kernel源码(八)head.s

这一篇我们来讲解head.s源码,不同于bootsect.s和setup.s,head.s使用at&t汇编格式。存放在磁盘的第6个扇区处(bootsect.s存放在第一个扇区,setup.s存放在第2345个扇区)。

1 源码

/*
 *  linux/boot/head.s
 *
 *  (C) 1991  Linus Torvalds
 */

/*
 *  head.s contains the 32-bit startup code.
 *
 * NOTE!!! Startup happens at absolute address 0x00000000, which is also where
 * the page directory will exist. The startup code will be overwritten by
 * the page directory.
 */
.text
.globl _idt,_gdt,_pg_dir,_tmp_floppy_area
_pg_dir:
startup_32:
    movl $0x10,%eax
    mov %ax,%ds
    mov %ax,%es
    mov %ax,%fs
    mov %ax,%gs
    lss _stack_start,%esp
    call setup_idt
    call setup_gdt
    movl $0x10,%eax        # reload all the segment registers
    mov %ax,%ds        # after changing gdt. CS was already
    mov %ax,%es        # reloaded in 'setup_gdt'
    mov %ax,%fs
    mov %ax,%gs
    lss _stack_start,%esp
    xorl %eax,%eax
1:    incl %eax        # check that A20 really IS enabled
    movl %eax,0x000000    # loop forever if it isn't
    cmpl %eax,0x100000
    je 1b
/*
 * NOTE! 486 should set bit 16, to check for write-protect in supervisor
 * mode. Then it would be unnecessary with the "verify_area()"-calls.
 * 486 users probably want to set the NE (#5) bit also, so as to use
 * int 16 for math errors.
 */
    movl %cr0,%eax        # check math chip
    andl $0x80000011,%eax    # Save PG,PE,ET
/* "orl $0x10020,%eax" here for 486 might be good */
    orl $2,%eax        # set MP
    movl %eax,%cr0
    call check_x87
    jmp after_page_tables

/*
 * We depend on ET to be correct. This checks for 287/387.
 */
check_x87:
    fninit
    fstsw %ax
    cmpb $0,%al
    je 1f            /* no coprocessor: have to set bits */
    movl %cr0,%eax
    xorl $6,%eax        /* reset MP, set EM */
    movl %eax,%cr0
    ret
.align 2
1:    .byte 0xDB,0xE4        /* fsetpm for 287, ignored by 387 */
    ret

/*
 *  setup_idt
 *
 *  sets up a idt with 256 entries pointing to
 *  ignore_int, interrupt gates. It then loads
 *  idt. Everything that wants to install itself
 *  in the idt-table may do so themselves. Interrupts
 *  are enabled elsewhere, when we can be relatively
 *  sure everything is ok. This routine will be over-
 *  written by the page tables.
 */
setup_idt:
    lea ignore_int,%edx
    movl $0x00080000,%eax
    movw %dx,%ax        /* selector = 0x0008 = cs */
    movw $0x8E00,%dx    /* interrupt gate - dpl=0, present */

    lea _idt,%edi
    mov $256,%ecx
rp_sidt:
    movl %eax,(%edi)
    movl %edx,4(%edi)
    addl $8,%edi
    dec %ecx
    jne rp_sidt
    lidt idt_descr
    ret

/*
 *  setup_gdt
 *
 *  This routines sets up a new gdt and loads it.
 *  Only two entries are currently built, the same
 *  ones that were built in init.s. The routine
 *  is VERY complicated at two whole lines, so this
 *  rather long comment is certainly needed :-).
 *  This routine will beoverwritten by the page tables.
 */
setup_gdt:
    lgdt gdt_descr
    ret

/*
 * I put the kernel page tables right after the page directory,
 * using 4 of them to span 16 Mb of physical memory. People with
 * more than 16MB will have to expand this.
 */
.org 0x1000
pg0:

.org 0x2000
pg1:

.org 0x3000
pg2:

.org 0x4000
pg3:

.org 0x5000
/*
 * tmp_floppy_area is used by the floppy-driver when DMA cannot
 * reach to a buffer-block. It needs to be aligned, so that it isn't
 * on a 64kB border.
 */
_tmp_floppy_area:
    .fill 1024,1,0

after_page_tables:
    pushl $0        # These are the parameters to main :-)
    pushl $0
    pushl $0
    pushl $L6        # return address for main, if it decides to.
    pushl $_main
    jmp setup_paging
L6:
    jmp L6            # main should never return here, but
                # just in case, we know what happens.

