三角函数综合习题解析
\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【高分突破系列】高一数学上学期同步知识点剖析精品讲义与分层练习]
(https://www.zxxk.com/docpack/2783085.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
必修第一册同步拔高练习,难度4颗星!
【典题1】已知函数\(f(x)=\cos x \cos \left(x-\dfrac{\pi}{6}\right)+\sqrt{3} \sin ^{2} x-\dfrac{3 \sqrt{3}}{4}\).
(1)求\(f(x)\)的最小正周期\(T\);
(2)若\(f(x)+1+(-1)^n m>0\)对任意的\(x \in\left[-\dfrac{\pi}{4}, \dfrac{\pi}{4}\right]\)和\(n∈N^*\)恒成立,求实数\(m\)的取值范围.
【解析】(1)\(f(x)=\cos x \cos \left(x-\dfrac{\pi}{6}\right)+\sqrt{3} \sin ^{2} x-\dfrac{3 \sqrt{3}}{4}\)
\(\begin{aligned}
&=\cos x\left(\dfrac{\sqrt{3}}{2} \cos x+\dfrac{1}{2} \sin x\right)+\sqrt{3} \dfrac{1-\cos 2 x}{2}-\dfrac{3 \sqrt{3}}{4} \\
&=\dfrac{\sqrt{3}}{2} \cos ^{2} x+\dfrac{1}{2} \sin x \cos x-\dfrac{\sqrt{3}}{2} \cos 2 x-\dfrac{\sqrt{3}}{4} \\
&=\dfrac{\sqrt{3}}{2} \cdot \dfrac{1+\cos 2 x}{2}+\dfrac{1}{4} \sin 2 x-\dfrac{\sqrt{3}}{2} \cos 2 x-\dfrac{\sqrt{3}}{4} \\
&=\dfrac{1}{4} \sin 2 x-\dfrac{\sqrt{3}}{4} \cos 2 x \\
&=\dfrac{1}{2} \sin \left(2 x-\dfrac{\pi}{3}\right)
\end{aligned}\)
\({\color{Red}{(把函数化为f(x)=A\sin(ωx+φ)+B}}\)
\(f(x)\)的最小正周期\(T=\dfrac{2 \pi}{2}=\pi\).
(2)由(1)知\(f(x)=\dfrac{1}{2} \sin \left(2 x-\dfrac{\pi}{3}\right)\),
当\(y \in\left[-\dfrac{\pi}{4}, \dfrac{\pi}{4}\right]\)时,\(-\dfrac{5 \pi}{6} \leq 2 x-\dfrac{\pi}{3} \leq \dfrac{\pi}{6}\),\(-\dfrac{1}{2} \leq \dfrac{1}{2} \sin \left(2 x-\dfrac{\pi}{3}\right) \leq \dfrac{1}{4},\),
即\(-\dfrac{1}{2} \leq f(x) \leq \dfrac{1}{4}\).
\({\color{Red}{ (问题中含(-1)^n,分n为偶数与n为奇数讨论) } }\)
①当\(n\)为偶数时,\(f(x)+1+(-1)^{n} m>0\Leftrightarrow f(x)+1+m>0 \Leftrightarrow m>-f(x)-1\).
由题意,只需\(m>[-f(x)-1]_{\max }\).
因为\([-f(x)-1]_{\max }=-\dfrac{1}{2}\),所以\(m>-\dfrac{1}{2}\).
②当\(n\)为奇数时,\(f(x)+1+(-1)^{n} m>0 \Leftrightarrow f(x)+1-m>0 \Leftrightarrow m<f(x)+1\).
由题意,只需\(m<[f(x)+1]_{\min }\).
因为当\(f(x)=-\dfrac{1}{2}\)时,\([f(x)+1]_{\min }=\dfrac{1}{2}\),
所以\(m<\dfrac{1}{2}\).
综上所述,实数\(m\)的取值范围是\(\left(-\dfrac{1}{2}, \dfrac{1}{2}\right)\).
【典题2】已知函数\(f(x)=\cos2x+a\sin x+b(a<0)\).
(1)若当\(x∈R\)时,\(f(x)\)的最大值为\(\dfrac{9}{8}\),最小值为\(-2\),求实数\(a ,b\)的值;
(2)若\(a=-2\),\(b=1\),设函数\(g(x)=m\sin x+2m\),且当\(x \in\left[\dfrac{\pi}{6}, \dfrac{2 \pi}{3}\right]\)时,\(f(x)>g(x)\)恒成立,求实数\(m\)的取值范围.
