2.3 二次函数与一元二次方程、不等式

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第一册同步拔高,难度2颗星!

基础知识

一元二次不等式及其解法

① 二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:
(以下均以\(a>0\)为例)
image.png

② 二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系,可充分利用二次函数图像去理解;
③ 求解一元二次不等式时,利用二次函数图像思考,需要确定二次函数的开口方向,判别式,两根的大小与不等式的解集有关,而对称轴是不会影响解集的.

【例】 填表
image.png

解析
image.png
 

【练1】 二次不等式\(ax^2+bx+c<0\)的解集是R的条件是(  )
 A. \(\left\{\begin{array}{l} a>0 \\ \Delta>0 \end{array}\right.\) \(\qquad \qquad\) B. \(\left\{\begin{array}{l} a>0 \\ \Delta<0 \end{array}\right.\) \(\qquad \qquad\) C. \(\left\{\begin{array}{l} a<0 \\ \Delta>0 \end{array}\right.\) \(\qquad \qquad\) D. \(\left\{\begin{array}{l} a<0 \\ \Delta<0 \end{array}\right.\)
解析 由题意可知二次不等式\(ax^2+bx+c<0\)
对应的二次函数\(y=ax^2+bx+c\)开口向下,所以\(a<0\)
二次不等式\(ax^2+bx+c<0\)的解集是\(R\),所以\(△<0\)
故选:\(D\)
 

【练2】 解不等式
(1)\(x^2-x-6≤0\) \(\qquad\) (2) \(x^2-3x+4<0\) \(\qquad\) (3) \(x^2-4x+4>0\)
解析 (1) \(-2≤x≤3\) \(\qquad\) (2) \(∅\) \(\qquad\) (3)\(x≠2\)
 

一元二次不等式的应用

分式不等式的解法
解分式不等式可等价为有理整式不等式(组)求解.
由于 \(\dfrac{a}{b}>0\)\(ab>0\)均意味\(a,b\)同号,故 \(\dfrac{a}{b}>0\)\(ab>0\)等价的;
\(\dfrac{a}{b}<0\)\(ab<0\)均意味\(a,b\)异号,故 \(\dfrac{a}{b}<0\)\(ab<0\)等价的;
可得① \(\dfrac{f(x)}{g(x)}>0 \Rightarrow f(x) g(x)>0\)\(\dfrac{f(x)}{g(x)} \geq 0 \Rightarrow f(x) g(x) \geq 0\)\(g(x)≠0\).
比如   \(\dfrac{x-1}{x-2}>0 \Rightarrow(x-1)(x-2)>0\); \(\dfrac{x-1}{x-2} \geq 0 \Rightarrow(x-1)(x-2) \geq 0\)\(x-2≠0\).
\(\dfrac{f(x)}{g(x)}<0 \Rightarrow f(x) g(x)<0\)\(\dfrac{f(x)}{g(x)} \leq 0 \Rightarrow f(x) g(x) \leq 0\)\(g(x)≠0\).
比如   \(\dfrac{x-1}{x-2}<0 \Rightarrow(x-1)(x-2)<0\) ; \(\dfrac{x-1}{x-2} \leq 0 \Rightarrow(x-1)(x-2) \leq 0\)\(x-2≠0\).
 

【例】 解不等式\(\dfrac{x+1}{x-2}<0\)的解集是\(\underline{\quad \quad}\).
解析 不等式\(\dfrac{x+1}{x-2}<0\),等价于\((x+1)(x-2)<0\),解得\(-1<x<2\).
 

【练】 解不等式\(\dfrac{x-1}{x-3} \leq 0\)的解集是\(\underline{\quad \quad}\) .
解析 不等式 \(\dfrac{x-1}{x-3} \leq 0\),等价于 \(\left\{\begin{array}{l} (x-1)(x-3) \leq 0 \\ x-3 \neq 0 \end{array}\right.\),解得\(1≤x<3\).
. 

基本方法

【题型1】二次函数、一元二次方程与一元二次不等式的关系

【典题1】 解下列不等式:
(1) \(-\dfrac{1}{2} x^{2}+\dfrac{7}{2} x-5<0\); (2) \(4 x^{2}+18 x+\dfrac{81}{4}>0\); (3) \(\dfrac{x-2}{x+3} \geq 2\).
解析
(1) 二次项系数化为\(1\)得:\(x^2-7x+10>0\)
十字相乘得:\((x-2)(x-5)>0\),解得\(x>5\)\(x<2\).
(2) \(4 x^{2}+18 x+\dfrac{81}{4}>0 \Leftrightarrow\left(2 x+\dfrac{9}{2}\right)^{2}>0\)
结合二次函数图像易得不等式解集是\(\{x|x≠-9/4\}\).
(3)不等式 \(\dfrac{x-2}{x+3} \geq 2 \Leftrightarrow \dfrac{x-2}{x+3}-2 \geq 0 \Leftrightarrow \dfrac{-x-8}{x+3} \geq 0 \Leftrightarrow \dfrac{x+8}{x+3} \leq 0\)
等价于 \(\left\{\begin{array}{l} (x+8)(x+3) \leq 0 \\ x+3 \neq 0 \end{array}\right.\),解得\(-8≤x<-3\).
点拨
1.求解不等式\(ax^2+bx+c>0(\)\(<0)\),其中\(a>0\),有个口诀:大于取两边、小于取中间;这结合二次函数图像也很好理解;
2.求解分式不等式时,等价过程中要注意严谨.
 

