2.3 二次函数与一元二次方程、不等式
\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
必修第一册同步拔高,难度2颗星!
基础知识
一元二次不等式及其解法
① 二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:
(以下均以\(a>0\)为例)
② 二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系,可充分利用二次函数图像去理解;
③ 求解一元二次不等式时,利用二次函数图像思考,需要确定二次函数的开口方向,判别式,两根的大小与不等式的解集有关,而对称轴是不会影响解集的.
【例】 填表
解析
【练1】 二次不等式\(ax^2+bx+c<0\)的解集是R的条件是( )
A. \(\left\{\begin{array}{l}
a>0 \\
\Delta>0
\end{array}\right.\) \(\qquad \qquad\) B. \(\left\{\begin{array}{l}
a>0 \\
\Delta<0
\end{array}\right.\) \(\qquad \qquad\) C. \(\left\{\begin{array}{l}
a<0 \\
\Delta>0
\end{array}\right.\) \(\qquad \qquad\) D. \(\left\{\begin{array}{l}
a<0 \\
\Delta<0
\end{array}\right.\)
解析 由题意可知二次不等式\(ax^2+bx+c<0\),
对应的二次函数\(y=ax^2+bx+c\)开口向下,所以\(a<0\)
二次不等式\(ax^2+bx+c<0\)的解集是\(R\),所以\(△<0\).
故选:\(D\).
【练2】 解不等式
(1)\(x^2-x-6≤0\) \(\qquad\) (2) \(x^2-3x+4<0\) \(\qquad\) (3) \(x^2-4x+4>0\)
解析 (1) \(-2≤x≤3\) \(\qquad\) (2) \(∅\) \(\qquad\) (3)\(x≠2\)
一元二次不等式的应用
分式不等式的解法
解分式不等式可等价为有理整式不等式(组)求解.
由于 \(\dfrac{a}{b}>0\)与\(ab>0\)均意味\(a,b\)同号,故 \(\dfrac{a}{b}>0\)与\(ab>0\)等价的;
\(\dfrac{a}{b}<0\)与\(ab<0\)均意味\(a,b\)异号,故 \(\dfrac{a}{b}<0\)与\(ab<0\)等价的;
可得① \(\dfrac{f(x)}{g(x)}>0 \Rightarrow f(x) g(x)>0\), \(\dfrac{f(x)}{g(x)} \geq 0 \Rightarrow f(x) g(x) \geq 0\)且\(g(x)≠0\).
比如 \(\dfrac{x-1}{x-2}>0 \Rightarrow(x-1)(x-2)>0\); \(\dfrac{x-1}{x-2} \geq 0 \Rightarrow(x-1)(x-2) \geq 0\)且\(x-2≠0\).
② \(\dfrac{f(x)}{g(x)}<0 \Rightarrow f(x) g(x)<0\), \(\dfrac{f(x)}{g(x)} \leq 0 \Rightarrow f(x) g(x) \leq 0\)且\(g(x)≠0\).
比如 \(\dfrac{x-1}{x-2}<0 \Rightarrow(x-1)(x-2)<0\) ; \(\dfrac{x-1}{x-2} \leq 0 \Rightarrow(x-1)(x-2) \leq 0\)且\(x-2≠0\).
【例】 解不等式\(\dfrac{x+1}{x-2}<0\)的解集是\(\underline{\quad \quad}\).
解析 不等式\(\dfrac{x+1}{x-2}<0\),等价于\((x+1)(x-2)<0\),解得\(-1<x<2\).
【练】 解不等式\(\dfrac{x-1}{x-3} \leq 0\)的解集是\(\underline{\quad \quad}\) .
解析 不等式 \(\dfrac{x-1}{x-3} \leq 0\),等价于 \(\left\{\begin{array}{l}
(x-1)(x-3) \leq 0 \\
x-3 \neq 0
\end{array}\right.\),解得\(1≤x<3\).
.
基本方法
【题型1】二次函数、一元二次方程与一元二次不等式的关系
【典题1】 解下列不等式:
(1) \(-\dfrac{1}{2} x^{2}+\dfrac{7}{2} x-5<0\); (2) \(4 x^{2}+18 x+\dfrac{81}{4}>0\); (3) \(\dfrac{x-2}{x+3} \geq 2\).
解析
(1) 二次项系数化为\(1\)得:\(x^2-7x+10>0\),
十字相乘得:\((x-2)(x-5)>0\),解得\(x>5\)或\(x<2\).
(2) \(4 x^{2}+18 x+\dfrac{81}{4}>0 \Leftrightarrow\left(2 x+\dfrac{9}{2}\right)^{2}>0\),
结合二次函数图像易得不等式解集是\(\{x|x≠-9/4\}\).
