I'm ZhengKX

Talk is cheap, show me the code

Apollo学习笔记(二):循迹实现过程

 

Apollo学习笔记(二):循迹实现过程

Apollo开发者套件买来后,就可以按照官网循迹教程录制轨迹,开始循迹。在此主要对Apollo循迹的实现过程进行学习。(注意代码里面是有我写的注释的)

录制循迹数据包

1 cd /apollo/scripts
2 bash rtk_recorder.sh setup
3 bash rtk_recorder.sh start ( 命令输入后,开始开车走一段轨迹 )
4 bash rtk_recorder.sh stop( 如果无法输入就按Ctrl + C结束 )

 

setup

其中rtk_recorder.sh的setup函数如下

1 function setup() {
2   bash scripts/canbus.sh start
3   bash scripts/gps.sh start
4   bash scripts/localization.sh start
5   bash scripts/control.sh start
6 }

 

canbus.sh为例

1 DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"--获取所执行脚本的绝对路径
2 
3 cd "${DIR}/.."-- 进入脚本所在路径的上一层
4 
5 source "$DIR/apollo_base.sh"--引入apollo_base.sh
6 
7 # run function from apollo_base.sh
8 # run command_name module_name
9 run canbus "$@" --执行apollo_base.sh的run函数

 

对于

1 DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"

 

更加详细的分析可以参考https://blog.csdn.net/liuxiaodong400/article/details/85293670,但意义不大,这个相当于固定命令了。

可以发现canbus.sh内并没有start函数,实际上这里调用了apollo_base.sh的run函数。run canbus "$@""$@"是传入的参数,展开来就是run canbus startapollo_base.sh的run函数如下:

1 # run command_name module_name
2 function run() {
3   local module=$1
4   shift
5   run_customized_path $module $module "$@"
6 }

 

其中module的值为canbus"$@"的值为start,因此展开为run_customized_path canbus canbus start,run_customized_path函数如下:

 1 function run_customized_path() {
 2   local module_path=$1 --module_path为canbus
 3   local module=$2 --module为canbus
 4   local cmd=$3 --cmd为start
 5   shift 3 --向左移动参数3个,因为参数只有canbus canbus start这三个,因此参数为空
 6   case $cmd in
 7     start) -- 对应于此处
 8       start_customized_path $module_path $module "$@"--因为上面向左移动参数,
 9       -- 导致参数为空,所以"$@"为空,此处为start_customized_path canbus canbus
10       ;;
11     start_fe)
12       start_fe_customized_path $module_path $module "$@"
13       ;;
14     start_gdb)
15       start_gdb_customized_path $module_path $module "$@"
16       ;;
17     start_prof)
18       start_prof_customized_path $module_path $module "$@"
19       ;;
20     stop)
21       stop_customized_path $module_path $module
22       ;;
23     help)
24       help
25       ;;
26     *)
27       start_customized_path $module_path $module $cmd "$@"
28     ;;
29   esac
30 }

 

因此执行start_customized_path canbus canbus,start_customized_path函数如下:

 1 function start_customized_path() {
 2   MODULE_PATH=$1 --MODULE_PATH为canbus
 3   MODULE=$2 --MODULE为canbus
 4   shift 2 --向左移动参数2个
 5 
 6   LOG="${APOLLO_ROOT_DIR}/data/log/${MODULE}.out"
 7   is_stopped_customized_path "${MODULE_PATH}" "${MODULE}"
 8   if [ $? -eq 1 ]; then
 9     eval "nohup ${APOLLO_BIN_PREFIX}/modules/${MODULE_PATH}/${MODULE} \
10         --flagfile=modules/${MODULE_PATH}/conf/${MODULE}.conf \
11         --log_dir=${APOLLO_ROOT_DIR}/data/log $@ </dev/null >${LOG} 2>&1 &"
12     sleep 0.5
13     is_stopped_customized_path "${MODULE_PATH}" "${MODULE}"
14     if [ $? -eq 0 ]; then
15       echo "Launched module ${MODULE}."
16       return 0
17     else
18       echo "Could not launch module ${MODULE}. Is it already built?"
19       return 1
20     fi
21   else
22     echo "Module ${MODULE} is already running - skipping."
23     return 2
24   fi
25 }