【典题2】若不等式 \(2 k x^{2}+k x-\dfrac{3}{8} \geq 0\)的解集为空集,则实数\(k\)的取值范围是( )
 A.\((-3,0)\) \(\qquad \qquad\) B.\((-∞,-3)\) \(\qquad \qquad\) C.\((-3,0]\) \(\qquad \qquad\) D.\((-∞,-3)∪(0,+∞)\)
解析 由题意可知\(2 k x^{2}+k x-\dfrac{3}{8}<0\)恒成立,当\(k=0\)时成立,
\(k≠0\)时需满足 \(\left\{\begin{array}{l} k<0 \\ \Delta<0 \end{array}\right.\),代入求得\(-3<k<0\)
所以实数\(k\)的取值范围是\((-3,0]\).
点拨 注意二次系数是否为\(0\),涉及到一元二次不等式可理解二次函数图像进行分析.
 

【典题3】 若不等式 \(ax^2+2x+c<0\)的解集是 \(\left(-\infty,-\dfrac{1}{3}\right) \cup\left(\dfrac{1}{2},+\infty\right)\),则不等式\(cx^2-2x+a≤0\)的解集是 (  )
 A. \(\left[-\dfrac{1}{2}, \dfrac{1}{3}\right]\) \(\qquad \qquad\) B.\(\left[-\dfrac{1}{3}, \dfrac{1}{2}\right]\) \(\qquad \qquad\) C.\([-2,3]\) \(\qquad \qquad\) D.\([-3,2]\)
解析 不等式\(ax^2+2x+c<0\)的解集是 \(\left(-\infty,-\dfrac{1}{3}\right) \cup\left(\dfrac{1}{2},+\infty\right)\)
\(\therefore-\dfrac{1}{3}\)\(\dfrac{1}{2}\)是方程\(ax^2+2x+c=0\)的两个实数根,
由韦达定理得 \(\left\{\begin{array}{l} -\dfrac{1}{3}+\dfrac{1}{2}=-\dfrac{2}{a} \\ -\dfrac{1}{3} \times \dfrac{1}{2}=\dfrac{c}{a} \end{array}\right.\),解得\(a=-12,c=2\)
故不等式\(cx^2-2x+a≤0\),即\(2x^2-2x-12≤0\),解得\(-2≤x≤3\)
所以所求不等式的解集是\([-2,3]\)
故选:\(C\)
 

巩固练习

1.下列不等式的解集是空集的是 ( )
 A.\(x^2-x+1>0\) \(\qquad \qquad\) B.\(-2x^2+x+1>0\) \(\qquad \qquad\) C.\(2x-^2>5\) \(\qquad \qquad\) D.\(x^2+x>2\)
 

2.若不等式\(kx^2+2kx+2<0\)的解集为空集,则实数\(k\)的取值范围是(  )
 A.\(0<k<2\) \(\qquad \qquad\) B.\(0≤k<2\) \(\qquad \qquad\) C.\(0≤k≤2\) \(\qquad \qquad\) D.\(k>2\)
 

3.关于\(x\)的不等式\(x^2+ax-3<0\),解集为\((-3,1)\),则不等式\(ax^2+x-3<0\)的解集为\(\underline{\quad \quad}\) .
 

4.不等式\(2x^2-x-3>0\)的解集为\(\underline{\quad \quad}\).
 

5.不等式 \(\dfrac{x}{2 x-1}>1\)的解集为\(\underline{\quad \quad}\).
 

6.若不等式\(ax^2+5x-2>0\)的解集是 \(\left\{x \mid \dfrac{1}{2}<x<2\right\}\)
(1)求不等式 \(ax^2+5x-2>0\)的解集.
(2)已知二次不等式\(ax^2+bx+c<0\)的解集为 \(\{x \mid x<\dfrac{1}{3}\)\(x>\dfrac{1}{2}\}\),求关于\(x\)的不等式\(cx^2-bx+a>0\)的解集.
 
