[luoguP3172] [CQOI2015]选数(递推+容斥原理)
不会莫比乌斯反演,不会递推。
但是我会看题解。
先将区间[L,H]变成(L-1,H],这样方便处理
然后求这个区间内gcd为k的方案数
就是求区间((L-1)/k,H/k]中gcd为1的方案数
有个重要的性质:如果有一些不相同的数,最大的为a,最小的为b,任意选取其中的一些数,则他们的gcd<=a-b
设f[i]表示gcd为i且所选的数不相同的方案数,但是不好求,只容易求出gcd为i的倍数g[i]的方案数
考虑容斥原理,f[i] = g[i] - f[2i] - f[3i] - ……
计算g[i]的时候要把相同的数的方案数减去,因为我们有个前提,只有数都不相同时gcd的大小才能保证
倒着递推便可以省略g数组
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include <cstdio> #define N 100001 #define p 1000000007 #define LL long long using namespace std; LL f[N]; int n, k, l, r, flag, len; inline LL ksm(LL x, int y) { LL ret = 1; for (; y; y >>= 1) { if (y & 1) ret = ret * x % p; x = x * x % p; } return ret; } int main() { int i, j, x, y; scanf ( "%d %d %d %d" , &n, &k, &l, &r); if (l <= k && k <= r) flag = 1; l--, l /= k, r /= k, len = r - l; //转变成求区间(l, r]中gcd为1的方案数 for (i = len; i >= 1; i--) { x = l / i, y = r / i; f[i] = (LL)(ksm(y - x, n) - (y - x)) % p; for (j = i + i; j <= len; j += i) f[i] = (f[i] - f[j]) % p; } printf ( "%lld\n" , (f[1] + flag + p) % p); return 0; } |
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· 趁着过年的时候手搓了一个低代码框架
· 本地部署DeepSeek后,没有好看的交互界面怎么行!
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· 乌龟冬眠箱湿度监控系统和AI辅助建议功能的实现