 

其中is_stopped_customized_path函数如下:

 1 function is_stopped_customized_path() {
 2   MODULE_PATH=$1
 3   MODULE=$2
 4   NUM_PROCESSES="$(pgrep -c -f "modules/${MODULE_PATH}/${MODULE}")"
 5   if [ "${NUM_PROCESSES}" -eq 0 ]; then
 6     return 1
 7   else
 8     return 0
 9   fi
10 }

 

pgrep是linux用于检查在系统中活动进程的命令,-c 仅匹配列表中列出的ID的进程,-f 正则表达式模式将执行与完全进程参数字符串匹配。$(pgrep -c -f "modules/${MODULE_PATH}/${MODULE}")的作用是判断canbus模块是不是已经启动了。如果没启动则返回1,已启动则返回0。

start_customized_path根据is_stopped_customized_path的反馈选择相应动作,如果canbus模块没启动,则使用指令

1 nohup ${APOLLO_BIN_PREFIX}/modules/${MODULE_PATH}/${MODULE} \
2 --flagfile=modules/${MODULE_PATH}/conf/${MODULE}.conf \
3 --log_dir=${APOLLO_ROOT_DIR}/data/log $@ </dev/null >${LOG} 2>&1 &

 

以非挂断方式启动后台进程模块canbus。其中APOLLO_BIN_PREFIX在determine_bin_prefix函数中确定

1 function determine_bin_prefix() {
2   APOLLO_BIN_PREFIX=$APOLLO_ROOT_DIR
3   if [ -e "${APOLLO_ROOT_DIR}/bazel-bin" ]; then
4     APOLLO_BIN_PREFIX="${APOLLO_ROOT_DIR}/bazel-bin"
5   fi
6   export APOLLO_BIN_PREFIX
7 }

 

APOLLO_ROOT_DIRAPOLLO_ROOT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )/.." && pwd )",即当前文件夹。还记得之前canbus.sh内的cd "${DIR}/.."-- 进入脚本所在路径的上一层吗?所以此时的当前文件夹已经变为自己的目录\apollo,所以APOLLO_ROOT_DIR=自己的目录\apolloAPOLLO_BIN_PREFIX=自己的目录\apollo\bazel-bin。所以就是以非挂断方式执行自己的目录\apollo\bazel-bin\modules\canbus\canbus这个编译后的可执行文件,并且后面带上--flagfile--log_dir这些参数。

canbus模块的入口是其main函数,也就是启动canbus模块首先自动执行其main函数,其main函数就位于自己的目录\apollo\modules\canbus\main.cc中如下所示:

1 #include "modules/canbus/canbus.h"
2 #include "modules/canbus/common/canbus_gflags.h"
3 #include "modules/common/apollo_app.h"
4 
5 APOLLO_MAIN(apollo::canbus::Canbus);

 

后续的过程在我另一篇博客Apollo学习笔记(一):canbus模块与车辆底盘之间的CAN数据传输过程详细说明了,在此就不赘述了。

start

在启动完成一些必备功能模块后,执行bash rtk_recorder.sh startrtk_recorder.sh的start函数如下:

 1 function start() {
 2   TIME=`date +%F_%H_%M`
 3   if [ -e data/log/garage.csv ]; then
 4     cp data/log/garage.csv data/log/garage-${TIME}.csv
 5   fi
 6 
 7   NUM_PROCESSES="$(pgrep -c -f "record_play/rtk_recorderpy")"
 8   if [ "${NUM_PROCESSES}" -eq 0 ]; then
 9     python modules/tools/record_play/rtk_recorder.py
10   fi
11 }

 

