[Hadoop in Action] 第5章 高阶MapReduce
- 链接多个MapReduce作业
- 执行多个数据集的联结
- 生成Bloom filter
1、链接MapReduce作业
[顺序链接MapReduce作业]
mapreduce-1 | mapreduce-2 | mapreduce-3 | ...
[具有复杂依赖的MapReduce链接]
有时,在复杂数据处理任务中的子任务并不是按顺序运行的,因此它们的MapReduce作业不能按线性方式链接。例如,mapreduce1处理一个数据集,mapreduce2独立处理另一个数据集,而第3个作业mapreduce3,对前两个作业的输出结果做内部联结。
Hadoop有一种简化机制,通过Job和JobControl类来管理这种(非线性)作业之间的依赖。Job对象是MapReduce作业的表现形式。Job对象的实例化可通过传递一个JobConf对象到作业的构造函数中来实现。除了要保持作业的配置信息外,Job还通过设定addDependingJob()方法维护作业的依赖关系。对于Job对象x和y,x.addDependingJob(y)意味着x在y完成之前不会启动。鉴于Job对象存储着配置和依赖信息,JobControl对象会负责管理并监视作业的执行。通过addJob()方法,你可以为JobControl对象添加作业。当所有作业和依赖关系添加完成后,调用JobControl的run()方法,生成一个线程来提交作业并监视其执行。JobControl有诸如allFinished()和getFailedJobs()这样的方法来跟踪批处理中各个作业的执行。
[预处理和后处理阶段的链接]
Hadoop在版本0.19.0中引入了ChainMapper和ChainReducer类来简化预处理和后处理的构成。作业按序执行多个mapper来预处理数据,并在reducer之后可选地按序执行多个mapper来做数据的后处理。这一机制的优点在于可以将预处理和后处理步骤写为标准的mapper,逐个运行它们,可以在ChainMapper和ChainReducer中调用addMapper()方法来分别组合预处理和后处理的步骤。全部预处理和后处理步骤在单一的作业中运行,不会生成中间文件,这大大减少了I/O操作。
例如,有4个mapper(Map1,Map2,Map3和Map4)和一个reducer(Reduce),它们被链接为单个MapReduce作业,顺序如下:Map1 | Map2 | Reduce | Map3 | Map4
这个组合中,可以把Map2和Reduce视为MapReduce作业的核心,在mapper和reducer之间使用标准的分区和洗牌。可以把Map1视为前处理步骤,而Map3和Map4作为后处理步骤。我们可以使用driver设定这个mapper和reducer序列的构成:
代码清单 用于链接MapReduce作业中mapper的driver
1 Configuration conf = getConf(); 2 JobConf job = new JobConf(conf); 3 4 job.setJobName("ChainJob"); 5 job.setInputFormat(TextInputFormat.class); 6 job.setOutputFormat(TextOutputFormat.class); 7 8 FileInputFormat.setInputPaths(job, in); 9 FileOutputFormat.setOutputPath(job, out); 10 11 12 JobConf map1Conf = new JobConf(false); 13 ChainMapper.addMapper(job, 14 Map1.class, 15 LongWritable.class, 16 Text.class, 17 Text.class, 18 Text.class, 19 true, 20 map1Conf); 21 22 JobConf map2Conf = new JobConf(false); 23 ChainMapper.addMapper(job, 24 Map2.class, 25 Text.class, 26 Text.class, 27 LongWritable.class, 28 Text.class, 29 true, 30 map2Conf); 31 32 JobConf reduceConf = new JobConf(false); 33 ChainReducer.setReducer(job, 34 Reduce.class, 35 LongWritable.class, 36 Text.class, 37 Text.class, 38 Text.class, 39 true, 40 reduceConf); 41 42 JobConf map3Conf = new JobConf(false); 43 ChainReducer.addMapper(job, 44 Map3.class, 45 Text.class, 46 Text.class, 47 LongWritable.class, 48 Text.class, 49 true, 50 map3Conf); 51 52 JobConf map4Conf = new JobConf(false); 53 ChainReducer.addMapper(job, 54 Map4.class, 55 LongWritable.class, 56 Text.class, 57 LongWritable.class, 58 Text.class, 59 true, 60 map4Conf); 61 62 JobClient.runJob(job);