(3)不等式 \(\dfrac{x-2}{x+3} \geq 2 \Leftrightarrow \dfrac{x-2}{x+3}-2 \geq 0 \Leftrightarrow \dfrac{-x-8}{x+3} \geq 0 \Leftrightarrow \dfrac{x+8}{x+3} \leq 0\),
等价于 \(\left\{\begin{array}{l}
(x+8)(x+3) \leq 0 \\
x+3 \neq 0
\end{array}\right.\),解得\(-8≤x<-3\).
点拨
1.求解不等式\(ax^2+bx+c>0(\)或\(<0)\),其中\(a>0\),有个口诀:大于取两边、小于取中间;这结合二次函数图像也很好理解;
2.求解分式不等式时,等价过程中要注意严谨.
【典题2】若不等式 \(2 k x^{2}+k x-\dfrac{3}{8} \geq 0\)的解集为空集,则实数\(k\)的取值范围是( )
A.\((-3,0)\) \(\qquad \qquad\) B.\((-∞,-3)\) \(\qquad \qquad\) C.\((-3,0]\) \(\qquad \qquad\) D.\((-∞,-3)∪(0,+∞)\)
解析 由题意可知\(2 k x^{2}+k x-\dfrac{3}{8}<0\)恒成立,当\(k=0\)时成立,
当\(k≠0\)时需满足 \(\left\{\begin{array}{l}
k<0 \\
\Delta<0
\end{array}\right.\),代入求得\(-3<k<0\),
所以实数\(k\)的取值范围是\((-3,0]\).
点拨 注意二次系数是否为\(0\),涉及到一元二次不等式可理解二次函数图像进行分析.
【典题3】 若不等式 \(ax^2+2x+c<0\)的解集是 \(\left(-\infty,-\dfrac{1}{3}\right) \cup\left(\dfrac{1}{2},+\infty\right)\),则不等式\(cx^2-2x+a≤0\)的解集是 ( )
A. \(\left[-\dfrac{1}{2}, \dfrac{1}{3}\right]\) \(\qquad \qquad\) B.\(\left[-\dfrac{1}{3}, \dfrac{1}{2}\right]\) \(\qquad \qquad\) C.\([-2,3]\) \(\qquad \qquad\) D.\([-3,2]\)
解析 不等式\(ax^2+2x+c<0\)的解集是 \(\left(-\infty,-\dfrac{1}{3}\right) \cup\left(\dfrac{1}{2},+\infty\right)\),
\(\therefore-\dfrac{1}{3}\)和 \(\dfrac{1}{2}\)是方程\(ax^2+2x+c=0\)的两个实数根,
由韦达定理得 \(\left\{\begin{array}{l}
-\dfrac{1}{3}+\dfrac{1}{2}=-\dfrac{2}{a} \\
-\dfrac{1}{3} \times \dfrac{1}{2}=\dfrac{c}{a}
\end{array}\right.\),解得\(a=-12,c=2\),
故不等式\(cx^2-2x+a≤0\),即\(2x^2-2x-12≤0\),解得\(-2≤x≤3\),
所以所求不等式的解集是\([-2,3]\),
故选:\(C\).
巩固练习
1.下列不等式的解集是空集的是 ( )
A.\(x^2-x+1>0\) \(\qquad \qquad\) B.\(-2x^2+x+1>0\) \(\qquad \qquad\) C.\(2x-^2>5\) \(\qquad \qquad\) D.\(x^2+x>2\)
2.若不等式\(kx^2+2kx+2<0\)的解集为空集,则实数\(k\)的取值范围是( )
A.\(0<k<2\) \(\qquad \qquad\) B.\(0≤k<2\) \(\qquad \qquad\) C.\(0≤k≤2\) \(\qquad \qquad\) D.\(k>2\)
3.关于\(x\)的不等式\(x^2+ax-3<0\),解集为\((-3,1)\),则不等式\(ax^2+x-3<0\)的解集为\(\underline{\quad \quad}\) .
4.不等式\(2x^2-x-3>0\)的解集为\(\underline{\quad \quad}\).
5.不等式 \(\dfrac{x}{2 x-1}>1\)的解集为\(\underline{\quad \quad}\).
6.若不等式\(ax^2+5x-2>0\)的解集是 \(\left\{x \mid \dfrac{1}{2}<x<2\right\}\)
(1)求不等式 \(ax^2+5x-2>0\)的解集.
(2)已知二次不等式\(ax^2+bx+c<0\)的解集为 \(\{x \mid x<\dfrac{1}{3}\)或 \(x>\dfrac{1}{2}\}\),求关于\(x\)的不等式\(cx^2-bx+a>0\)的解集.