 

参考答案

  1. 答案 \(C\)
  2. 答案\(C\)
    解析 当k=0时,满足题意;
    \(k>0\)时,\(△=4k^2-8k≤0\),解得\(0<k≤2\)
    \(∴\)实数\(k\)的取值范围是\(0≤k≤2\).故选:\(C\)
  3. 答案 \(\left\{x \mid-\dfrac{3}{2}<x<1\right\}\)
    解析 由题意知,\(x=-3,x=1\)是方程\(x^2+ax-3=0\)的两根,
    可得\(-3+1=-a\),解得\(a=2\)
    所以不等式为\(2x^2+x-3<0\),即\((2x+3)(x-1)<0\),解得 \(-\dfrac{3}{2}<x<1\)
    所以不等式的解集为 \(\left\{x \mid-\dfrac{3}{2}<x<1\right\}\)
  4. 答案 \(\left\{x \mid x>\dfrac{3}{2}\right.\)\(x<-1\}\)
    解析 \(2 x^{2}-x-3>0 \Rightarrow(2 x-3)(x+1)>0 \Rightarrow x>\dfrac{3}{2}\)\(x<-1\).
  5. 答案 \(\left\{x \mid \dfrac{1}{2}<x<1\right\}\)
    解析 原不等式等价于 \(\dfrac{x}{2 x-1}-1>0\),即 \(\dfrac{x-(2 x-1)}{2 x-1}>0\),整理得 \(\dfrac{x-1}{2 x-1}<0\)
    不等式等价于\((2x-1)(x-1)<0\),解得 \(\dfrac{1}{2}<x<1\)
  6. 答案 (1) \(\left\{x \mid-3<x<\dfrac{1}{2}\right\}\) (2) \(\{x|-3<x<-2\}\)
    解析 (1)因为等式\(ax^2+5x-2>0\)的解集是 \(\left\{x \mid \dfrac{1}{2}<x<2\right\}\)
    所以 \(\dfrac{1}{2}\)\(2\)是一元二次方程\(ax^2+5x-2=0\)的两根,
    \(\therefore \dfrac{1}{2} \times 2=-\dfrac{2}{a}\),解得\(a=-2\)
    \(∴\)不等式 \(ax^2+5x-2=0\)可化为\(-2x^2-5x+3>0\),即\(2x^2+5x-3<0\)
    \(∴(2x-1)(x-3)<0\),解得 \(-3<x<\dfrac{1}{2}\)
    所以不等式 \(ax^2-5x+a^2-1>0\)的解集为 \(\left\{x \mid-3<x<\dfrac{1}{2}\right\}\)
    (2)由(1)知\(a=-2\)\(∴\)二次不等式\(-2x^2+bx+c<0\)的解集为 \(\{x \mid x<\dfrac{1}{3}\)\(x>\dfrac{1}{2}\}\)
    \(\therefore \dfrac{1}{3}\)\(\dfrac{1}{2}\)是一元二次方程\(-2x^2+bx+c=0\)的两根,
    \(\therefore \dfrac{1}{3}+\dfrac{1}{2}=-\dfrac{b}{-2}, \dfrac{1}{3} \times \dfrac{1}{2}=-\dfrac{c}{2}\),解得 \(b=\dfrac{5}{3}, \quad c=-\dfrac{1}{3}\)
    所以不等式\(cx^2-bx+a>0\)可化为: \(-\dfrac{1}{3} x^{2}-\dfrac{5}{3} x-2>0\)
    \(x^2+5x+6<0\),解得\(-3<x<-2\)
    所以关于\(x\)的不等式\(cx^2-bx+a>0\)的解集为\(\{x|-3<x<-2\}\)

【题型2】求含参一元二次不等式(选学)

角度1 按二次项的系数a的符号分类,即a>0,a=0 ,a<0
解不等式\(ax^2+(a+2) x+1>0\).
解析
(不确定不等式对应函数\(y=ax^2+(a+2) x+1\)是否是二次函数,分\(a=0\)\(a≠0\)讨论)
(1) 当\(a=0\)时,不等式为\(2x+1>0\),解集为 \(\left\{x \mid x>-\dfrac{1}{2}\right\}\)
(2) 当\(a≠0\)时, \(∵Δ=(a+2)^2-4a=a^2+4>0\)
(二次函数\(y=ax^2+(a+2) x+1\)\(x\)轴必有两个交点)
解得方程\(ax^2+(a+2) x+1=0\)两根 \(x_{1}=\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}, x_{2}=\dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}\)
(二次函数的开口方向与不等式的解集有关,分\(a>0\)\(a<0\)讨论)
(i)当\(a>0\)时,解集为 \(\left\{x \mid x>\dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}\right.\)\(\left.x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}\right\}\)
(ii)当\(a<0\)时, 解集为 \(\left\{x \mid \dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}<x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}\right\}\).(注意\(x_1,x_2\)的大小)
综上,当\(a=0\)时,解集为 \(\left\{x \mid x>-\dfrac{1}{2}\right\}\)
\(a>0\)时,解集为 \(\{x>\dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}\)\(x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a} \}\)
\(a<0\)时, 解集为 \(\left\{x \mid \dfrac{-a-2+\sqrt{a^{2}+4}}{2 a}<x<\dfrac{-a-2-\sqrt{a^{2}+4}}{2 a}\right\}\).
 