【解析】(1)\(f(x)=\cos2x+a\sin x+b
\)
\(=-2 \sin ^{2} x+a \sin x+b+1\)
\(=-2\left(\sin x-\dfrac{a}{4}\right)^{2}+\dfrac{a^{2}}{8}+b+1\),
(问题转化为二次函数动轴定区间最值问题)
因为\(-1≤\sin x≤1\),(注意三角函数有界性)
所以当\(-1 \leq \dfrac{a}{4}<0\)时,\(f(x)_{\max }=\dfrac{a^{2}}{8}+b+1=\dfrac{9}{8}\),\(f(x)_{\min }=a+b-1=2\),
解得\(a=-1\),\(b=0\),
当\(\dfrac{a}{4}<-1\)时,\(f(x)_{\max }=-a+b-1=\dfrac{9}{8}\),\(f(x)_{\min }=a+b-1=2\),无解.
综上所述,\(a=-1\),\(b=0\).
(2) \(f(x)=-2 \sin ^{2} x-2 \sin x+2\),
当\(x \in\left[\dfrac{\pi}{6}, \dfrac{2 \pi}{3}\right]\)时,\(-2 \sin ^{2} x-2 \sin x+2>m \sin x+2 m\)恒成立,
即\(m<-2 \cdot \dfrac{\sin ^{2} x+\sin x-1}{\sin x+2}\),(分类参数法)
令\(u=\sin x+2\),
\(\because x \in\left[\dfrac{\pi}{6}, \dfrac{2 \pi}{3}\right]\),\(\therefore \dfrac{1}{2} \leq \sin x \leq 1\),\(\therefore \dfrac{5}{2} \leq u \leq 3\)
则问题转化为\(m<-2 \cdot \dfrac{\sin ^{2} x+\sin x-1}{\sin x+2}=-2 \cdot \dfrac{(u-2)^{2}+(u-2)-1}{u}=6-2\left(u+\dfrac{1}{u}\right)\)恒成立
\(\because \dfrac{5}{2} \leq u \leq 3\)
\(\therefore 6-2\left(u+\dfrac{1}{u}\right) \geq-\dfrac{2}{3}\)(对勾函数的性质)
\(\therefore m<-\dfrac{2}{3}\),
即实数\(m\)的取值范围是\(\left(-\infty,-\dfrac{2}{3}\right)\).
【点拨】
① 处理三角函数问题注意其有界性;
② 恒成立问题注意分类参数法的运用;
③ 恒成立问题最终归根于最值问题,而常用的换元法能把问题“简化”;
④ 注意形如\(f(x)=\dfrac{a_{1} x^{2}+b_{1} x+c_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}\)的最值模型,其中会用到换元法、分离常数法、基本不等式或对勾函数性质.
【典题3】已知函数\(h(x)=\sqrt{3} \sin ^{4} \dfrac{x}{2}+2 \sin \dfrac{x}{2} \cos \dfrac{x}{2}-\sqrt{3} \cos ^{4} \dfrac{x}{2}\)
(1)若先将函数\(h(x)\)图象上所有点的横坐标缩短到原来的\(\dfrac{1}{2}\)倍(纵坐标不变),再将之向左平移\(\dfrac{\pi}{3}\)个单位,得到函数\(f(x)\)图象,求函数\(f(x)\)的解析式
(2)设\(g(x)=3-2 m+m \cos \left(2 x-\dfrac{\pi}{6}\right)(m \neq 0)\),则是否存在实数\(m\),满足对于任意\(x_{1} \in\left[0, \dfrac{\pi}{4}\right]\),都存在\(x_{2} \in\left[0, \dfrac{\pi}{4}\right]\),使得\(f(x_1)≥g(x_2)\)成立?如果存在,请求出实数\(m\)的取值范围;若不存在,请说明你的理由.
【解析】(1)\(h(x)=\sqrt{3} \sin ^{4} \dfrac{x}{2}+2 \sin \dfrac{x}{2} \cos \dfrac{x}{2}-\sqrt{3} \cos ^{4} \dfrac{x}{2}\)
\(\begin{aligned}
&=\sqrt{3}\left(\sin ^{2} \dfrac{x}{2}+\cos ^{2} \dfrac{x}{2}\right)\left(\sin ^{2} \dfrac{x}{2}-\cos ^{2} \dfrac{x}{2}\right)+2 \sin \dfrac{x}{2} \cos \dfrac{x}{2} \\
&=-\sqrt{3} \cos x+\sin x \\
&=2 \sin \left(x-\dfrac{\pi}{3}\right)
\end{aligned}\)
将函数\(h(x)\)图象上所有点的横坐标缩短到原来的\(\dfrac{1}{2}\)倍(纵坐标不变),
得到\(h_{1}(x)=2 \sin \left(2 x-\dfrac{\pi}{3}\right)\),
再向左平移\(\dfrac{\pi}{3}\)个单位,得到函数\(f(x)=2 \sin \left(2 x+\dfrac{\pi}{3}\right)\),
所以函数\(f(x)\)的解析式为\(f(x)=2 \sin \left(2 x+\dfrac{\pi}{3}\right)\).