参考答案
- 答案 \(C\)
- 答案\(C\)
解析 当k=0时,满足题意;
当\(k>0\)时,\(△=4k^2-8k≤0\),解得\(0<k≤2\);
\(∴\)实数\(k\)的取值范围是\(0≤k≤2\).故选:\(C\). - 答案 \(\left\{x \mid-\dfrac{3}{2}<x<1\right\}\)
解析 由题意知,\(x=-3,x=1\)是方程\(x^2+ax-3=0\)的两根,
可得\(-3+1=-a\),解得\(a=2\);
所以不等式为\(2x^2+x-3<0\),即\((2x+3)(x-1)<0\),解得 \(-\dfrac{3}{2}<x<1\),
所以不等式的解集为 \(\left\{x \mid-\dfrac{3}{2}<x<1\right\}\) - 答案 \(\left\{x \mid x>\dfrac{3}{2}\right.\) 或 \(x<-1\}\)
解析 \(2 x^{2}-x-3>0 \Rightarrow(2 x-3)(x+1)>0 \Rightarrow x>\dfrac{3}{2}\)或 \(x<-1\). - 答案 \(\left\{x \mid \dfrac{1}{2}<x<1\right\}\)
解析 原不等式等价于 \(\dfrac{x}{2 x-1}-1>0\),即 \(\dfrac{x-(2 x-1)}{2 x-1}>0\),整理得 \(\dfrac{x-1}{2 x-1}<0\),
不等式等价于\((2x-1)(x-1)<0\),解得 \(\dfrac{1}{2}<x<1\). - 答案 (1) \(\left\{x \mid-3<x<\dfrac{1}{2}\right\}\) (2) \(\{x|-3<x<-2\}\)
解析 (1)因为等式\(ax^2+5x-2>0\)的解集是 \(\left\{x \mid \dfrac{1}{2}<x<2\right\}\),
所以 \(\dfrac{1}{2}\)和\(2\)是一元二次方程\(ax^2+5x-2=0\)的两根,
\(\therefore \dfrac{1}{2} \times 2=-\dfrac{2}{a}\),解得\(a=-2\),
\(∴\)不等式 \(ax^2+5x-2=0\)可化为\(-2x^2-5x+3>0\),即\(2x^2+5x-3<0\),
\(∴(2x-1)(x-3)<0\),解得 \(-3<x<\dfrac{1}{2}\),
所以不等式 \(ax^2-5x+a^2-1>0\)的解集为 \(\left\{x \mid-3<x<\dfrac{1}{2}\right\}\);
(2)由(1)知\(a=-2\),\(∴\)二次不等式\(-2x^2+bx+c<0\)的解集为 \(\{x \mid x<\dfrac{1}{3}\)或 \(x>\dfrac{1}{2}\}\),
\(\therefore \dfrac{1}{3}\)和\(\dfrac{1}{2}\)是一元二次方程\(-2x^2+bx+c=0\)的两根,
\(\therefore \dfrac{1}{3}+\dfrac{1}{2}=-\dfrac{b}{-2}, \dfrac{1}{3} \times \dfrac{1}{2}=-\dfrac{c}{2}\),解得 \(b=\dfrac{5}{3}, \quad c=-\dfrac{1}{3}\),
所以不等式\(cx^2-bx+a>0\)可化为: \(-\dfrac{1}{3} x^{2}-\dfrac{5}{3} x-2>0\),
即\(x^2+5x+6<0\),解得\(-3<x<-2\).
所以关于\(x\)的不等式\(cx^2-bx+a>0\)的解集为\(\{x|-3<x<-2\}\).
【题型2】求含参一元二次不等式(选学)
角度1 按二次项的系数a的符号分类,即a>0,a=0 ,a<0
解不等式\(ax^2+(a+2) x+1>0\).
解析
(不确定不等式对应函数\(y=ax^2+(a+2) x+1\)是否是二次函数,分\(a=0\)与\(a≠0\)讨论)
(1) 当\(a=0\)时,不等式为\(2x+1>0\),解集为 \(\left\{x \mid x>-\dfrac{1}{2}\right\}\);
(2) 当\(a≠0\)时, \(∵Δ=(a+2)^2-4a=a^2+4>0\)
(二次函数\(y=ax^2+(a+2) x+1\)与\(x\)轴必有两个交点)
解得方程\(ax^2+(a+2) x+1=0\)两根 \(x_{1}=\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}, x_{2}=\dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}\) ;
(二次函数的开口方向与不等式的解集有关,分\(a>0\)与\(a<0\)讨论)
(i)当\(a>0\)时,解集为 \(\left\{x \mid x>\dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}\right.\)或 \(\left.x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}\right\}\);
(ii)当\(a<0\)时, 解集为 \(\left\{x \mid \dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}<x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}\right\}\).(注意\(x_1,x_2\)的大小)
综上,当\(a=0\)时,解集为 \(\left\{x \mid x>-\dfrac{1}{2}\right\}\);
当\(a>0\)时,解集为 \(\{x>\dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}\)或\(x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a} \}\);
当\(a<0\)时, 解集为 \(\left\{x \mid \dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}<x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}\right\}\).
角度2 按判别式的符号分类
解不等式\(x^2+ax+4>0\).