角度2 按判别式的符号分类
解不等式\(x^2+ax+4>0\).
解析 \(∵Δ=a^2-16\)
(此时不确定二次函数\(y=x^2+ax+4\)是否与\(x\)轴有两个交点,对判别式进行讨论)
\(∴\)①当\(-4<a<4\),即\(Δ<0\)时,解集为\(R\)
②当\(a=±4\),即\(Δ=0\)时,解集为 \(\left\{x \mid x \neq-\dfrac{a}{2}\right\}\)
③当\(a>4\)\(a<-4\),即\(Δ>0\)时,此时两根为 \(x_{1}=\dfrac{-a+\sqrt{a^{2}-16}}{2}, x_{2}=\dfrac{-a-\sqrt{a^{2}-16}}{2}\) ,显然\(x_1>x_2\)
\(∴\)不等式的解集为 \(\left\{x \mid x>\dfrac{-a+\sqrt{a^{2}-16}}{2}\right.\)\(\left.x<\dfrac{-a-\sqrt{a^{2}-16}}{2}\right\}\).
综上,当\(-4<a<4\)时,解集为\(R\)
\(a=±4\)时,解集为 \(\left\{x \mid x \neq-\dfrac{a}{2}\right\}\)
\(a>4\)\(a<-4\)时,解集为 \(\left\{x \mid x>\dfrac{-a+\sqrt{a^{2}-16}}{2}\right.\)\(\left.x<\dfrac{-a-\sqrt{a^{2}-16}}{2}\right\}\).
 

角度3 按方程的根大小分类
解不等式: \(x^{2}-\left(a+\dfrac{1}{a}\right) x+1<0 \quad(a \neq 0)\).
解析 原不等式可化为: \((x-a)\left(x-\dfrac{1}{a}\right)<0\) ,
\((x-a)\left(x-\dfrac{1}{a}\right)=0\),得 \(x_{1}=a, x_{2}=\dfrac{1}{a}\)
(因式分解很关键,此时确定 \(y=(x-a)\left(x-\dfrac{1}{a}\right)\)\(x\)轴有交点,\(x_1 ,x_2\)的大小影响不等式解集)
\(∴\)(i)当\(x_1=x_2\)时,即 \(a=\dfrac{1}{a} \Rightarrow a=\pm 1\)时,解集为\(ϕ\)
(ii)当\(x_1<x_2\)时,即 \(a<\dfrac{1}{a} \Rightarrow a<-1\)\(0<a<1\)时,解集为 \(\left\{x \mid a<x<\dfrac{1}{a}\right\}\)
(iii)当\(x_1>x_2\)时,即 \(a>\dfrac{1}{a} \Rightarrow-1<a<0\)\(a>1\)时,解集为 \(\left\{x \mid \dfrac{1}{a}<x<a\right\}\).
综上,当\(a=±1\)时,解集为\(ϕ\)
\(a<-1\)\(0<a<1\)时,解集为 \(\left\{x \mid a<x<\dfrac{1}{a}\right\}\)
\(-1<a<0\)\(a>1\)时, 解集为 \(\left\{x \mid \dfrac{1}{a}<x<a\right\}\).
点拨
① 当求解一元二次不等式时,它是否能够因式分解,若可以就确定对应的二次函数与x轴有交点,就不需要考虑判别式.
常见的形式有\(x^2-(a+1)x+a=(x-1)(x-a)\) , \(x^{2}-\left(a+\dfrac{1}{a}\right) x+1=(x-a)\left(x-\dfrac{1}{a}\right)\)
\(ax^2+(a+1)x+1=(ax+1)(x+1)\)等,若判别式\(Δ\)是一个完全平方式,它就能做到“较好形式的十字相乘”,当然因式分解也可以用公式法求解;
② 在求解含参的一元二次不等式,需要严谨,多从二次函数的开口方向、判别式、两根大小的比较三个角度进行分类讨论,利用图像进行分析.
 

巩固练习

1.解关于\(x\)的不等式 \(12x^2-ax-a^2<0\).
 
 

2.解关于\(x\)的不等式 \(x^2+2x+a>0\)
 
 

3.若\(a∈R\),解关于\(x\)的不等式\(ax^2+(a+1)x+1>0\)
 
 