(2) 若要满足题意,则只要\(f(x)_{\min } \geq g(x)_{\min }\),(双变量恒成立问题)
\(\because x \in\left[0, \dfrac{\pi}{4}\right]\),\(\therefore 2 x+\dfrac{\pi}{3} \in\left[\dfrac{\pi}{3}, \dfrac{5 \pi}{6}\right]\),\(\therefore \sin \left(2 x+\dfrac{\pi}{3}\right) \in\left[\dfrac{1}{2}, 1\right]\),即\(f(x)_{\min }=1\);
\(\because x \in\left[0, \dfrac{\pi}{4}\right]\),\(\therefore 2 x-\dfrac{\pi}{6} \in\left[-\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\),\(\therefore \cos \left(2 x-\dfrac{\pi}{6}\right) \in\left[\dfrac{1}{2}, 1\right]\),
\({\color{Red}{(要求g(x)_{\min },需要分m>0和m<0讨论)}}\)
①当\(m>0\)时,\(\operatorname{mcos}\left(2 x_{2}-\dfrac{\pi}{6}\right) \in\left[\dfrac{m}{2}, m\right]\),
即\(g(x)_{\min }=3-\dfrac{3 m}{2}\),
则\(f(x)_{\min } \geq g(x)_{\min } \Rightarrow 1 \geq 3-\dfrac{3 m}{2}\),
解得\(m \geq \dfrac{4}{3}\),
②当\(m<0\),\(\operatorname{mcos}\left(2 x_{2}-\dfrac{\pi}{6}\right) \in\left[m, \dfrac{m}{2}\right]\),
即\(g(x)_{\min }=3-m\),
则\(f(x)_{\min } \geq g(x)_{\min } \Rightarrow 1 \geq 3-m\),
解得\(m≥2\),与\(m<0\)矛盾,舍去.
综上所述,\(m\)的取值范围是\(\left[\dfrac{4}{3},+\infty\right)\).
【点拨】双变量存在---恒成立问题
\((1)∀x_1∈D\),\(∀x_2∈E\),\(f(x_1 )≥g(x_2)\)恒成立\(\Leftrightarrow f(x)_{min}≥g(x)_{max}\);
\((2)∀x_1∈D\),\(∃x_2∈E\),\(f(x_1 )≥g(x_2)\)恒成立\(\Leftrightarrow f(x)_{min}≥g(x)_{min}\);
\((3)∃x_1∈D\),\(∀x_2∈E\),\(f(x_1 )≥g(x_2)\)恒成立\(\Leftrightarrow f(x)_{max}≥g(x)_{max}\);
\((4)∃x_1∈D\),\(∃x_2∈E\),\(f(x_1 )≥g(x_2)\)恒成立\(\Leftrightarrow f(x)_{max}≥g(x)_{min}\).
【典题4】已知函数\(f(x)=A \sin (x+\varphi)\)\(\left(A>0, \varphi \in\left(0, \dfrac{\pi}{2}\right)\right)\),\(y=f(x)\)的部分图象,如图所示,\(P、Q\)分别为该图象的最高点和最低点,点\(P\)的坐标为\(\left(\dfrac{\pi}{4}, A\right)\),点\(R\)的坐标为\(\left(\dfrac{\pi}{4}, 0\right)\),且\(\tan \angle P R Q=-\dfrac{\pi \sqrt{2}}{2}\).
(1)求\(f(x)\)解析式;
(2)若方程\(\sin x \cos x+1=a f(x)(a \geq 1)\)在区间\(\left[0, \dfrac{3 \pi}{4}\right]\)内恰有一个根,求\(a\)的取值范围.
【解析】(1)过程略,\(f(x)=\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)\).