解析 \(∵Δ=a^2-16\)
(此时不确定二次函数\(y=x^2+ax+4\)是否与\(x\)轴有两个交点,对判别式进行讨论)
\(∴\)①当\(-4<a<4\),即\(Δ<0\)时,解集为\(R\);
②当\(a=±4\),即\(Δ=0\)时,解集为 \(\left\{x \mid x \neq-\dfrac{a}{2}\right\}\);
③当\(a>4\)或\(a<-4\),即\(Δ>0\)时,此时两根为 \(x_{1}=\dfrac{-a+\sqrt{a^{2}-16}}{2}, x_{2}=\dfrac{-a-\sqrt{a^{2}-16}}{2}\) ,显然\(x_1>x_2\),
\(∴\)不等式的解集为 \(\left\{x \mid x>\dfrac{-a+\sqrt{a^{2}-16}}{2}\right.\)或 \(\left.x<\dfrac{-a-\sqrt{a^{2}-16}}{2}\right\}\).
综上,当\(-4<a<4\)时,解集为\(R\);
当\(a=±4\)时,解集为 \(\left\{x \mid x \neq-\dfrac{a}{2}\right\}\);
当\(a>4\)或\(a<-4\)时,解集为 \(\left\{x \mid x>\dfrac{-a+\sqrt{a^{2}-16}}{2}\right.\)或 \(\left.x<\dfrac{-a-\sqrt{a^{2}-16}}{2}\right\}\).
角度3 按方程的根大小分类
解不等式: \(x^{2}-\left(a+\dfrac{1}{a}\right) x+1<0 \quad(a \neq 0)\).
解析 原不等式可化为: \((x-a)\left(x-\dfrac{1}{a}\right)<0\) ,
令 \((x-a)\left(x-\dfrac{1}{a}\right)=0\),得 \(x_{1}=a, x_{2}=\dfrac{1}{a}\);
(因式分解很关键,此时确定 \(y=(x-a)\left(x-\dfrac{1}{a}\right)\)与\(x\)轴有交点,\(x_1 ,x_2\)的大小影响不等式解集)
\(∴\)(i)当\(x_1=x_2\)时,即 \(a=\dfrac{1}{a} \Rightarrow a=\pm 1\)时,解集为\(ϕ\);
(ii)当\(x_1<x_2\)时,即 \(a<\dfrac{1}{a} \Rightarrow a<-1\)或\(0<a<1\)时,解集为 \(\left\{x \mid a<x<\dfrac{1}{a}\right\}\);
(iii)当\(x_1>x_2\)时,即 \(a>\dfrac{1}{a} \Rightarrow-1<a<0\)或\(a>1\)时,解集为 \(\left\{x \mid \dfrac{1}{a}<x<a\right\}\).
综上,当\(a=±1\)时,解集为\(ϕ\);
当\(a<-1\) 或\(0<a<1\)时,解集为 \(\left\{x \mid a<x<\dfrac{1}{a}\right\}\);
当\(-1<a<0\)或\(a>1\)时, 解集为 \(\left\{x \mid \dfrac{1}{a}<x<a\right\}\).
点拨
① 当求解一元二次不等式时,它是否能够因式分解,若可以就确定对应的二次函数与x轴有交点,就不需要考虑判别式.
常见的形式有\(x^2-(a+1)x+a=(x-1)(x-a)\) , \(x^{2}-\left(a+\dfrac{1}{a}\right) x+1=(x-a)\left(x-\dfrac{1}{a}\right)\),
\(ax^2+(a+1)x+1=(ax+1)(x+1)\)等,若判别式\(Δ\)是一个完全平方式,它就能做到“较好形式的十字相乘”,当然因式分解也可以用公式法求解;
② 在求解含参的一元二次不等式,需要严谨,多从二次函数的开口方向、判别式、两根大小的比较三个角度进行分类讨论,利用图像进行分析.
巩固练习
1.解关于\(x\)的不等式 \(12x^2-ax-a^2<0\).
2.解关于\(x\)的不等式 \(x^2+2x+a>0\).
3.若\(a∈R\),解关于\(x\)的不等式\(ax^2+(a+1)x+1>0\).
参考答案
- 解析 方程 \(12x^2-ax-a^2=0\)
\(∴(4x+a)(3x-a)=0\),即方程两根为 \(x_{1}=-\dfrac{a}{4},x_{2}=\dfrac{a}{3}\),
(1)当\(a>0\)时,\(x_2>x_1\),不等式的解集是 \(\left\{x \mid-\dfrac{a}{4}<x<\dfrac{a}{3}\right\}\);
(2)当\(a=0\)时,\(x_1=x_2\),不等式的解集是\(ϕ\);
(3)当\(a<0\)时,\(x_1<x_2\),不等式的解集 \(\left\{x \mid \dfrac{a}{3}<x<-\dfrac{a}{4}\right\}\) - 解析 方程\(x^2+2x+a=0\)中\(△=4-4a=4(1-a)\),
①当\(1-a<0\)即\(a>1\)时,不等式的解集是\(R\),
②当\(1-a=0\),即\(a=1\)时,不等式的解集是\(\{x|x≠-1\}\),
③当\(1-a>0\)即\(a<1\)时,
由\(x^2+2x+a=0\)解得: \(x_{1}=-1-\sqrt{1-a}, x_{2}=-1+\sqrt{1-a}\),
\(∴a<1\)时,不等式的解集是 \(\{x \mid x>-1+\sqrt{1-a}\) 或 \(x<-1-\sqrt{1-a}\}\),
综上,\(a>1\)时,不等式的解集是\(R\),
\(a=1\)时,不等式的解集是\(\{x|x≠-1\}\),
\(a<1\)时,不等式的解集是 \(\{x \mid x>-1+\sqrt{1-a}\) 或 \(x<-1-\sqrt{1-a}\}\). - 解析 当\(a=0\)时,\(x>-1\).