参考答案

  1. 解析 方程 \(12x^2-ax-a^2=0\)
    \(∴(4x+a)(3x-a)=0\),即方程两根为 \(x_{1}=-\dfrac{a}{4},x_{2}=\dfrac{a}{3}\)
    (1)当\(a>0\)时,\(x_2>x_1\),不等式的解集是 \(\left\{x \mid-\dfrac{a}{4}<x<\dfrac{a}{3}\right\}\)
    (2)当\(a=0\)时,\(x_1=x_2\),不等式的解集是\(ϕ\)
    (3)当\(a<0\)时,\(x_1<x_2\),不等式的解集 \(\left\{x \mid \dfrac{a}{3}<x<-\dfrac{a}{4}\right\}\)
  2. 解析 方程\(x^2+2x+a=0\)\(△=4-4a=4(1-a)\)
    ①当\(1-a<0\)\(a>1\)时,不等式的解集是\(R\)
    ②当\(1-a=0\),即\(a=1\)时,不等式的解集是\(\{x|x≠-1\}\)
    ③当\(1-a>0\)\(a<1\)时,
    \(x^2+2x+a=0\)解得: \(x_{1}=-1-\sqrt{1-a}, x_{2}=-1+\sqrt{1-a}\)
    \(∴a<1\)时,不等式的解集是 \(\{x \mid x>-1+\sqrt{1-a}\)\(x<-1-\sqrt{1-a}\}\)
    综上,\(a>1\)时,不等式的解集是\(R\)
    \(a=1\)时,不等式的解集是\(\{x|x≠-1\}\)
    \(a<1\)时,不等式的解集是 \(\{x \mid x>-1+\sqrt{1-a}\)\(x<-1-\sqrt{1-a}\}\)
  3. 解析 \(a=0\)时,\(x>-1\)
    \(a≠0\)时, \(a\left(x+\dfrac{1}{a}\right)(x+1)>0\)
    \(a<0\)时, \(\left(x+\dfrac{1}{a}\right)(x+1)<0\),解得 \(-1<x<-\dfrac{1}{a}\)
    \(a>0\)时, \(\left(x+\dfrac{1}{a}\right)(x+1)>0\)
    \(a=1\)时,\(x≠-1\)
    \(0<a<1\)时, \(x<-\dfrac{1}{a}\),或\(x>-1\)
    \(a>1\)时,\(x<-1\),或 \(x>-\dfrac{1}{a}\)
    \(∴\)\(a<0\)时,解集是 \(\left(-1,-\dfrac{1}{a}\right)\)
    \(a=0\)时,解集是 \((-1,+\infty)\)
    \(0<a≤1\)时,解集是 \(\left(-\infty,-\dfrac{1}{a}\right) \cup(-1,+\infty)\)
    \(a>1\)时,解集是 \(=(-\infty,-1) \cup\left(-\dfrac{1}{a},+\infty\right)\)

分层练习

【A组---基础题】

1.下等式的解集为R的是(  )
 A.\(x^2+x+1<0\) \(\qquad \qquad\) B.\(x^2+2x+1>0\) \(\qquad \qquad\) C.\(-x^2+x+1≤0\) \(\qquad \qquad\) D.\(x^2+x+1>0\)
 

2.不等式\(-x^2-5x+6≤0\)的解集为(  )
 A.\(\{x|x≥6\)\(x≤-1\}\) \(\qquad \qquad\) B.\(\{x|-1≤x≤6\}\) \(\qquad \qquad\) C.\(\{x|-6≤x≤1\}\) \(\qquad \qquad\) D.\(\{x|x≤-6\)\(x≥1\}\)
 

3.若不等式\((m-1)x^2+(m-1)x+2>0\)的解集是\(R\),则\(m\)的范围是( )
 A.\((1,9)\) \(\qquad \qquad\) B.\((-∞,1]∪(9,+∞)\) \(\qquad \qquad\) C.\([1,9)\) \(\qquad \qquad\) D.\((-∞,1)∪(9,+∞)\)
 

4.不等式\(-x^2+bx+c>0\)的解集是\(\{x|-2<x<1\}\),则\(b+c-1\)的值为(  )
 A.\(2\) \(\qquad \qquad\) B.\(-1\) \(\qquad \qquad\) C.\(0\) \(\qquad \qquad\) D.\(1\)
 

5.关于\(x\)的不等式\(x^2+ax+b≥0\)的解集为\(\{x|x≤-3,\)\(x≥1\}\),则\(ab=\)(  )
 A.\(12\) \(\qquad \qquad\) B.\(-12\) \(\qquad \qquad\) C.\(6\) \(\qquad \qquad\) D.\(-6\)
 

6.已知不等式\(ax^2-5x+b>0\)的解集为\(\{x∣-3<x<2\}\),则不等式\(bx^2-5x+a>0\)的解集为( )
 A.\(\left\{x \mid-\dfrac{1}{3}<x<\dfrac{1}{2}\right\}\) \(\qquad \qquad\) B. \(\{x \mid x<-\dfrac{1}{3}\)\(x>\dfrac{1}{2} \}\) \(\qquad \qquad\)
 C.\(\{x∣-3<x<2\}\) \(\qquad \qquad\) D. \(\{x∣x<-3\)\(x>2\}\)
 

7.不等式 \(\dfrac{2 x-3}{3 x-4} \leq 2\)的解集是\(\underline{\quad \quad}\) .
 

