python中将nii窗宽窗位归一化,并转为jpg

import numpy as np
import os # 遍历文件夹
import nibabel as nib # nii格式一般都会用到这个包
import imageio # 转换成图像

center = 500 # 肺部的窗宽窗位
width = 1000
# print(center)
# print(width)


def nii_to_image(filepath):
filenames = os.listdir(filepath) # 读取nii文件夹

for f in filenames:
# 开始读取nii文件
img_path = os.path.join(filepath, f)

img = nib.load(img_path) # 读取nii
img_fdata = img.get_fdata() # api 已完成转换,读出来的即为CT值
fname = f.replace('.nii.gz', '') # 去掉nii的后缀名
img_f_path = os.path.join(imgfile, fname)
# print(img_f_path)
# 创建nii对应的图像的文件夹
if not os.path.exists(img_f_path):
os.mkdir(img_f_path) # 新建文件夹

# 转换成窗宽窗位
min = (2 * center - width) / 2.0 + 0.5
max = (2 * center + width) / 2.0 + 0.5
dFactor = 255.0 / (max - min)
# print(dFactor)
# #
# # # 开始转换为图像
(x, y, z) = img.shape
# print("xyz",x,y,z)
for i in range(z): # z是图像的序列
silce = img_fdata[:, :, i] # 选择哪个方向的切片都可以
# rawData_win = np.zeros(rawData.shape, dtype='float32')

silce = silce - min
silce = np.trunc(silce * dFactor)
silce[silce < 0.0] = 0
silce[silce > 255.0] = 255 # 转换为窗位窗位之后的数据

imageio.imwrite(os.path.join(img_f_path, '{}.jpg'.format(i)), silce)


if __name__ == '__main__':
filepath = 'D:\good good study\data analyse\cervical cancer_deeplearning\\bilibili_LEO\preprocessing\T2_test'
imgfile='D:\good good study\data analyse\cervical cancer_deeplearning\\bilibili_LEO\preprocessing\T2_test_png'
nii_to_image(filepath)
posted @ 2021-09-26 14:14  编程coding小白  阅读(926)  评论(0编辑  收藏  举报