如果record_play/rtk_recorderpy进程没有启动,则运行python modules/tools/record_play/rtk_recorder.py,首先执行main(sys.argv)

rtk_recorder.py的main函数如下:

 1 def main(argv):
 2     """
 3     Main rosnode
 4     """
 5     rospy.init_node('rtk_recorder', anonymous=True)
 6 
 7     argv = FLAGS(argv)
 8     log_dir = os.path.dirname(os.path.abspath(__file__)) + "/../../../data/log/"
 9     if not os.path.exists(log_dir):
10         os.makedirs(log_dir)
11     Logger.config(
12         log_file=log_dir + "rtk_recorder.log",
13         use_stdout=True,
14         log_level=logging.DEBUG)
15     print("runtime log is in %s%s" % (log_dir, "rtk_recorder.log"))
16     record_file = log_dir + "/garage.csv"
17     recorder = RtkRecord(record_file)
18     atexit.register(recorder.shutdown)
19     rospy.Subscriber('/apollo/canbus/chassis', chassis_pb2.Chassis,
20                      recorder.chassis_callback)
21 
22     rospy.Subscriber('/apollo/localization/pose',
23                      localization_pb2.LocalizationEstimate,
24                      recorder.localization_callback)
25 
26     rospy.spin()

 

前面rospy.init_node('rtk_recorder', anonymous=True)是ros自带的建ros节点的命令,接着log_dirlog_file是建文件夹和文件记录log的。重要的是recorder = RtkRecord(record_file),RtkRecord这个类的定义如下:

 1 class RtkRecord(object):
 2     """
 3     rtk recording class
 4     """
 5     def __init__(self, record_file):
 6         self.firstvalid = False
 7         self.logger = Logger.get_logger("RtkRecord")
 8         self.record_file = record_file
 9         self.logger.info("Record file to: " + record_file)
10 
11         try:
12             self.file_handler = open(record_file, 'w')
13         except:
14             self.logger.error("open file %s failed" % (record_file))
15             self.file_handler.close()
16             sys.exit()
17 
18         //向record_file中写入数据,就是第一行写上变量名
19         self.write("x,y,z,speed,acceleration,curvature,"\
20                         "curvature_change_rate,time,theta,gear,s,throttle,brake,steering\n")
21 
22         //设置成员变量
23         self.localization = localization_pb2.LocalizationEstimate()
24         self.chassis = chassis_pb2.Chassis()
25         self.chassis_received = False
26 
27         self.cars = 0.0
28         self.startmoving = False
29 
30         self.terminating = False
31         self.carcurvature = 0.0
32 
33         self.prev_carspeed = 0.0

 

后面atexit.register(recorder.shutdown)的作用是在脚本运行完后立马执行一些代码,关于atexit模块这个python自带的模块的更详细内容请查阅https://www.cnblogs.com/sigai/articles/7236494.html

接着节点订阅/apollo/canbus/chassis/apollo/localization/pose这两个topic,对应的回调函数分别是recorder.chassis_callbackrecorder.localization_callback

回调函数recorder.chassis_callback

 1     def chassis_callback(self, data):
 2         """
 3         New message received
 4         """
 5         if self.terminating == True:
 6             self.logger.info("terminating when receive chassis msg")
 7             return
 8 
 9         self.chassis.CopyFrom(data)
10         #self.chassis = data
11         if math.isnan(self.chassis.speed_mps):
12             self.logger.warning("find nan speed_mps: %s" % str(self.chassis))
13         if math.isnan(self.chassis.steering_percentage):
14             self.logger.warning(
15                 "find nan steering_percentage: %s" % str(self.chassis))
16         self.chassis_received = True

 

