac{1}{2}, 1\right)\)
    \(∵\)平面\(BB_1 D_1 D\)的一个法向量为 \(\overrightarrow{A C}=(-1,1,0)\)\(\therefore \overrightarrow{E G} \cdot \overrightarrow{A C}=0\)
    \(\therefore \overrightarrow{E G} \perp \overrightarrow{A C}\)
    \(∵EG\)不在平面\(BB_1 D_1 D\)内,\(∴EG//\)平面\(BB_1 D_1 D\).
    (3)设平面\(BDF\)的一个法向量为 \(\overrightarrow{n_{1}}=\left(x_{1}, y_{1}, z_{1}\right)\)
    平面\(B_1 D_1 H\)的一个法向量 \(\overrightarrow{n_{2}}=\left(x_{2}, y_{2}, z_{2}\right)\)
    \(\therefore \overrightarrow{n_{1}} \perp \overrightarrow{D B}\), \(\overrightarrow{n_{1}} \perp \overrightarrow{D F}\), \(\overrightarrow{n_{2}} \perp \overrightarrow{D_{1} H}\)\(\overrightarrow{n_{2}} \perp \overrightarrow{D_{1} B_{1}}\)
    \(\therefore\left\{\begin{array}{l} x_{1}+y_{1}=0 \\ y_{1}+\dfrac{1}{2} z_{1}=0 \end{array}\right.\),取 \(\text { 又 } \overrightarrow{n_{1}}=(1,-1,2)\)
    \(\left\{\begin{array}{l} x_{2}-\dfrac{1}{2} z_{2}=0 \\ x_{2}+y_{2}=0 \end{array}\right.\),取 \(\overrightarrow{n_{2}}=(-1,1,-2)\)
    \(\therefore \overrightarrow{n_{1}}=-\overrightarrow{n_{2}}\)\(∴\)平面\(BDF//\)平面\(B_1 D_1 H\).
     

【B组---提高题】

1 在三棱柱\(ABC-A_1 B_1 C_1\)中,侧棱垂直于底面,在底面\(ABC\)\(∠ABC=90^∘\)\(D\)\(BC\)上一点,且\(A_1 B//\)\(AC_1 D,D_1\)\(B_1 C_1\)的中点,求证:面\(A_1 BD_1∥\)\(AC_1 D\).
 

参考答案

  1. 证明\(B\)点为原点,如图建立坐标系,
    image.png
    \(AB=a\)\(BC=2b\)\(BB_1=c\)
    \(A(a,0,0)\),\(C_1 (0,2b,c)\),\(B_1 (0,0,c)\)\(A_1 (a,0,c)\)
    \(∴D_1 (0,b,c)\)
    \(D(0,y_0,0)(0⩽y_0⩽2b)\)
    \(\therefore \overrightarrow{A D}=\left(-a, y_{0}, 0\right)\), \(\overrightarrow{A C_{1}}=(-a, 2 b, c)\)\(\overrightarrow{B A_{1}}=(a, 0, c)\)\(\overrightarrow{B D_{1}}=(0, b, c)\)
    设面\(AC_1 D\)的法向量为 \(\vec{m}=\left(x_{1}, y_{1}, z_{1}\right)\)
    \(m \cdot \overrightarrow{A D}=-a x_{1}+y_{0} y_{1}=0\)\(m \cdot \overrightarrow{A C_{1}}=-a x_{1}+2 b y_{1}+c z_{1}=0\)
    \(y_1=a\),则\(x_1=y_0\)\(z_{1}=\dfrac{a y_{0}-2 a b}{c}\),则 \(\vec{m}=\left(y_{0}, a, \dfrac{a y_{0}-2 a b}{c}\right)\)
    \(∵A_1 B//\)\(AC_1 D\)
    \(\therefore \vec{m} \cdot \overrightarrow{B A_{1}}=a y_{0}+c \times \dfrac{a y_{0}-2 a b}{c}=0\),解得\(y_0=b\)\(\therefore \vec{m}=\left(b, a,-\dfrac{a b}{c}\right)\)
    设面\(A_1 BD_1\)的法向量为 \(\overrightarrow{\mathrm{n}}=\left(x_{2}, y_{2}, z_{2}\right)\)
    \(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{B A_{1}}=a x_{2}+c z_{2}=0\)且 $\vec{n} \cdot \overrightarrow{B D_{1}}=b y_{2}+c z_{2}=0\(0, 取\)z_2=1$,则 \(x_{2}=-\dfrac{c}{a}\)\(y_{2}=-\dfrac{c}{b}\),则 \(n=\left(-\dfrac{c}{a},-\dfrac{c}{b}, 1\right)\)
    \(\therefore \overrightarrow{\mathrm{n}}=-\dfrac{c}{a b} \vec{m}\)\(\therefore \vec{m} / / \overrightarrow{\mathrm{n}}\)
    \(∴\)\(A_1 BD_1//\)\(AC_1 D\).
posted @ 2022-09-02 19:10  贵哥讲数学  阅读(243)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