[BZOJ1576] [Usaco2009 Jan]安全路经Travel(堆优化dijk + (并查集 || 树剖))

传送门

 

蒟蒻我原本还想着跑两边spfa,发现不行,就gg了。

首先这道题卡spfa,所以需要用堆优化的dijkstra求出最短路径

因为题目中说了,保证最短路径有且只有一条,所以可以通过dfs求出最短路径树

发现,需要给这课树加边,才能有别的路径到达一个点x

那么我们连接树上两个节点u,v,边权为w

发现,u,v到两点公共祖先的路径上的所有点(除去lca)的答案都会受到影响

且ans[i] = dis[u] + dis[v] + w - dis[i]

要使得ans最小,需要dis[u] + dis[v] + w最小,

那么直接树剖暴力修改不就好了?

 

另一种思路

我们可以把所有非树边取出,以dis[u] + dis[v] + w为关键字排一下,

显然,每一个点都只会求解一次,往后都不会更新答案

可以用并查集,已经更新答案的点就用并查集连接到lca,下次遇到已经更新过的点直接往上跳即可

找lca的过程和树剖类似

时间复杂度比树剖不知道高到哪里去了!

网上还有一些用左偏树或是单调队列做的,看样子好高深,蒟蒻没搞懂。。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 200001
#define heap pair<int, int> 

using namespace std;

int n, m, cnt, tot;
int head[N], to[N << 1], val[N << 1], next[N << 1], dis[N], deep[N], ans[N], pre[N], f[N];
bool vis[N << 1];
priority_queue <heap, vector <heap>, greater <heap> > q;
vector <int> g;

struct node
{
	int x, y, z;
	node(int x = 0, int y = 0, int z = 0) : x(x), y(y), z(z) {}
}p[N << 1];

inline int read()
{
	int x = 0, f = 1;
	char ch = getchar();
	for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
	for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
	return x * f;
}

inline void add(int x, int y, int z)
{
	to[cnt] = y;
	val[cnt] = z;
	next[cnt] = head[x];
	head[x] = cnt++;
}

inline void dijkstra()
{
	int i, u, v;
	memset(dis, 127, sizeof(dis));
	dis[1] = 0;
	q.push(make_pair(0, 1));
	while(!q.empty())
	{
		u = q.top().second;
		q.pop();
		if(vis[u]) continue;
		vis[u] = 1;
		for(i = head[u]; i ^ -1; i = next[i])
		{
			v = to[i];
			if(dis[v] > dis[u] + val[i])
			{
				dis[v] = dis[u] + val[i];
				q.push(make_pair(dis[v], v));
			}
		}
	}
}

inline void dfs(int u, int d)
{
	int i, v;
	deep[u] = d;
	for(i = head[u]; i ^ -1; i = next[i])
	{
		v = to[i];
		if(dis[v] == dis[u] + val[i])
		{
			vis[i] = vis[i ^ 1] = 1;
			pre[v] = u;
			dfs(v, d + 1);
		}	
	}
}

inline bool cmp(node x, node y)
{
	return dis[x.x] + dis[x.y] + x.z < dis[y.x] + dis[y.y] + y.z;
}

inline int find(int x)
{
	return x == f[x] ? x : f[x] = find(f[x]);
}

int main()
{
	int i, j, x, y, z, u, v;
	n = read();
	m = read();
	memset(head, -1, sizeof(head));
	for(i = 1; i <= m; i++)
	{
		x = read();
		y = read();
		z = read();
		add(x, y, z);
		add(y, x, z);
	}
	dijkstra();
	memset(vis, 0, sizeof(vis));
	dfs(1, 1);
	for(u = 1; u <= n; u++)
		for(i = head[u]; i ^ -1; i = next[i])
		{
			if(vis[i]) continue;
			v = to[i];
			vis[i] = vis[i ^ 1] = 1;
			p[++tot] = node(u, v, val[i]);
		}
	sort(p + 1, p + tot + 1, cmp);
	memset(ans, 127, sizeof(ans));
	for(i = 1; i <= n; i++) f[i] = i;
	for(i = 1; i <= tot; i++)
	{
		x = p[i].x;
		y = p[i].y;
		g.clear();
		while(x ^ y)
		{
			if(deep[x] < deep[y]) x ^= y ^= x ^= y;
			if(ans[x] <= 1e9) x = find(x);
			else
			{
				ans[x] = dis[p[i].x] + dis[p[i].y] + p[i].z - dis[x];
				g.push_back(x);
				x = pre[x];
			}
		}
		for(j = 0; j < g.size(); j++) f[g[j]] = find(x);
	}
	for(i = 2; i <= n; i++)
		printf("%d\n", ans[i] <= 1e9 ? ans[i] : -1);
	return 0;
}

  

 

posted @ 2017-09-12 15:41  zht467  阅读(143)  评论(0编辑  收藏  举报