参考答案

  1. 答案 \(D\)
    解析 \(x^{2}+x+1=\left(x+\dfrac{1}{2}\right)^{2}+\dfrac{3}{4} \geq \dfrac{3}{4}>0\)恒成立,
    所以不等式\(x^2+x+1>0\)的解集为\(R\)\(D\)正确.
    故选:\(D\)
  2. 答案 \(D\)
    解析 \(-x^2-5x+6≤0⇔x^2+5x-6≥0\) \(⇔(x+6)(x-1)≥0⇔x≥1\)\(x≤-6\)
    故选\(D\).
  3. 答案 \(C\)
    解析 \((m-1)x^2+(m-1)x+2>0\)解集为\(R\),即为恒成立,
    可得:(1)当\(m-1=0,m=1\)时;\(2>0\)成立;
    (2)当\(m>1\)时;\(Δ<0\),\(4(m-1)^2+8(m-1)<0\),\(1<m<9\)成立;
    (3)当\(m<1\)时;不成立.
    综上可得实数\(m\)的取值范围\([1,9)\).
  4. 答案 \(C\)
    解析 由不等式\(-x^2+bx+c>0\)的解集是\(\{x|-2<x<1\}\)
    \(-2\)\(1\)是方程\(-x^2+bx+c=0\)的解,
    由根与系数的关系知, \(\left\{\begin{array}{l} -\dfrac{b}{-1}=-2+1 \\ \dfrac{c}{-1}=-2 \times 1 \end{array}\right.\),解得\(b=-1,c=2\)
    所以\(b+c-1=-1+2-1=0\)
    故选:\(C\)
  5. 答案 \(D\)
    解析 \(∵\)不等式\(x^2+ax+b≥0\)的解集为\(\{x|x≤-3\)\(x≥1\}\)
    \(\because\left\{\begin{array}{l} x_{1}+x_{2}=-a \\ x_{1} x_{2}=b \end{array}\right.\)\(∴a=2,b-3\)\(∴ab=-6\)
    故选:\(D\)
  6. 答案 \(B\)
    解析 由题意可知\(ax^2-5x+b=0\)的两个根为\(x_1=-3,x_2=2\)
    \(\therefore\left\{\begin{array}{l} -3+2=\dfrac{5}{a} \\ -3 \times 2=\dfrac{b}{a} \end{array}\right.\)\(\therefore\left\{\begin{array}{l} a=-5 \\ b=30 \end{array}\right.\)
    不等式\(bx^2-5x+a>0\)即为\(30x^2-5x-5>0\)
    解不等式得解集为\(\{x \mid x<-\dfrac{1}{3}\)\(x>\dfrac{1}{2} \}\).
  7. 答案 \(\left\{x \mid x>\dfrac{4}{3}\right.\)\(\left.x \leq \dfrac{5}{4}\right\}\)
    解析 \(\dfrac{2 x-3}{3 x-4} \leq 2 \Leftrightarrow \dfrac{2 x-3}{3 x-4}-2 \leq 0 \Leftrightarrow \dfrac{-4 x+5}{3 x-4} \leq 0 \Leftrightarrow \dfrac{4 x-5}{3 x-4} \geq 0\)
    \(\Leftrightarrow\left\{\begin{array}{c} (4 x-5)(3 x-4) \geq 0 \\ 3 x-4 \neq 0 \end{array} \Leftrightarrow x>\dfrac{4}{3}\right.\)\(x \leq \dfrac{5}{4}\).

【B组---提高题】

1.已知集合\(A=\{x|x^2-2x-3≤0\}\),集合\(B=\{x||x-1|≤3\}\),集合 \(C=\left\{x \mid \dfrac{x-4}{x+5} \leq 0\right\}\),则集合\(A,B,C\)的关系为(  )
 A.\(B⊆A\) \(\qquad \qquad\) B.\(A=B\) \(\qquad \qquad\) C.\(C⊆B\) \(\qquad \qquad\) D.\(A⊆C\)
 

2.已知集合\(A=\{x|(1+mx)(x+n)>0\}=\{x|-2<x<1\}\),则\(n-m\)等于(  )
  A.\(1\) \(\qquad \qquad\) B.\(3\) \(\qquad \qquad\) C.\(-1\) \(\qquad \qquad\) D.\(-3\)
 

3.已知关于\(x\)的不等式\(a(x+1)(x-3)+1>0(a≠0)\)的解集是\((x_1,x_2)(x_1<x_2)\),则下列结论中错误的是(  )
  A.\(x_1+x_2=2\) \(\qquad \qquad\) B.\(x_1 x_2<-3\) \(\qquad \qquad\) C.\(x_2-x_1>4\) \(\qquad \qquad\) D.\(-1<x_1<x_2<3\)
 

4.已知关于\(x\)的不等式 \(\dfrac{a x-1}{x+1}<0\)的解集是 \((-\infty,-1) \cup\left(-\dfrac{1}{2},+\infty\right)\).则\(a=\)\(\underline{\quad \quad}\).
 

5.已知不等式\(ax^2+bx+c>0\)的解集是\(\{x|α<x<β\}\)\(α>0\),则不等式\(cx^2+bx+a>0\)的解集是\(\underline{\quad \quad}\) .
 

6.关于\(x\)的一元二次不等式\(x^2-6x+a≤0(a∈Z)\)的解集中有且仅有\(3\)个整数,则\(a\)的取值是\(\underline{\quad \quad}\).
 

7.若不等式\(x^2-(a+1)x+a≤0\)的解集是\([-3,4]\)的子集,则实数\(a\)的取值范围是\(\underline{\quad \quad}\) .
 

8.解关于\(x\)的不等式:\(mx^2-(m-2)x-2>0\)
 
 

9.关于\(x\)的不等式 \((ax-1)^2<x^2\)恰有\(2\)个整数解,求实数\(a\)的取值范围.
 