没做啥,就是self.chassis.CopyFrom(data)把canbus模块传来的数据存到成员变量self.chassis

回调函数recorder.localization_callback

 1     def localization_callback(self, data):
 2         """
 3         New message received
 4         """
 5         if self.terminating == True:
 6             self.logger.info("terminating when receive localization msg")
 7             return
 8             
 9         //首先要收到底盘canbus模块传来的数据
10         if not self.chassis_received:
11             self.logger.info(
12                 "chassis not received when localization is received")
13             return
14         //将定位数据传入成员变量self.localization
15         self.localization.CopyFrom(data)
16         #self.localization = data
17         //读取本车位置的x,y,z坐标,x,y,z坐标是UTM坐标系下的,UTM坐标系简单来说
18         //就是选定一个经纬度作为原点,其他点的经纬度与原点的距离就是其x,y,z坐标
19         carx = self.localization.pose.position.x
20         cary = self.localization.pose.position.y
21         carz = self.localization.pose.position.z
22         cartheta = self.localization.pose.heading
23         if math.isnan(self.chassis.speed_mps):
24             self.logger.warning("find nan speed_mps: %s" % str(self.chassis))
25             return
26         if math.isnan(self.chassis.steering_percentage):
27             self.logger.warning(
28                 "find nan steering_percentage: %s" % str(self.chassis))
29             return
30         carspeed = self.chassis.speed_mps
31         caracceleration = self.localization.pose.linear_acceleration_vrf.y
32 
33         speed_epsilon = 1e-9
34         //如果上次车速和本次车速都为0,则认为加速度为0
35         if abs(self.prev_carspeed) < speed_epsilon \
36             and abs(carspeed) < speed_epsilon:
37             caracceleration = 0.0
38 
39         //车辆转角
40         carsteer = self.chassis.steering_percentage
41         //曲率
42         curvature = math.tan(math.radians(carsteer / 100 * 470) / 16) / 2.85
43         if abs(carspeed) >= speed_epsilon:
44             carcurvature_change_rate = (curvature - self.carcurvature) / (
45                 carspeed * 0.01)
46         else:
47             carcurvature_change_rate = 0.0
48         self.carcurvature = curvature
49         cartime = self.localization.header.timestamp_sec
50         //档位
51         cargear = self.chassis.gear_location
52 
53         if abs(carspeed) >= speed_epsilon:
54             if self.startmoving == False:
55                 self.logger.info(
56                     "carspeed !=0 and startmoving is False, Start Recording")
57             self.startmoving = True
58 
59         if self.startmoving:
60             self.cars = self.cars + carspeed * 0.01
61             //往之前设置的文件内写入数据
62             self.write(
63                 "%s, %s, %s, %s, %s, %s, %s, %.4f, %s, %s, %s, %s, %s, %s\n" %
64                 (carx, cary, carz, carspeed, caracceleration, self.carcurvature,
65                  carcurvature_change_rate, cartime, cartheta, cargear,
66                  self.cars, self.chassis.throttle_percentage,
67                  self.chassis.brake_percentage,
68                  self.chassis.steering_percentage))
69             self.logger.debug(
70                 "started moving and write data at time %s" % cartime)
71         else:
72             self.logger.debug("not start moving, do not write data to file")
73 
74         self.prev_carspeed = carspeed

 

Ctrl + C结束后,apollo将会录制一个轨迹数据包garage.csv,放在data/log/下(主要记录了位置、刹车、油门、方向、速度等信息)。

stop

rtk_recorder.sh的stop函数如下:

1 function stop() {
2   pkill -SIGKILL -f rtk_recorder.py
3 }

 

很简单,就是杀死线程。

回放数据包开始循迹

N档,线控开启,输入以下命令:

1 bash scripts/rtk_player.sh setup
2 bash scripts/rtk_player.sh start ( 这个命令敲完,车还不会反应 )

 

点击Dreamview界面的start auto,这时候车子会出现反应,并且是大反应(司机注意接管)。bash scripts/rtk_player.sh start 这一步只是把record数据重新放出来,或者对路径进行规划,即完成planning的过程。

下面我们看看代码运行流程

首先是bash scripts/rtk_player.sh setuprtk_player.sh的setup函数如下:

1 function setup() {
2   bash scripts/canbus.sh start
3   bash scripts/gps.sh start
4   bash scripts/localization.sh start
5   bash scripts/control.sh start
6 }

 

还是跟上面一样启动一些必备的模块,具体启动过程是一样的。

接着bash scripts/rtk_player.sh startrtk_player.sh的start函数如下:

1 function start() {
2   NUM_PROCESSES="$(pgrep -c -f "record_play/rtk_player.py")"
3   if [ "${NUM_PROCESSES}" -ne 0 ]; then
4     pkill -SIGKILL -f rtk_player.py
5   fi
6 
7   python modules/tools/record_play/rtk_player.py
8 }

 

其他就不再重复了,我们看rtk_player.py的main函数

 1 def main():
 2     """
 3     Main rosnode
 4     """
 5     parser = argparse.ArgumentParser(
 6         description='Generate Planning Trajectory from Data File')
 7     parser.add_argument(
 8         '-s',
 9         '--speedmulti',
10         help='Speed multiplier in percentage (Default is 100) ',
11         type=float,
12         default='100')
13     parser.add_argument(
14         '-c', '--complete', help='Generate complete path (t/F)', default='F')
15     parser.add_argument(
16         '-r',
17         '--replan',
18         help='Always replan based on current position(t/F)',
19         default='F')
20     args = vars(parser.parse_args())
21 
22     rospy.init_node('rtk_player', anonymous=True)
23 
24     Logger.config(
25         log_file=os.path.join(APOLLO_ROOT, 'data/log/rtk_player.log'),
26         use_stdout=True,
27         log_level=logging.DEBUG)
28 
29     record_file = os.path.join(APOLLO_ROOT, 'data/log/garage.csv')
30     player = RtkPlayer(record_file, args['speedmulti'],
31                        args['complete'].lower(), args['replan'].lower())
32     atexit.register(player.shutdown)
33 
34     rospy.Subscriber('/apollo/canbus/chassis', chassis_pb2.Chassis,
35                      player.chassis_callback)
36 
37     rospy.Subscriber('/apollo/localization/pose',
38                      localization_pb2.LocalizationEstimate,
39                      player.localization_callback)
40 
41     rospy.Subscriber('/apollo/control/pad', pad_msg_pb2.PadMessage,
42                      player.padmsg_callback)
43 
44     rate = rospy.Rate(10)
45     while not rospy.is_shutdown():
46         player.publish_planningmsg()
47         rate.sleep()

 

前面使用python Argparse模块输入一些默认参数,具体使用参考https://www.jianshu.com/p/c4a66b5155d3?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

接着player = RtkPlayer(record_file, args['speedmulti'], args['complete'].lower(), args['replan'].lower())实例化RtkPlayer,其中record_file是record_file = os.path.join(APOLLO_ROOT, 'data/log/garage.csv'),也就是之前记录的轨迹文件;args['speedmulti']是默认值100,args['complete'].lower()是默认值f;args['replan'].lower()也是默认值f。

RtkPlayer这个类的初始化函数如下:

