【单调队列优化】[CF372C] Watching Fireworks is Fun

突然发现我可能单调队列都打不来了...我太菜了...

 

这道题显然有$$f[i][j]=min\{f[i-1][k]+\vert j-a[i] \vert\}$$

 

则$ans=\sum_{i=1}^{m} b_i - min_{j=1}^{n}\{f[m][j]\}$

 

令$len=(t[i]-t[i-1])*d$则其中k满足$$k∈[j-len,j+len]$$

 

 

$f[i][]$只与$f[i-1][]$有关,所以可以把第一维压掉

 

不难弄出一个$O(n^2m)$的代码:

 

#include<bits/stdc++.h>
#define int long long 
#define writeln(x)  write(x),puts("")
#define writep(x)   write(x),putchar(' ')
using namespace std;
inline int read(){
    int ans=0,f=1;char chr=getchar();
    while(!isdigit(chr)){if(chr=='-') f=-1;chr=getchar();}
    while(isdigit(chr)){ans=(ans<<3)+(ans<<1)+chr-48;chr=getchar();}
    return ans*f;
}void write(int x){
    if(x<0) putchar('-'),x=-x;
    if(x>9) write(x/10);
    putchar(x%10+'0');
}const int M = 150005;
int f[2][M],n,m,d,ans=0x3f3f3f3f,sum;
struct P{int a,b,t;}a[M];
signed main(){
    n=read(),m=read(),d=read(),sum=0;
    for(int i=1;i<=m;i++){
        int x=read(),y=read(),z=read();
        sum+=y;
        a[i]=(P){x,y,z};
    }
    for(int i(1);i<=n;i++)f[1][i]=abs(a[1].a-i);
    for(int i(2);i<=m;i++){
        memset(f[i&1],0x3f,sizeof(f[i&1]));
        int len=(a[i].t-a[i-1].t)*d;
        for(int j=1;j<=n;j++){
            for(int k=max(1ll,j-len);k<=min(j+len,n);k++)
                f[i&1][j]=min(f[i&1][j],f[i&1^1][k]+abs(a[i].a-j));
            if(i==m)ans=min(ans,f[i&1][j]);
        }
    }
    cout<<sum-ans<<endl;
    return 0;
}
View Code

 

但是显然会T,注意到上面k的范围,可以考虑单调队列优化,对于每一次的$i,j$,对$[j-len,j]$跑一次滑动窗口,对$[j,j+len]$跑一次滑动窗口取最小值即可

 

 1 #include<bits/stdc++.h>
 2 #define int long long
 3 #define writeln(x)  write(x),puts("")
 4 #define writep(x)   write(x),putchar(' ')
 5 using namespace std;
 6 inline int read(){
 7     int ans=0,f=1;char chr=getchar();
 8     while(!isdigit(chr)){if(chr=='-') f=-1;chr=getchar();}
 9     while(isdigit(chr)){ans=(ans<<3)+(ans<<1)+chr-48;chr=getchar();}
10     return ans*f;
11 }void write(int x){
12     if(x<0) putchar('-'),x=-x;
13     if(x>9) write(x/10);
14     putchar(x%10+'0');
15 }const int M = 150005;
16 int f[2][M],n,m,d,ans=0x3f3f3f3f,sum,q[M];
17 struct P{int a,b,t;}a[M];
18 signed main(){
19     n=read(),m=read(),d=read(),sum=0;
20     for(int i=1;i<=m;i++){
21         int x=read(),y=read(),z=read();
22         sum+=y;a[i]=(P){x,y,z};
23     }for(int i(1);i<=n;i++)f[1][i]=abs(a[1].a-i);
24     for(int i(2);i<=m;i++){
25         int len=(a[i].t-a[i-1].t)*d,l=1,r=0;
26         for(int j=1;j<=n;j++){
27             while(l<=r&&q[l]<j-len)++l;
28             while(l<=r&&f[i&1^1][q[r]]>f[i&1^1][j])--r;
29             q[++r]=j;
30             f[i&1][j]=f[i&1^1][q[l]]+abs(j-a[i].a);
31             if(i==m)ans=min(ans,f[i&1][j]);
32         }l=1,r=0;
33         for(int j=n;j>=1;j--){
34             while(l<=r&&q[l]-len>j)++l;
35             while(l<=r&&f[i&1^1][q[r]]>f[i&1^1][j])--r;
36             q[++r]=j;
37             f[i&1][j]=min(f[i&1][j],f[i&1^1][q[l]]+abs(j-a[i].a));
38             if(i==m)ans=min(ans,f[i&1][j]);
39         }        
40     }cout<<sum-ans<<endl;
41     return 0;
42 }

 

posted @ 2019-10-25 21:34  zheng_liwen  阅读(258)  评论(0编辑  收藏  举报
/*去广告*/