 

参考答案

  1. 答案 \(D\)
    解析 \(∵x^2-2x-3≤0\),即\((x-3)(x+1)≤0\)
    \(∴-1≤x≤3\),则\(A=[-1,3]\)
    \(|x-1|≤3\),即\(-3≤x-1≤3\)
    \(∴-2≤x≤4\),则\(B=[-2,4]\)
    \(\because \dfrac{x-4}{x+5} \leq 0 \Leftrightarrow\left\{\begin{array}{l} (x-4)(x+5) \leq 0 \\ x+5 \neq 0 \end{array}\right.\)\(∴-5<x≤4\),则\(C=(-5,4]\)\(∴A⊆C\)\(B⊆C\),故选:\(D\)

  2. 答案 \(B\)
    解析 由题意知\(x=-2、x=1\)是方程\((1+mx)(x+n)=0\)的两根,
    代入方程得 \(\left\{\begin{array}{l} (1-2 m)(-2+n)=0 \\ (1+m)(1+n)=0 \end{array}\right.\),解得\(m=-1、n=2\)
    所以\(n-m=3\).故选:\(B\)

  3. 答案 \(D\)
    解析 由关于\(x\)的不等式\(a(x+1)(x-3)+1>0(a≠0)\)的解集是\((x_1,x_2)(x_1<x_2)\)
    \(∴a<0\)\(x_1,x_2\)是一元二次方程\(ax^2-2ax+1-3a=0\)
    \(∴x_1+x_2=2\)\(x_{1} x_{2}=\dfrac{1-3 a}{a}=\dfrac{1}{a}-3<-3\)
    \(x_{2}-x_{1}=\sqrt{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}\)\(=\sqrt{4-4 \times \dfrac{1-3 a}{a}}=2 \sqrt{4-\dfrac{1}{a}}>4\)
    \(x_2-x_1>4\),可得:\(-1<x_1<x_2<4\)是错误的.
    故选:\(D\)

  4. 答案 \(-2\)
    解析 由不等式判断可得\(a≠0\)且不等式等价于 \(a(x+1)\left(x-\dfrac{1}{a}\right)<0\)
    由解集特点可得\(a<0\)\(\dfrac{1}{a}=-\dfrac{1}{2} \Rightarrow a=-2\).

  5. 答案 \(\left\{x \mid \dfrac{1}{\beta}<x<\dfrac{1}{\alpha}\right\}\)
    解析 不等式\(ax^2+bx+c>0\)的解集是\(\{x|α<x<β\}(α>0)\)
    \(α,β\)是一元二次方程\(ax^2+bx+c=0\)的实数根,且a\(<0\)
    \(\therefore \alpha+\beta=-\dfrac{b}{a}, \quad \alpha \beta=\dfrac{c}{a}\)
    \(∴\)不等式\(cx^2+bx+a>0\)化为 \(\dfrac{c}{a} x^{2}+\dfrac{b}{a} x+1<0\)
    \(\therefore \alpha \beta x^{2}-(\alpha+\beta) x+1<0\);化为\((αx-1)(βx-1)<0\)
    \(0<α<β\)\(\therefore \dfrac{1}{\alpha}>\dfrac{1}{\beta}>0\)
    \(∴\)不等式\(cx^2+bx+a<0\)的解集为 \(\left\{x \mid \dfrac{1}{\beta}<x<\dfrac{1}{\alpha}\right\}\).

  6. 答案 \(6,7,8\)
    解析 \(f(x)=x^2-6x+a\),其图象是开口向上,对称轴是\(x=3\)的抛物线,如图所示;

    若关于\(x\)的一元二次不等式\(x^2-6x+a≤0\)的解集中有且仅有\(3\)个整数,
    \(\left\{\begin{array}{l} f(2) \leq 0 \\ f(1)>0 \end{array}\right.\),即 \(\left\{\begin{array}{l} 4-12+a \leq 0 \\ 1-6+a>0 \end{array}\right.\),解得\(5<a≤8\)
    \(a∈Z\),所以\(a=6,7,8\)

  7. 答案 \(\{a|-3≤a≤4\}\)
    解析 关于\(x\)的不等式\(x^2-(a+1)x+a<0\)化为\((x-1)(x-a)<0\)
    其解集是\([-3,4]\)的子集,
    \(a=1\)时,不等式为\((x-1)^2<0\),其解集为空集,符合题意;
    \(1<a≤4\)时,不等式的解集为\(\{x|1<x<a\}\),也符合题意;
    \(a<1\)时,不等式的解集为\(\{x|a<x<1\}\),应满足\(a≥-3\)
    \(a>4\)时,不等式的解集为\(\{x|1<x<a\}\),此时不满足题意;
    综上,实数\(a\)的取值范围是\(\{a|-3≤a≤4\}\)

  8. 解析 化简为\((mx+2)(x-1)>0\)
    \(m>0\)时,解集为 \(\left(-\infty,-\dfrac{2}{m}\right) \cup(1,+\infty)\)
    \(-2<m<0\)时,解集为 \(\left(1,-\dfrac{2}{m}\right)\)
    \(m=-2\)时,解集为\(ϕ\)
    \(m<-2\)时,解集为 \(\left(-\dfrac{2}{m}, 1\right)\)
    \(m=0\)时,解集为\((1,+∞)\).