 1 class RtkPlayer(object):
 2     """
 3     rtk player class
 4     """
 5 
 6     def __init__(self, record_file, speedmultiplier, completepath, replan):
 7         """Init player."""
 8         self.firstvalid = False
 9         self.logger = Logger.get_logger(tag="RtkPlayer")
10         self.logger.info("Load record file from: %s" % record_file)
11         try:
12             file_handler = open(record_file, 'r')
13         except:
14             self.logger.error("Cannot find file: " + record_file)
15             file_handler.close()
16             sys.exit(0)
17 
18         //从之前记录的轨迹文件中提取数据
19         self.data = genfromtxt(file_handler, delimiter=',', names=True)
20         file_handler.close()
21 
22         self.localization = localization_pb2.LocalizationEstimate()
23         self.chassis = chassis_pb2.Chassis()
24         self.padmsg = pad_msg_pb2.PadMessage()
25         self.localization_received = False
26         self.chassis_received = False
27         
28         //创建发布topic为/apollo/planning的发布者,
29         //消息格式为planning_pb2.ADCTrajectory,队列长度为1
30         self.planning_pub = rospy.Publisher(
31             '/apollo/planning', planning_pb2.ADCTrajectory, queue_size=1)
32 
33         self.speedmultiplier = speedmultiplier / 100
34         self.terminating = False
35         self.sequence_num = 0
36 
37 //对加速度acceleration进行滤波
38 //scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')
39 //输入参数:
40 //N:滤波器的阶数
41 //Wn:归一化截止频率。计算公式Wn=2*截止频率/采样频率。(注意:根据采样定理,采样频//率要大于两倍的信号本身最大的频率,才能还原信号。截止频率一定小于信号本身最大的频//率,所以Wn一定在0和1之间)。当构造带通滤波器或者带阻滤波器时,Wn为长度为2的列表。
42 //btype : 滤波器类型{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’},
43 //output : 输出类型{‘ba’, ‘zpk’, ‘sos’},
44 //输出参数:
45 //b,a: IIR滤波器的分子(b)和分母(a)多项式系数向量。output='ba'
46 //z,p,k: IIR滤波器传递函数的零点、极点和系统增益. output= 'zpk'
47 //sos: IIR滤波器的二阶截面表示。output= 'sos'
48 //具体参考https://blog.csdn.net/qq_38984928/article/details/89232898
49 
50         b, a = signal.butter(6, 0.05, 'low')
51         self.data['acceleration'] = signal.filtfilt(b, a, self.data['acceleration'])
52 
53         self.start = 0
54         self.end = 0
55         self.closestpoint = 0
56         self.automode = False
57 
58 //因为输入的replan和completepath都是f,因此self.replan和self.completepath都是false
59         self.replan = (replan == 't')
60         self.completepath = (completepath == 't')
61 
62         self.estop = False
63         self.logger.info("Planning Ready")

 

随后订阅/apollo/canbus/chassis/apollo/localization/pose/apollo/control/pad这三个topic,对应的回调函数分别是player.chassis_callbackplayer.localization_callbackplayer.padmsg_callback

我们先看player.chassis_callback

1     def chassis_callback(self, data):
2         """
3         New chassis Received
4         """
5         self.chassis.CopyFrom(data)
6         //判断是否是自动驾驶模式
7         self.automode = (self.chassis.driving_mode ==
8                          chassis_pb2.Chassis.COMPLETE_AUTO_DRIVE)
9         self.chassis_received = True

 

接着player.localization_callback

 1     def localization_callback(self, data):
 2         """
 3         New localization Received
 4         """
 5         //更新位置
 6         self.localization.CopyFrom(data)
 7         self.carx = self.localization.pose.position.x
 8         self.cary = self.localization.pose.position.y
 9         self.carz = self.localization.pose.position.z
10         self.localization_received = True

 

最后player.padmsg_callback

1     def padmsg_callback(self, data):
2         """
3         New message received
4         """
5         if self.terminating == True:
6             self.logger.info("terminating when receive padmsg")
7             return
8 //没做啥,就是把消息中的数据拷贝至self.padmsg
9         self.padmsg.CopyFrom(data)

 

看到现在发现rtk_player.py里面没啥东西,现在才到重点了player.publish_planningmsg()。我们看看publish_planningmsg函数里面究竟卖的什么货:

 1     def publish_planningmsg(self):
 2         """
 3         Generate New Path
 4         """
 5         if not self.localization_received:
 6             self.logger.warning(
 7                 "locaization not received yet when publish_planningmsg")
 8             return
 9 
10 //新建planning_pb2.ADCTrajectory消息,这是发布/apollo/planning所使用的消息格式
11         planningdata = planning_pb2.ADCTrajectory()
12         now = rospy.get_time()
13         planningdata.header.timestamp_sec = now
14         planningdata.header.module_name = "planning"
15         planningdata.header.sequence_num = self.sequence_num
16         self.sequence_num = self.sequence_num + 1
17 
18         self.logger.debug(
19             "publish_planningmsg: before adjust start: self.start = %s, self.end=%s"
20             % (self.start, self.end))
21         if self.replan or self.sequence_num <= 1 or not self.automode:
22             self.logger.info(
23                 "trigger replan: self.replan=%s, self.sequence_num=%s, self.automode=%s"
24                 % (self.replan, self.sequence_num, self.automode))
25             self.restart()
26         else:
27             timepoint = self.closest_time()
28             distpoint = self.closest_dist()
29             self.start = max(min(timepoint, distpoint) - 100, 0)
30             self.end = min(max(timepoint, distpoint) + 900, len(self.data) - 1)
31 
32             xdiff_sqr = (self.data['x'][timepoint] - self.carx)**2
33             ydiff_sqr = (self.data['y'][timepoint] - self.cary)**2
34             if xdiff_sqr + ydiff_sqr > 4.0:
35                 self.logger.info("trigger replan: distance larger than 2.0")
36                 self.restart()
37 
38         if self.completepath://此处completepath为false,因此不执行
39             self.start = 0
40             self.end = len(self.data) - 1
41 
42         self.logger.debug(
43             "publish_planningmsg: after adjust start: self.start = %s, self.end=%s"
44             % (self.start, self.end))
45 
46         for i in range(self.start, self.end):
47             adc_point = pnc_point_pb2.TrajectoryPoint()
48             adc_point.path_point.x = self.data['x'][i]
49             adc_point.path_point.y = self.data['y'][i]
50             adc_point.path_point.z = self.data['z'][i]
51             adc_point.v = self.data['speed'][i] * self.speedmultiplier
52             adc_point.a = self.data['acceleration'][i] * self.speedmultiplier
53             adc_point.path_point.kappa = self.data['curvature'][i]
54             adc_point.path_point.dkappa = self.data['curvature_change_rate'][i]
55 
56             time_diff = self.data['time'][i] - \
57                 self.data['time'][self.closestpoint]
58 
59             adc_point.relative_time = time_diff / self.speedmultiplier - (
60                 now - self.starttime)
61 
62             adc_point.path_point.theta = self.data['theta'][i]
63             adc_point.path_point.s = self.data['s'][i]
64 
65             planningdata.trajectory_point.extend([adc_point])
66 
67         planningdata.estop.is_estop = self.estop
68 
69         planningdata.total_path_length = self.data['s'][self.end] - \
70             self.data['s'][self.start]
71         planningdata.total_path_time = self.data['time'][self.end] - \
72             self.data['time'][self.start]
73         planningdata.gear = int(self.data['gear'][self.closest_time()])
74         planningdata.engage_advice.advice = \
75             drive_state_pb2.EngageAdvice.READY_TO_ENGAGE
76 
77         self.planning_pub.publish(planningdata)
78         self.logger.debug("Generated Planning Sequence: " +
79                           str(self.sequence_num - 1))

 

如果replan为true或者sequence_num<=1或者不是自动驾驶模式则调用restart()

 1     def restart(self):
 2         self.logger.info("before replan self.start=%s, self.closestpoint=%s" %
 3                          (self.start, self.closestpoint))
 4 
 5         self.closestpoint = self.closest_dist()
 6         //先看下面对self.closest_dist()的分析
 7         //基于对self.closest_dist()的假设
 8         //假设self.closestpoint=50,则self.start仍为0,self.end=299
 9         self.start = max(self.closestpoint - 100, 0)
10         self.starttime = rospy.get_time()
11         self.end = min(self.start + 1000, len(self.data) - 1)
12         self.logger.info("finish replan at time %s, self.closestpoint=%s" %
13                          (self.starttime, self.closestpoint))

 