driver首选会设置全局的JobConf对象,包含作业名、输入路径及输出路径等。它一次性添加这个由5个步骤链接在一起的作业,以步骤执行先后为序。它用ChainMapper.addMapper()添加位于Reduce之前的所有步骤。用静态的ChainReducer.setReducer()方法设置reducer。再用ChainReducer.addMapper()方法添加后续的步骤。全局JobConf对象经历所有的5个add*方法。此外,每个mapper和reducer都有一个本地JobConf对象(map1Conf、map2Conf、map3Conf、map4Conf和reduceConf),其优先级在配置各自mapper/reducer时高于全局的对象。建议本地JobConf对象采用一个新的JobConf对象,且在初始化时不设默认值——new JobConf(false)。
让我们通过ChainMapper.addMapper()方法的签名来详细了解如何一步步地链接作业,其中ChainReducer.setReducer()的签名和功能与ChainReducer.addMapper()类似:
public static <k1, v1, k2, v2> void
addMapper(JobConf job,
Class <? extends Mapper<k1, v1, k2, v2>> class,
Class <? extends k1> inputKeyClass,
Class <? extends v1> inputValueClass,
Class <? extends k2> outputKeyClass,
Class <? extends v2> outputValueClass,
boolean byValue,
JobConf mapperConf)
该方法有8个参数,第一个和最后一个分别为全局和本地的JobConf对象。第二个参数klass是Mapper类,负责数据处理。对于byValue这个参数,如果确信map1的map()方法在调用OutoutCollector.collect(K k, V v)之后不再使用k和v的内容,或者map2并不改变k和v在其上的输入值,则可以通过设定buValue为false来获取一定的性能提升;如果对Mapper的内部代码不太了解,则可以通过设定byValue为true,确保Mapper会按预期的方式工作。余下的4个参数inputKeyClass、inputValueClass、outputKeyClass和outputValueClass是这个Mapper类中输入/输出类的类型。
2、联结不同来源数据
[Reduce侧的联结]
- 首先mapper接收的数据来自两个文件,Customers及Orders;
- 在map()封装输入的每个记录后,就执行MapReduce标准的分区、洗牌和排序操作;
- reduce()函数接收输入数据,并对其值进行完全交叉乘积;
- 交叉乘积得到的每个合并结果被送入函数conbine()。
Hadoop有一个名为datajoin的contrib软件包,在hadoop中它是一个用作数据联结的通用框架,它的jar文件位于contrib/datajoin/hadoop-*-datajoin.jar。hadoop的datajoin软件包有3个可供继承和具体化的抽象类:DataJoinMapperBase、DataJoinReducerBase和TaggedMapOutput。顾名思义,MapClass会扩展DataJoinMapperBase,而Reduce类会扩展DataJoinReducerBase。Datajoin软件包已经分别在这些基类上实现了map()和reduce方法,可用于执行联结数据流。
代码清单 来自两个reduce侧连接数据的内联结
1 import java.io.DataInput; 2 import java.io.DataOutput; 3 import java.io.IOException; 4 import java.util.Iterator; 5 6 import org.apache.hadoop.conf.Configuration; 7 import org.apache.hadoop.conf.Configured; 8 import org.apache.hadoop.fs.Path; 9 import org.apache.hadoop.io.Text; 10 import org.apache.hadoop.io.Writable; 11 import org.apache.hadoop.mapred.FileInputFormat; 12 import org.apache.hadoop.mapred.FileOutputFormat; 13 import org.apache.hadoop.mapred.JobClient; 14 import org.apache.hadoop.mapred.JobConf; 15 import org.apache.hadoop.mapred.KeyValueTextInputFormat; 16 import org.apache.hadoop.mapred.MapReduceBase; 17 import org.apache.hadoop.mapred.Mapper; 18 import org.apache.hadoop.mapred.OutputCollector; 19 import org.apache.hadoop.mapred.Reducer; 20 import org.apache.hadoop.mapred.Reporter; 21 import org.apache.hadoop.mapred.TextInputFormat; 22 import org.apache.hadoop.mapred.TextOutputFormat; 23 import org.apache.hadoop.util.Tool; 24 import org.apache.hadoop.util.ToolRunner; 25 26 import org.apache.hadoop.contrib.utils.join.DataJoinMapperBase; 27 import org.apache.hadoop.contrib.utils.join.DataJoinReducerBase; 28 import org.apache.hadoop.contrib.utils.join.TaggedMapOutput; 29 30 public