当\(a≠0\)时, \(a\left(x+\dfrac{1}{a}\right)(x+1)>0\).
当\(a<0\)时, \(\left(x+\dfrac{1}{a}\right)(x+1)<0\),解得 \(-1<x<-\dfrac{1}{a}\).
当\(a>0\)时, \(\left(x+\dfrac{1}{a}\right)(x+1)>0\).
当\(a=1\)时,\(x≠-1\).
当\(0<a<1\)时, \(x<-\dfrac{1}{a}\),或\(x>-1\).
当\(a>1\)时,\(x<-1\),或 \(x>-\dfrac{1}{a}\).
\(∴\)当\(a<0\)时,解集是 \(\left(-1,-\dfrac{1}{a}\right)\);
当\(a=0\)时,解集是 \((-1,+\infty)\);
当\(0<a≤1\)时,解集是 \(\left(-\infty,-\dfrac{1}{a}\right) \cup(-1,+\infty)\);
当\(a>1\)时,解集是 \(=(-\infty,-1) \cup\left(-\dfrac{1}{a},+\infty\right)\).
分层练习
【A组---基础题】
1.下等式的解集为R的是( )
A.\(x^2+x+1<0\) \(\qquad \qquad\) B.\(x^2+2x+1>0\) \(\qquad \qquad\) C.\(-x^2+x+1≤0\) \(\qquad \qquad\) D.\(x^2+x+1>0\)
2.不等式\(-x^2-5x+6≤0\)的解集为( )
A.\(\{x|x≥6\)或\(x≤-1\}\) \(\qquad \qquad\) B.\(\{x|-1≤x≤6\}\) \(\qquad \qquad\) C.\(\{x|-6≤x≤1\}\) \(\qquad \qquad\) D.\(\{x|x≤-6\)或\(x≥1\}\)
3.若不等式\((m-1)x^2+(m-1)x+2>0\)的解集是\(R\),则\(m\)的范围是( )
A.\((1,9)\) \(\qquad \qquad\) B.\((-∞,1]∪(9,+∞)\) \(\qquad \qquad\) C.\([1,9)\) \(\qquad \qquad\) D.\((-∞,1)∪(9,+∞)\)
4.不等式\(-x^2+bx+c>0\)的解集是\(\{x|-2<x<1\}\),则\(b+c-1\)的值为( )
A.\(2\) \(\qquad \qquad\) B.\(-1\) \(\qquad \qquad\) C.\(0\) \(\qquad \qquad\) D.\(1\)
5.关于\(x\)的不等式\(x^2+ax+b≥0\)的解集为\(\{x|x≤-3,\)或\(x≥1\}\),则\(ab=\)( )
A.\(12\) \(\qquad \qquad\) B.\(-12\) \(\qquad \qquad\) C.\(6\) \(\qquad \qquad\) D.\(-6\)
6.已知不等式\(ax^2-5x+b>0\)的解集为\(\{x∣-3<x<2\}\),则不等式\(bx^2-5x+a>0\)的解集为( )
A.\(\left\{x \mid-\dfrac{1}{3}<x<\dfrac{1}{2}\right\}\) \(\qquad \qquad\) B. \(\{x \mid x<-\dfrac{1}{3}\)或 \(x>\dfrac{1}{2} \}\) \(\qquad \qquad\)
C.\(\{x∣-3<x<2\}\) \(\qquad \qquad\) D. \(\{x∣x<-3\)或 \(x>2\}\)
7.不等式 \(\dfrac{2 x-3}{3 x-4} \leq 2\)的解集是\(\underline{\quad \quad}\) .
参考答案
- 答案 \(D\)
解析 \(x^{2}+x+1=\left(x+\dfrac{1}{2}\right)^{2}+\dfrac{3}{4} \geq \dfrac{3}{4}>0\)恒成立,
所以不等式\(x^2+x+1>0\)的解集为\(R\),\(D\)正确.
