每日定理1
Isaacs, $\textit{Character Theory of Finite Groups}$, Lemma(1.5)
If $V$ and $W$ are irreducible $A$-modules, then every nonzero element of $Hom_A(V,W)$ has an inverse in $Hom_A(W,V)$.
Pf: Let $0\neq\varphi\in Hom_A(V,W)$,
- $\ker\varphi$ is a submodule of $V$
- $im\varphi$ is a submodule of $W$