/* This is the default interrupt "handler" :-) */
int_msg:
    .asciz "Unknown interrupt\n\r"
.align 2
ignore_int:
    pushl %eax
    pushl %ecx
    pushl %edx
    push %ds
    push %es
    push %fs
    movl $0x10,%eax
    mov %ax,%ds
    mov %ax,%es
    mov %ax,%fs
    pushl $int_msg
    call _printk
    popl %eax
    pop %fs
    pop %es
    pop %ds
    popl %edx
    popl %ecx
    popl %eax
    iret


/*
 * Setup_paging
 *
 * This routine sets up paging by setting the page bit
 * in cr0. The page tables are set up, identity-mapping
 * the first 16MB. The pager assumes that no illegal
 * addresses are produced (ie >4Mb on a 4Mb machine).
 *
 * NOTE! Although all physical memory should be identity
 * mapped by this routine, only the kernel page functions
 * use the >1Mb addresses directly. All "normal" functions
 * use just the lower 1Mb, or the local data space, which
 * will be mapped to some other place - mm keeps track of
 * that.
 *
 * For those with more memory than 16 Mb - tough luck. I've
 * not got it, why should you :-) The source is here. Change
 * it. (Seriously - it shouldn't be too difficult. Mostly
 * change some constants etc. I left it at 16Mb, as my machine
 * even cannot be extended past that (ok, but it was cheap :-)
 * I've tried to show which constants to change by having
 * some kind of marker at them (search for "16Mb"), but I
 * won't guarantee that's all :-( )
 */
.align 2
setup_paging:
    movl $1024*5,%ecx        /* 5 pages - pg_dir+4 page tables */
    xorl %eax,%eax
    xorl %edi,%edi            /* pg_dir is at 0x000 */
    cld;rep;stosl
    movl $pg0+7,_pg_dir        /* set present bit/user r/w */
    movl $pg1+7,_pg_dir+4        /*  --------- " " --------- */
    movl $pg2+7,_pg_dir+8        /*  --------- " " --------- */
    movl $pg3+7,_pg_dir+12        /*  --------- " " --------- */
    movl $pg3+4092,%edi
    movl $0xfff007,%eax        /*  16Mb - 4096 + 7 (r/w user,p) */
    std
1:    stosl            /* fill pages backwards - more efficient :-) */
    subl $0x1000,%eax
    jge 1b
    xorl %eax,%eax        /* pg_dir is at 0x0000 */
    movl %eax,%cr3        /* cr3 - page directory start */
    movl %cr0,%eax
    orl $0x80000000,%eax
    movl %eax,%cr0        /* set paging (PG) bit */
    ret            /* this also flushes prefetch-queue */

.align 2
.word 0
idt_descr:
    .word 256*8-1        # idt contains 256 entries
    .long _idt
.align 2
.word 0
gdt_descr:
    .word 256*8-1        # so does gdt (not that that's any
    .long _gdt        # magic number, but it works for me :^)

    .align 3
_idt:    .fill 256,8,0        # idt is uninitialized

_gdt:    .quad 0x0000000000000000    /* NULL descriptor */
    .quad 0x00c09a0000000fff    /* 16Mb */
    .quad 0x00c0920000000fff    /* 16Mb */
    .quad 0x0000000000000000    /* TEMPORARY - don't use */
    .fill 252,8,0            /* space for LDT's and TSS's etc */
View Code