故选:\(D\). - 答案 \(D\)
解析 \(-x^2-5x+6≤0⇔x^2+5x-6≥0\) \(⇔(x+6)(x-1)≥0⇔x≥1\)或\(x≤-6\),
故选\(D\). - 答案 \(C\)
解析 由\((m-1)x^2+(m-1)x+2>0\)解集为\(R\),即为恒成立,
可得:(1)当\(m-1=0,m=1\)时;\(2>0\)成立;
(2)当\(m>1\)时;\(Δ<0\),\(4(m-1)^2+8(m-1)<0\),\(1<m<9\)成立;
(3)当\(m<1\)时;不成立.
综上可得实数\(m\)的取值范围\([1,9)\). - 答案 \(C\)
解析 由不等式\(-x^2+bx+c>0\)的解集是\(\{x|-2<x<1\}\),
得\(-2\)和\(1\)是方程\(-x^2+bx+c=0\)的解,
由根与系数的关系知, \(\left\{\begin{array}{l} -\dfrac{b}{-1}=-2+1 \\ \dfrac{c}{-1}=-2 \times 1 \end{array}\right.\),解得\(b=-1,c=2\);
所以\(b+c-1=-1+2-1=0\).
故选:\(C\). - 答案 \(D\)
解析 \(∵\)不等式\(x^2+ax+b≥0\)的解集为\(\{x|x≤-3\)或\(x≥1\}\),
\(\because\left\{\begin{array}{l} x_{1}+x_{2}=-a \\ x_{1} x_{2}=b \end{array}\right.\);\(∴a=2,b-3\);\(∴ab=-6\).
故选:\(D\). - 答案 \(B\)
解析 由题意可知\(ax^2-5x+b=0\)的两个根为\(x_1=-3,x_2=2\),
\(\therefore\left\{\begin{array}{l} -3+2=\dfrac{5}{a} \\ -3 \times 2=\dfrac{b}{a} \end{array}\right.\), \(\therefore\left\{\begin{array}{l} a=-5 \\ b=30 \end{array}\right.\),
不等式\(bx^2-5x+a>0\)即为\(30x^2-5x-5>0\),
解不等式得解集为\(\{x \mid x<-\dfrac{1}{3}\)或 \(x>\dfrac{1}{2} \}\). - 答案 \(\left\{x \mid x>\dfrac{4}{3}\right.\)或 \(\left.x \leq \dfrac{5}{4}\right\}\)
解析 \(\dfrac{2 x-3}{3 x-4} \leq 2 \Leftrightarrow \dfrac{2 x-3}{3 x-4}-2 \leq 0 \Leftrightarrow \dfrac{-4 x+5}{3 x-4} \leq 0 \Leftrightarrow \dfrac{4 x-5}{3 x-4} \geq 0\)
\(\Leftrightarrow\left\{\begin{array}{c} (4 x-5)(3 x-4) \geq 0 \\ 3 x-4 \neq 0 \end{array} \Leftrightarrow x>\dfrac{4}{3}\right.\)或 \(x \leq \dfrac{5}{4}\).
【B组---提高题】
1.已知集合\(A=\{x|x^2-2x-3≤0\}\),集合\(B=\{x||x-1|≤3\}\),集合 \(C=\left\{x \mid \dfrac{x-4}{x+5} \leq 0\right\}\),则集合\(A,B,C\)的关系为( )
A.\(B⊆A\) \(\qquad \qquad\) B.\(A=B\) \(\qquad \qquad\) C.\(C⊆B\) \(\qquad \qquad\) D.\(A⊆C\)
2.已知集合\(A=\{x|(1+mx)(x+n)>0\}=\{x|-2<x<1\}\),则\(n-m\)等于( )
A.\(1\) \(\qquad \qquad\) B.\(3\) \(\qquad \qquad\) C.\(-1\) \(\qquad \qquad\) D.\(-3\)
3.已知关于\(x\)的不等式\(a(x+1)(x-3)+1>0(a≠0)\)的解集是\((x_1,x_2)(x_1<x_2)\),则下列结论中错误的是( )
A.\(x_1+x_2=2\) \(\qquad \qquad\) B.\(x_1 x_2<-3\) \(\qquad \qquad\) C.\(x_2-x_1>4\) \(\qquad \qquad\) D.\(-1<x_1<x_2<3\)
4.已知关于\(x\)的不等式 \(\dfrac{a x-1}{x+1}<0\)的解集是 \((-\infty,-1) \cup\left(-\dfrac{1}{2},+\infty\right)\).则\(a=\)\(\underline{\quad \quad}\).
5.已知不等式\(ax^2+bx+c>0\)的解集是\(\{x|α<x<β\}\),\(α>0\),则不等式\(cx^2+bx+a>0\)的解集是\(\underline{\quad \quad}\) .
6.关于\(x\)的一元二次不等式\(x^2-6x+a≤0(a∈Z)\)的解集中有且仅有\(3\)个整数,则\(a\)的取值是\(\underline{\quad \quad}\).
7.若不等式\(x^2-(a+1)x+a≤0\)的解集是\([-3,4]\)的子集,则实数\(a\)的取值范围是\(\underline{\quad \quad}\) .