  9. 答案 \(\dfrac{4}{3} \leq a<\dfrac{3}{2}\),或 \(-\dfrac{3}{2}<a \leq-\dfrac{4}{3}\)
    解析 不等式 \((ax-1)^2<x^2\)恰有2个整数解,
    \((ax-1)^2-x^2<0⇔((a+1)x-1)((a-1)x-1)<0\)恰有两个解,
    \(∴(a+1)(a-1)>0\),即\(a>1\),或\(a<-1\)
    \(a>1\)时,不等式解为 \(\dfrac{1}{a+1}<x<\dfrac{1}{a-1}\)
    \(\because \dfrac{1}{a+1} \in\left(0, \dfrac{1}{2}\right)\),恰有两个整数解,即:\(1,2\)
    \(\therefore 2<\dfrac{1}{a-1} \leq 3\)\(2a-2<1≤3a-3\),解得: \(\dfrac{4}{3} \leq a<\dfrac{3}{2}\)
    \(a<-1\)时,不等式解为 \(\dfrac{1}{a+1}<x<\dfrac{1}{a-1}\)
    \(\because \dfrac{1}{a-1} \in\left(-\dfrac{1}{2}, 0\right)\),恰有两个整数解即:\(-1,-2\)
    \(\therefore-3 \leq \dfrac{1}{a+1}<-2\)\(-2(a+1)<1≤-3(a+1)\),解得 \(-\dfrac{3}{2}<a \leq-\dfrac{4}{3}\)
    综上所述: \(\dfrac{4}{3} \leq a<\dfrac{3}{2}\),或 \(-\dfrac{3}{2}<a \leq-\dfrac{4}{3}\)

【C组---拓展题】

1.不等式 \(\dfrac{x-1}{x^{2}-4}>0\)的解集是\(\underline{\quad \quad}\).
 
2.不等式\(x^2+ax+b≤0(a,b∈R)\)的解集为\(\{x|x_1≤x≤x_2\}\),若\(|x_1 |+|x_2 |≤2\),则(  )
A.\(|a+2b|≥2\) B.\(|a+2b|≤2\) C.\(|a|≥1\) D.\(|b|≤1\)
 

3.已知方程\(ax^2+2x+1=0\)至少有一个负根,则实数\(a\)的取值范围是\(\underline{\quad \quad}\) .
 

参考答案

  1. 答案\(\{x|-2<x<1\)\(x>2\}\)
    解析 \(\dfrac{x-1}{x^{2}-4}>0 \Leftrightarrow \dfrac{x-1}{(x-2)(x+2)}>0 \Leftrightarrow(x-1)(x-2)(x+2)>0\)
    “穿针引线”可得解集是\(\{x|-2<x<1\)\(x>2\}\).
  2. 答案 \(D\)
    解析 \(∵\)不等式\(x^2+ax+b≤0(a,b∈R)\)的解集为\(\{x|x_1≤x≤x_2\}\)
    \(x_1 、x_2\)是对应方程\(x^2+ax+b=0\)的两个实数根,\(x_1 x_2=b\)
    \(|x_1 |+|x_2 |≤2\)
    不妨令\(a=-1,b=0\),则\(x_1=0,x_2=1\),但\(|a+2b|=1\)\(∴A\)选项不成立;
    \(a=2\)\(b=1\),则\(x_1=x_2=1\),但\(|a+2b|=4\)\(B\)选项不成立;
    \(a=0\)\(b=-1\),则\(x_1=-1\)\(x_2=1\),但\(|a|=0\)\(C\)选项不成立;
    \(b=x_{1} x_{2} \leq\left(\dfrac{x_{1}+x_{2}}{2}\right)^{2} \leq\left(\dfrac{\left|x_{1}\right|+\left|x_{2}\right|}{2}\right)^{2}=1\)\(D\)选项正确.
    故选:\(D\)
  3. 答案 \(a≤1\)
    解析 (1)当\(a=0\)时,方程变为\(2x+1=0\),有一负根 \(x=-\dfrac{1}{2}\),满足题意,
    (2)当\(a<0\)时,\(△=4-4a>0\),方程的两根满足 \(x_{1} x_{2}=\dfrac{1}{a}<0\),此时有且仅有一个负根,满足题意,
    (3)当\(a>0\)时,由方程的根与系数关系可得 \(\left\{\begin{array}{l} -\dfrac{2}{a}<0 \\ \dfrac{1}{a}>0 \end{array}\right.\)
    \(∴\)方程若有根,则两根都为负根,而方程有根的条件\(△=4-4a≥0\)
    \(∴0<a≤1\)
    综上可得,\(a≤1.\)
posted @ 2022-08-31 15:07  贵哥讲数学  阅读(2187)  评论(0编辑  收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