(2)方法一 方程\(\sin x \cos x+1=a \cdot \sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)(a \geq 1)\)
在区间\(\left[0, \dfrac{3 \pi}{4}\right]\)内恰有一个根\((*)\),
显然\(\dfrac{3 \pi}{4}\)不是方程的根,
则问题\((*)\)等价于\(a=\dfrac{\sin x \cos x+1}{\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)}=\dfrac{\sin x \cos x+1}{\sin x+\cos x}\)在\(\left[0, \dfrac{3 \pi}{4}\right)\)内恰有一个零点,(分离参数法)
等价于\(y=a\)与\(u(x)=\dfrac{\sin x \cos x+1}{\sin x+\cos x}\)在\(\left[0, \dfrac{3 \pi}{4}\right)\)内恰有一个交点,
设\(t=\sin x+\cos x=\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)\),
当\(x \in\left[0, \dfrac{3 \pi}{4}\right)\)时,\(t \in(0, \sqrt{2}]\).
又\(\sin x \cos x=\dfrac{1}{2}\left[(\sin x+\cos x)^{2}-1\right]=\dfrac{1}{2}\left(t^{2}-1\right)\)
\({\color{Red}{(注意到\sin x+\cos x与\sin x \cos x的关系,利用换元法)}}\)
则\(\dfrac{\sin x \cos x+1}{\sin x+\cos x}=\dfrac{1}{2}\left(t+\dfrac{1}{t}\right), \quad t \in(0, \sqrt{2}]\)
令\(h(t)=\dfrac{1}{2}\left(t+\dfrac{1}{t}\right)\),
由\(y=a\)与\(u(x)=\dfrac{\sin x \cos x+1}{\sin x+\cos x}\)在\(\left[0, \dfrac{3 \pi}{4}\right)\)内恰有一个交点
可知\(y=a\)与\(h(t)=\dfrac{1}{2}\left(t+\dfrac{1}{t}\right)\)在\((0, \sqrt{2}]\)内最多一个交点,
\({\color{Red}{(注意不能直接等价于y=h(t)在(0, \sqrt{2}]内恰有一个零点,u(x)是由h(t)与t(x)组成的复合函数)}}\)
易知\(h(t)=\dfrac{1}{2}\left(t+\dfrac{1}{t}\right)\)在\((0,1)\)上递减,在\((1, \sqrt{2}]\)递增,且\(h(1)=1\),\(h(\sqrt{2})=\dfrac{3 \sqrt{2}}{4}\)\({\color{Red}{ (如图所示)}}\)
①当\(a=1\)时,此时\(t=1\),
由\(1=\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)\)在\(\left[0, \dfrac{3 \pi}{4}\right]\)内得\(x=0\)或\(x=\dfrac{\pi}{2}\)有两个解,不符合题意;(注意检验)
② 当\(a>1\)时,若要满足题意则需要\(a>\dfrac{3 \sqrt{2}}{4}\),
此时\(0<t<\dfrac{\sqrt{2}}{2}\),而\(y=t\)与函数\(y=\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)\)在\(\left[0, \dfrac{3 \pi}{4}\right)\)内显然只有一个交点,
故\(a>\dfrac{3 \sqrt{2}}{4}\)满足题意,
综上,\(a\)的取值范围是\(\left(\dfrac{3 \sqrt{2}}{4},+\infty\right)\).
方法二 设\(g(x)=a f(x)-\sin x \cos x-1\)\(=a(\sin x+\cos x)-\sin x \cos x-1\),
方程\(\sin x \cos x+1=a f(x)(a \geq 1)\)在区间\(\left[0, \dfrac{3 \pi}{4}\right]\)内恰有一个根,
等价于函数g(x)在区间\(\left[0, \dfrac{3 \pi}{4}\right]\)内恰有一个零点.
\({\color{Red}{(方程与函数思想,对方程\sin x \cos x+1=a f(x)变形直接构造函数y=g(x))}}\)
设\(t=\sin x+\cos x=\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)\),当\(x \in\left[0, \dfrac{3 \pi}{4}\right]\)时,\(t \in[0, \sqrt{2}]\).