8.解关于\(x\)的不等式:\(mx^2-(m-2)x-2>0\)
9.关于\(x\)的不等式 \((ax-1)^2<x^2\)恰有\(2\)个整数解,求实数\(a\)的取值范围.
参考答案
-
答案 \(D\)
解析 \(∵x^2-2x-3≤0\),即\((x-3)(x+1)≤0\),
\(∴-1≤x≤3\),则\(A=[-1,3]\),
又\(|x-1|≤3\),即\(-3≤x-1≤3\),
\(∴-2≤x≤4\),则\(B=[-2,4]\),
\(\because \dfrac{x-4}{x+5} \leq 0 \Leftrightarrow\left\{\begin{array}{l} (x-4)(x+5) \leq 0 \\ x+5 \neq 0 \end{array}\right.\),\(∴-5<x≤4\),则\(C=(-5,4]\),\(∴A⊆C\),\(B⊆C\),故选:\(D\). -
答案 \(B\)
解析 由题意知\(x=-2、x=1\)是方程\((1+mx)(x+n)=0\)的两根,
代入方程得 \(\left\{\begin{array}{l} (1-2 m)(-2+n)=0 \\ (1+m)(1+n)=0 \end{array}\right.\),解得\(m=-1、n=2\);
所以\(n-m=3\).故选:\(B\). -
答案 \(D\)
解析 由关于\(x\)的不等式\(a(x+1)(x-3)+1>0(a≠0)\)的解集是\((x_1,x_2)(x_1<x_2)\),
\(∴a<0\),\(x_1,x_2\)是一元二次方程\(ax^2-2ax+1-3a=0\).
\(∴x_1+x_2=2\), \(x_{1} x_{2}=\dfrac{1-3 a}{a}=\dfrac{1}{a}-3<-3\).
\(x_{2}-x_{1}=\sqrt{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}\)\(=\sqrt{4-4 \times \dfrac{1-3 a}{a}}=2 \sqrt{4-\dfrac{1}{a}}>4\).
由\(x_2-x_1>4\),可得:\(-1<x_1<x_2<4\)是错误的.
故选:\(D\). -
答案 \(-2\)
解析 由不等式判断可得\(a≠0\)且不等式等价于 \(a(x+1)\left(x-\dfrac{1}{a}\right)<0\)
由解集特点可得\(a<0\) 且 \(\dfrac{1}{a}=-\dfrac{1}{2} \Rightarrow a=-2\). -
答案 \(\left\{x \mid \dfrac{1}{\beta}<x<\dfrac{1}{\alpha}\right\}\)
解析 不等式\(ax^2+bx+c>0\)的解集是\(\{x|α<x<β\}(α>0)\),
则\(α,β\)是一元二次方程\(ax^2+bx+c=0\)的实数根,且a\(<0\);
\(\therefore \alpha+\beta=-\dfrac{b}{a}, \quad \alpha \beta=\dfrac{c}{a}\);
\(∴\)不等式\(cx^2+bx+a>0\)化为 \(\dfrac{c}{a} x^{2}+\dfrac{b}{a} x+1<0\),
\(\therefore \alpha \beta x^{2}-(\alpha+\beta) x+1<0\);化为\((αx-1)(βx-1)<0\);
又\(0<α<β\), \(\therefore \dfrac{1}{\alpha}>\dfrac{1}{\beta}>0\);
\(∴\)不等式\(cx^2+bx+a<0\)的解集为 \(\left\{x \mid \dfrac{1}{\beta}<x<\dfrac{1}{\alpha}\right\}\). -
答案 \(6,7,8\)
解析 设\(f(x)=x^2-6x+a\),其图象是开口向上,对称轴是\(x=3\)的抛物线,如图所示;
若关于\(x\)的一元二次不等式\(x^2-6x+a≤0\)的解集中有且仅有\(3\)个整数,
则 \(\left\{\begin{array}{l} f(2) \leq 0 \\ f(1)>0 \end{array}\right.\),即 \(\left\{\begin{array}{l} 4-12+a \leq 0 \\ 1-6+a>0 \end{array}\right.\),解得\(5<a≤8\),
又\(a∈Z\),所以\(a=6,7,8\). -
答案 \(\{a|-3≤a≤4\}\)
解析 关于\(x\)的不等式\(x^2-(a+1)x+a<0\)化为\((x-1)(x-a)<0\),
其解集是\([-3,4]\)的子集,
当\(a=1\)时,不等式为\((x-1)^2<0\),其解集为空集,符合题意;
当\(1<a≤4\)时,不等式的解集为\(\{x|1<x<a\}\),也符合题意;
当\(a<1\)时,不等式的解集为\(\{x|a<x<1\}\),应满足\(a≥-3\);
当\(a>4\)时,不等式的解集为\(\{x|1<x<a\}\),此时不满足题意;
综上,实数\(a\)的取值范围是\(\{a|-3≤a≤4\}\). -
解析 化简为\((mx+2)(x-1)>0\)
当\(m>0\)时,解集为 \(\left(-\infty,-\dfrac{2}{m}\right) \cup(1,+\infty)\);
当\(-2<m<0\)时,解集为 \(\left(1,-\dfrac{2}{m}\right)\);
当\(m=-2\)时,解集为\(ϕ\);
当\(m<-2\)时,解集为 \(\left(-\dfrac{2}{m}, 1\right)\);
当\(m=0\)时,解集为\((1,+∞)\). -
答案 \(\dfrac{4}{3} \leq a<\dfrac{3}{2}\),或 \(-\dfrac{3}{2}<a \leq-\dfrac{4}{3}\).