首先,伪指令指定代码段,以及全局可访问标签

.text
.globl _idt,_gdt,_pg_dir,_tmp_floppy_area

程序入口startup_32。我们知道,在保护模式下,段寄存器的唯一作用是存放段选择子(参考https://www.cnblogs.com/zhenjingcool/p/15929907.html),在下面这段代码中设置段寄存器ds,es,fs,gs为0x10

_pg_dir:
startup_32:
    movl $0x10,%eax
    mov %ax,%ds
    mov %ax,%es
    mov %ax,%fs
    mov %ax,%gs
    lss _stack_start,%esp

下图是段选择子的格式,我们设置其为0x10,也就是0000 0000 0001 0000,TI=0表示该段指向GDT,index=2

 

 

 index=2,也就是段描述符表GDT中的第2项(从0开始),我们回过头来查看setup.s中的gdt定义

gdt:
    .word    0,0,0,0        ! dummy

    .word    0x07FF        ! 8Mb - limit=2047 (2048*4096=8Mb)
    .word    0x0000        ! base address=0
    .word    0x9A00        ! code read/exec
    .word    0x00C0        ! granularity=4096, 386

    .word    0x07FF        ! 8Mb - limit=2047 (2048*4096=8Mb)
    .word    0x0000        ! base address=0
    .word    0x9200        ! data read/write
    .word    0x00C0        ! granularity=4096, 386

其第二项为

    .word    0x07FF        ! 8Mb - limit=2047 (2048*4096=8Mb)
    .word    0x0000        ! base address=0
    .word    0x9200        ! data read/write
    .word    0x00C0        ! granularity=4096, 386

我们对照代码段描述符格式,注意,这里0x07FF对应段描述符中的低16位。由此可知,limit=0000 0111 1111 1111,即2^12-1

G被置1,当G置位时,段大小以4096字节为单位计。所以段大小为2^12*4096字节=8MB。

base=0

 

 

综上,也就是说,如下代码执行后,段寄存器ds,es,fs,gs段基址为0,段大小为8MB,且这几个段是重合的。

_pg_dir:
startup_32:
    movl $0x10,%eax
    mov %ax,%ds
    mov %ax,%es
    mov %ax,%fs
    mov %ax,%gs
    lss _stack_start,%esp

最后一句 lss _stack_start,%esp 表示将_stack_start地址的低16位存入堆栈指针sp中,高16位存入堆栈寄存器ss中。stack_start(不带前面下划线)是在其他文件中定义的标签,后面将介绍。

接下来,重新设置中断描述符表idt和全局描述符表gdt

call setup_idt

我们看一下初始化中断描述符表的代码:

setup_idt:
    lea ignore_int,%edx //ignore_int地址放入edx中
    movl $0x00080000,%eax //0x00080000放入eax中
    movw %dx,%ax        /* ignore_int低两字节放入eax低两字节 */
    movw $0x8E00,%dx    /* 0x8E00放入edx低两字节 */

    lea _idt,%edi //中断描述符表基地址放入edi中
    mov $256,%ecx //计数寄存器ecx存储256,后面会循环256次
rp_sidt:
    movl %eax,(%edi) //eax放入中断描述符表_idt中
    movl %edx,4(%edi) //edx放入中断描述符表_idt偏移量4字节处
    addl $8,%edi
    dec %ecx
    jne rp_sidt
    lidt idt_descr
    ret

我们定义了中断描述符表 _idt: .fill 256,8,0 表示该描述符表可容纳256个中断描述符,每个中断描述符占8字节

下面这两行
movl %eax,(%edi) //eax放入中断描述符表_idt中 movl %edx,4(%edi) //edx放入中断描述符表_idt偏移量4字节处
作用是在中断描述符表_idt中创建一个中断描述符(一个中断描述符占8个字节)。
下图展示了由代码生成的edx和eax和中断门描述符的对应关系。我们会循环256次,把edx和eax放入_idt中。
程序执行完毕,我们将获得一个_idt,里面有256个中断描述符,这些中断描述符都有相同的结构,段选择子都是0x0008,偏移量都指向ignore_int。我们初始化的这些中断描述符都有相同的功能,当一个中断发生时,都使用ignore_int中断处理程序处理
循环256次结束,执行 lidt idt_descr 加载中断描述符表到idtr寄存器中。