又\(\sin x \cos x=\dfrac{1}{2}\left[(\sin x+\cos x)^{2}-1\right]=\dfrac{1}{2}\left(t^{2}-1\right)\)
\({\color{Red}{(注意到\sin x+\cos x与\sin x\cos x的关系,利用换元法)}}\)
则\(-\sin x \cos x+a(\sin x+\cos x)-1=-\dfrac{1}{2} t^{2}+a t-\dfrac{1}{2},t \in[0, \sqrt{2}]\)
令\(h(t)=-\dfrac{1}{2} t^{2}+a t-\dfrac{1}{2}\),由函数\(g(x)\)在\(\left[0, \dfrac{3 \pi}{4}\right]\)内恰有一个零点,
可知\(h(t)=-\dfrac{1}{2} t^{2}+a t-\dfrac{1}{2}\)在\([0, \sqrt{2}]\)内最多一个零点,
(注意不能直接等价于\(y=h(t)\)在\([0, \sqrt{2}]\)内恰有一个零点)
由于\(a≥1\),函数\(y=h(t)\)判别式\(∆=a^2-1≥0\),
①当\(Δ=0\),得\(a=1\)时,此时零点为\(1\),即\(t=1\),
由\(1=\sqrt{2} \sin \left(x+\dfrac{\pi}{4}\right)\)在\(\left[0, \dfrac{3 \pi}{4}\right]\)内得\(x=0\)或\(x=\dfrac{\pi}{2}\)有两个解,不符合题意;(注意检验)
② 若\(Δ=a^2-1>0\),即\(a>1\)时,
注意到\(h(0)=-\dfrac{1}{2}<0\),函数开口向下,
要使\(h(t)=-\dfrac{1}{2} t^{2}+a t-\dfrac{1}{2}\)在\([0, \sqrt{2}]\)内恰有一个零点,
则\(h(\sqrt{2})>0\),解得\(a>\dfrac{3 \sqrt{2}}{4}\),
综上,\(a\)的取值范围是\(\left(\dfrac{3 \sqrt{2}}{4},+\infty\right)\).
【点拨】
① 对于复合函数的零点问题,注意函数的构造方法与问题等价转化的严谨性;
② 方法二中要注意:对于二次函数,我们常考量:开口方向、对称轴、判别式、特殊点(常见的是一些定点);二次函数零点分布问题,多结合函数图象进行思考!
【典题5】已知\(A\)是半径为\(2\)的半圆上的一点,\(BC\)是半圆的直径,\(PQRS\)为\(△ABC\)的内接正方形,记\(△ABC\)、正方形\(PQRS\)的面积分别为\(S_1\),\(S_2\),\(\angle A B C=\alpha\left(0<\alpha<\dfrac{\pi}{2}\right)\).
(1)分别写出\(S_1 ,S_2\)关于\(α\)的函数;
(2)求\(\dfrac{S_{1}}{S_{2}}\) 的最小值.
【解析】(1)因为\(BC\)是半圆的直径,所以\(AB⊥AC\),
又\(BC=4\),所以\(A B=4 \cos \alpha, A C=4 \sin \alpha\),
所以\(S_{1}=\dfrac{1}{2} A B \cdot A C=\dfrac{1}{2} \times 4 \sin \alpha \times 4 \cos \alpha=4 \sin 2 \alpha\),
设正方形的边长为\(x\),则\(B P=\dfrac{x}{\sin \alpha}\),\(A P=x \cos \alpha\)
(利用平几知识求解)
由\(BP+AP=AB\),
得\(\dfrac{x}{\sin \alpha}+x \cos \alpha=4 \cos \alpha\),
解得\(x=\dfrac{4 \sin \alpha \cos \alpha}{1+\sin \alpha \cos \alpha}=\dfrac{4 \sin 2 \alpha}{2+\sin 2 \alpha}\),
所以\(S_{2}=x^{2}=\left(\dfrac{4 \sin 2 \alpha}{2+\sin 2 \alpha}\right)^{2}=\dfrac{16 \sin ^{2} 2 \alpha}{(2+\sin 2 \alpha)^{2}}\left(0<\alpha<\dfrac{\pi}{2}\right)\).
(2)\(\dfrac{S_{1}}{S_{2}}=\dfrac{(2+\sin 2 \alpha)^{2}}{4 \sin 2 \alpha}=\dfrac{1}{\sin 2 \alpha}+\dfrac{1}{4} \sin 2 \alpha+1\)
令\(t=\sin2α\),因为\(0<\alpha<\dfrac{\pi}{2}\),所以\(0<2α<π\),则\(t=\sin2α∈(0 ,1]\),
所以\(\dfrac{S_{1}}{S_{2}}=\dfrac{1}{t}+\dfrac{t}{4}+1\),
令\(g(t)=\dfrac{1}{t}+\dfrac{t}{4}+1(0<t \leq 1)\),(对勾函数)
显然函数\(g(t)\)在\((0 ,1]\)上递减,
当\(t=1\)时,\(g(t)\)取得最小值\(g(1)=\dfrac{9}{4}\),
此时\(\sin2α=1\),解得\(\alpha=\dfrac{\pi}{4}\).
所以\(\dfrac{s_{1}}{s_{2}}\) 的最小值为\(\dfrac{9}{4}\).