解析 不等式 \((ax-1)^2<x^2\)恰有2个整数解,
即 \((ax-1)^2-x^2<0⇔((a+1)x-1)((a-1)x-1)<0\)恰有两个解,
\(∴(a+1)(a-1)>0\),即\(a>1\),或\(a<-1\).
当\(a>1\)时,不等式解为 \(\dfrac{1}{a+1}<x<\dfrac{1}{a-1}\),
\(\because \dfrac{1}{a+1} \in\left(0, \dfrac{1}{2}\right)\),恰有两个整数解,即:\(1,2\),
\(\therefore 2<\dfrac{1}{a-1} \leq 3\),\(2a-2<1≤3a-3\),解得: \(\dfrac{4}{3} \leq a<\dfrac{3}{2}\);
当\(a<-1\)时,不等式解为 \(\dfrac{1}{a+1}<x<\dfrac{1}{a-1}\),
\(\because \dfrac{1}{a-1} \in\left(-\dfrac{1}{2}, 0\right)\),恰有两个整数解即:\(-1,-2\),
\(\therefore-3 \leq \dfrac{1}{a+1}<-2\),\(-2(a+1)<1≤-3(a+1)\),解得 \(-\dfrac{3}{2}<a \leq-\dfrac{4}{3}\),
综上所述: \(\dfrac{4}{3} \leq a<\dfrac{3}{2}\),或 \(-\dfrac{3}{2}<a \leq-\dfrac{4}{3}\).
【C组---拓展题】
1.不等式 \(\dfrac{x-1}{x^{2}-4}>0\)的解集是\(\underline{\quad \quad}\).
2.不等式\(x^2+ax+b≤0(a,b∈R)\)的解集为\(\{x|x_1≤x≤x_2\}\),若\(|x_1 |+|x_2 |≤2\),则( )
A.\(|a+2b|≥2\) B.\(|a+2b|≤2\) C.\(|a|≥1\) D.\(|b|≤1\)
3.已知方程\(ax^2+2x+1=0\)至少有一个负根,则实数\(a\)的取值范围是\(\underline{\quad \quad}\) .
参考答案
- 答案\(\{x|-2<x<1\)或\(x>2\}\)
解析 \(\dfrac{x-1}{x^{2}-4}>0 \Leftrightarrow \dfrac{x-1}{(x-2)(x+2)}>0 \Leftrightarrow(x-1)(x-2)(x+2)>0\),
“穿针引线”可得解集是\(\{x|-2<x<1\)或\(x>2\}\). - 答案 \(D\)
解析 \(∵\)不等式\(x^2+ax+b≤0(a,b∈R)\)的解集为\(\{x|x_1≤x≤x_2\}\),
则\(x_1 、x_2\)是对应方程\(x^2+ax+b=0\)的两个实数根,\(x_1 x_2=b\),
又\(|x_1 |+|x_2 |≤2\),
不妨令\(a=-1,b=0\),则\(x_1=0,x_2=1\),但\(|a+2b|=1\),\(∴A\)选项不成立;
令\(a=2\),\(b=1\),则\(x_1=x_2=1\),但\(|a+2b|=4\),\(B\)选项不成立;
令\(a=0\),\(b=-1\),则\(x_1=-1\),\(x_2=1\),但\(|a|=0\),\(C\)选项不成立;
\(b=x_{1} x_{2} \leq\left(\dfrac{x_{1}+x_{2}}{2}\right)^{2} \leq\left(\dfrac{\left|x_{1}\right|+\left|x_{2}\right|}{2}\right)^{2}=1\),\(D\)选项正确.
故选:\(D\). - 答案 \(a≤1\)
解析 (1)当\(a=0\)时,方程变为\(2x+1=0\),有一负根 \(x=-\dfrac{1}{2}\),满足题意,
(2)当\(a<0\)时,\(△=4-4a>0\),方程的两根满足 \(x_{1} x_{2}=\dfrac{1}{a}<0\),此时有且仅有一个负根,满足题意,
(3)当\(a>0\)时,由方程的根与系数关系可得 \(\left\{\begin{array}{l} -\dfrac{2}{a}<0 \\ \dfrac{1}{a}>0 \end{array}\right.\),
\(∴\)方程若有根,则两根都为负根,而方程有根的条件\(△=4-4a≥0\),
\(∴0<a≤1\),
综上可得,\(a≤1.\)