首先self.closest_dist()找到当前位置在上次记录的轨迹中对应的是第几条数据,所以循迹开始的时候需要将车开到以前的轨迹处才行,否则都找不到初始的点。当然循迹到中间出现问题退出自动驾驶模式,重启自动驾驶模式后程序也能找到自己在原先轨迹中的位置,不必重头开始,这也是restart()的意义所在吧。

 1     def closest_dist(self):
 2         shortest_dist_sqr = float('inf')
 3         self.logger.info("before closest self.start=%s" % (self.start))
 4         
 5         //SEARCH_INTERVAL = 1000
 6         //一开始的时候self.start=0,所以search_start=0;search_end=500和
 7         //记录的轨迹数据的长度中的最小值,假定上次记录了300条数据,
 8         //则search_end=300
 9         search_start = max(self.start - SEARCH_INTERVAL / 2, 0)
10         search_end = min(self.start + SEARCH_INTERVAL / 2, len(self.data))
11         start = self.start
12         for i in range(search_start, search_end):
13             dist_sqr = (self.carx - self.data['x'][i]) ** 2 + \
14                    (self.cary - self.data['y'][i]) ** 2
15             if dist_sqr <= shortest_dist_sqr:
16                 start = i
17                 shortest_dist_sqr = dist_sqr
18         //假设返回的是50
19         return start

 

如果不满足(replan为true或者sequence_num<=1或者不是自动驾驶模式)则执行

 1 timepoint = self.closest_time()
 2 distpoint = self.closest_dist()
 3 
 4 //先看下面的假设
 5 //根据下面的假设,这里timepoint=51,distpoint=52,所以self.start=0
 6 //同时结合上面len(self.data)=300的假设,所以self.end=299
 7 self.start = max(min(timepoint, distpoint) - 100, 0)
 8 self.end = min(max(timepoint, distpoint) + 900, len(self.data) - 1)
 9 
10 xdiff_sqr = (self.data['x'][timepoint] - self.carx)**2
11 ydiff_sqr = (self.data['y'][timepoint] - self.cary)**2
12 
13 //如果时间最近的轨迹点跟当前位置的距离过大,则调用restart()重新找距离当前位置最近的轨迹点
14 if xdiff_sqr + ydiff_sqr > 4.0:
15     self.logger.info("trigger replan: distance larger than 2.0")
16     self.restart()

 

首先调用closest_time()找到在时间上距离我们前面假设找到的第50轨迹点最近的(时间差为正)轨迹点

 1     def closest_time(self):
 2     
 3     //self.starttime在上面restart()被设为当时的时刻
 4         time_elapsed = rospy.get_time() - self.starttime
 5     //根据上面的假设,这里closest_time = 0
 6         closest_time = self.start
 7     //此处就是time_diff=self.data['time'][0]-self.data['time'][50]
 8         time_diff = self.data['time'][closest_time] - \
 9            self.data['time'][self.closestpoint]
10 
11 //找到time_diff大于当前时刻与启动时刻时差的那个轨迹点
12         while time_diff < time_elapsed and closest_time < (len(self.data) - 1):
13             closest_time = closest_time + 1
14             time_diff = self.data['time'][closest_time] - \
15                 self.data['time'][self.closestpoint]
16 //假设这个时间上的最近点为51
17         return closest_time

 

接着调用closest_dist(),跟前面restart()一样就不再赘述了,也就是用来更新self.closestpoint,假设为52。(这个假设的编号貌似用处不大,先放着不管了)

最后在将序号在self.start, self.end之间的轨迹点都存入planningdata,最后self.planning_pub.publish(planningdata)发布出去,下面control模块接收到消息后计算得到具体的油门、刹车、方向盘转角传递给canbus模块。

最后分析一通发现rtk_player.py也没计算具体的控制量,只是根据时差和距离在上次记录的轨迹点里面找到合适的范围,将范围内的轨迹点的数据都传入planningdata后发布给下面的控制模块计算具体的控制量。

posted @ 2019-11-04 10:31  zhengkunxian  阅读(2826)  评论(0编辑  收藏  举报