上图中段选择符是0x0008,也就是0000 0000 0000 1000。中断门描述符中的16-31表示一个段选择符,指向GDT中的指定项。这里的段选择符指向gdt的第二项,由下面对setup_gdt的代码讲解我们可以知道,第二项是指向代码段。

 

 

 我们再看一下ignore_int,这个是默认的中断处理程序,在这个程序中,我们先把ax,cx,dx,ds,es等压入堆栈,然后打印一条信息“Unknown Interrupt”。

/* This is the default interrupt "handler" :-) */
int_msg:
    .asciz "Unknown interrupt\n\r"
.align 2
ignore_int:
    pushl %eax
    pushl %ecx
    pushl %edx
    push %ds
    push %es
    push %fs
    movl $0x10,%eax
    mov %ax,%ds
    mov %ax,%es
    mov %ax,%fs
    pushl $int_msg
    call _printk
    popl %eax
    pop %fs
    pop %es
    pop %ds
    popl %edx
    popl %ecx
    popl %eax
    iret

我么再看一下call setup_gdt

setup_gdt:
    lgdt gdt_descr
    ret
.align 2
.word 0
gdt_descr:
    .word 256*8-1        # so does gdt (not that that's any
    .long _gdt        # magic number, but it works for me :^)
_gdt:    .quad 0x0000000000000000    /* NULL descriptor */
    .quad 0x00c09a0000000fff    /* 16Mb */
    .quad 0x00c0920000000fff    /* 16Mb */
    .quad 0x0000000000000000    /* TEMPORARY - don't use */
    .fill 252,8,0            /* space for LDT's and TSS's etc */

在_gdt中我们预设了4个全局描述符,第一个是NULL无用,第二个是代码段描述符,第三个是数据段描述符,第四个是临时无用,然后我们预留了252个8字节空间供以后使用。

接着我们回到startup_32,继续往下走

1:    incl %eax        # check that A20 really IS enabled
    movl %eax,0x000000    # loop forever if it isn't
    cmpl %eax,0x100000
    je 1b

这一段代码作用是,检测A20地址线是否真的开启,如果未开启则执行 je 1b 意思是跳转到标号1处,b表示向后执行,f表示向前执行,这里是从标号1处向后执行,也就是进入死循环。如果开启了则继续往下执行。

 

接着往下看

    movl %cr0,%eax        # check math chip
    andl $0x80000011,%eax    # Save PG,PE,ET
/* "orl $0x10020,%eax" here for 486 might be good */
    orl $2,%eax        # set MP
    movl %eax,%cr0
    call check_x87
    jmp after_page_tables

CR0寄存器结构图

 

 

这一句  andl $0x80000011,%eax 

0x80000011=1000 0000 0000 0000 0000 0000 0001 0001,对照cr0寄存器各位功能可知,这一句作用是保存cr0的PG,PE,ET位到eax中。

 orl $2,%eax # set MP 这里把eax的第2位置1,对应cr0寄存器的MP位。

 movl %eax,%cr0 重新设置cr0.此时的cr0的mp位置1了。

 call check_x87 这里是检查适配80x87类型,这里不做解释

下面我们看一下 jmp after_page_tables 

after_page_tables:
    pushl $0        # These are the parameters to main :-)这4个值是main函数的参数,其中L6是main函数返回地址
    pushl $0
    pushl $0
    pushl $L6        # return address for main, if it decides to. L6是main函数的返回地址。正常情况下main函数是不会返回的,也就是这里理论上不会执行。
    pushl $_main
    jmp setup_paging

这里把_main入口地址压入堆栈,是c程序的入口。这样当执行完 jmp setup_paging ,_main出栈,开始执行c程序。这里是模拟了一个函数调用栈,以此来调用c程序。