class DataJoin extends Configured implements Tool { 31 32 public static class MapClass extends DataJoinMapperBase { 33 34 protected Text generateInputTag(String inputFile) { 35 String datasource = inputFile.split("-")[0]; 36 return new Text(datasource); 37 } 38 39 protected Text generateGroupKey(TaggedMapOutput aRecord) { 40 String line = ((Text) aRecord.getData()).toString(); 41 String[] tokens = line.split(","); 42 String groupKey = tokens[0]; 43 return new Text(groupKey); 44 } 45 46 protected TaggedMapOutput generateTaggedMapOutput(Object value) { 47 TaggedWritable retv = new TaggedWritable((Text) value); 48 retv.setTag(this.inputTag); 49 return retv; 50 } 51 } 52 53 public static class Reduce extends DataJoinReducerBase { 54 55 protected TaggedMapOutput combine(Object[] tags, Object[] values) { 56 if (tags.length < 2) return null; 57 String joinedStr = ""; 58 for (int i=0; i<values.length; i++) { 59 if (i > 0) joinedStr += ","; 60 TaggedWritable tw = (TaggedWritable) values[i]; 61 String line = ((Text) tw.getData()).toString(); 62 String[] tokens = line.split(",", 2); 63 joinedStr += tokens[1]; 64 } 65 TaggedWritable retv = new TaggedWritable(new Text(joinedStr)); 66 retv.setTag((Text) tags[0]); 67 return retv; 68 } 69 } 70 71 public static class TaggedWritable extends TaggedMapOutput { 72 73 private Writable data; 74 75 public TaggedWritable(Writable data) { 76 this.tag = new Text(""); 77 this.data = data; 78 } 79 80 public Writable getData() { 81 return data; 82 } 83 84 public void write(DataOutput out) throws IOException { 85 this.tag.write(out); 86 this.data.write(out); 87 } 88 89 public void readFields(DataInput in) throws IOException { 90 this.tag.readFields(in); 91 this.data.readFields(in); 92 } 93 } 94 95 public int run(String[] args) throws Exception { 96 Configuration conf = getConf(); 97 98 JobConf job = new JobConf(conf, DataJoin.class); 99 100 Path in = new Path(args[0]); 101 Path out = new Path(args[1]); 102 FileInputFormat.setInputPaths(job, in); 103 FileOutputFormat.setOutputPath(job, out); 104 105 job.setJobName("DataJoin"); 106 job.setMapperClass(MapClass.class); 107 job.setReducerClass(Reduce.class); 108 109 job.setInputFormat(TextInputFormat.class); 110 job.setOutputFormat(TextOutputFormat.class); 111 job.setOutputKeyClass(Text.class); 112 job.setOutputValueClass(TaggedWritable.class); 113 job.set("mapred.textoutputformat.separator", ","); 114 115 JobClient.runJob(job); 116 return 0; 117 } 118 119 public static void main(String[] args) throws Exception { 120 int res = ToolRunner.run(new Configuration(), 121 new DataJoin(), 122 args); 123 124 System.exit(res); 125 } 126 }
[转载请注明] http://www.cnblogs.com/zhengrunjian/