我们来看一下 jmp setup_paging ,这段代码比较难懂,暂时还不清楚,后面书写的理解可能有偏差,后续改正。

.align 2
setup_paging:
    movl $1024*5,%ecx        /* 5 pages - pg_dir+4 page tables */
    xorl %eax,%eax
    xorl %edi,%edi            /* pg_dir is at 0x000 */
    cld;rep;stosl
    movl $pg0+7,_pg_dir        /* set present bit/user r/w */
    movl $pg1+7,_pg_dir+4        /*  --------- " " --------- */
    movl $pg2+7,_pg_dir+8        /*  --------- " " --------- */
    movl $pg3+7,_pg_dir+12        /*  --------- " " --------- */
    movl $pg3+4092,%edi
    movl $0xfff007,%eax        /*  16Mb - 4096 + 7 (r/w user,p) */
    std
1:    stosl            /* fill pages backwards - more efficient :-) */
    subl $0x1000,%eax
    jge 1b
    xorl %eax,%eax        /* pg_dir is at 0x0000 */
    movl %eax,%cr3        /* cr3 - page directory start */
    movl %cr0,%eax
    orl $0x80000000,%eax
    movl %eax,%cr0        /* set paging (PG) bit */
    ret            /* this also flushes prefetch-queue */

在head.s最开始,我们定义了页目录_pg_dir,也就是页目录基址为0

.text
.globl _idt,_gdt,_pg_dir,_tmp_floppy_area
_pg_dir:
startup_32:

然后,我们还定义了4个页表,基址分别为0x1000,0x2000,0x3000,0x4000

.org 0x1000 //.org指令用于指定下面程序或数据的起始地址
pg0:

.org 0x2000
pg1:

.org 0x3000
pg2:

.org 0x4000
pg3:

.org 0x5000

我么再回过头来看

.align 2
setup_paging:
    movl $1024*5,%ecx        /* 5 pages - pg_dir+4 page tables */
    xorl %eax,%eax
    xorl %edi,%edi            /* pg_dir is at 0x000 */
    cld;rep;stosl //cld和std用于设置EFLAG寄存器的DF标志位,DF置位表示esi和edi递减,DF清零表示esi和edi递增。rep表示后面一条指令重复执行,一直到cx=0;stosl指令表示edi每次增加4。这样就实现了从0开始前5个页表项清零。

我们把1024*5放入ecx中,也就是1个页目录和4个页表大小。每个页目录或页表为2^10字节, cld;rep;stosl 这个代码作用是清空从0开始的前面5*1024字节空间。

下面的代码把页表地址放入页目录中。每一项占4个字节。

    movl $pg0+7,_pg_dir        /* set present bit/user r/w */ //pg_dir指向内存地址0x0处,这里放置页目录项到0x0处
    movl $pg1+7,_pg_dir+4        /*  --------- " " --------- */ //放置第一个页表项到0x4处
    movl $pg2+7,_pg_dir+8        /*  --------- " " --------- */ //放置第二个页表项到0x8处
    movl $pg3+7,_pg_dir+12        /*  --------- " " --------- */ //放置第三个页表项到0x12处
    movl $pg3+4092,%edi
    movl $0xfff007,%eax        /*  16Mb - 4096 + 7 (r/w user,p) */
    std

 movl $pg3+4092,%edi pg3页表的最后一个页表项地址放入edi中。(一个页表有1024个页表项,每个页表项4字节,所以一个页表大小为4KB)

注: movl $pg0+7,_pg_dir 为什么加7,参考https://www.cnblogs.com/zhenjingcool/p/15929907.html4.2小节关于页目录项和页表项结构的说明,这里7=111b,即设置P位、R/W位、U/S位。

下图展示了页目录表和页表位置关系

 

 movl $0xfff007,%eax 表示最大内存地址16M最后4KB的地址赋给eax。

下面的代码还未理解,暂时先写到这里。。。。

 

posted @ 2022-03-06 17:43  zhenjingcool  阅读(236)  评论(0编辑  收藏  举报