[BZOJ1576] [Usaco2009 Jan]安全路经Travel(堆优化dijk + (并查集 || 树剖))
蒟蒻我原本还想着跑两边spfa,发现不行,就gg了。
首先这道题卡spfa,所以需要用堆优化的dijkstra求出最短路径
因为题目中说了,保证最短路径有且只有一条,所以可以通过dfs求出最短路径树
发现,需要给这课树加边,才能有别的路径到达一个点x
那么我们连接树上两个节点u,v,边权为w
发现,u,v到两点公共祖先的路径上的所有点(除去lca)的答案都会受到影响
且ans[i] = dis[u] + dis[v] + w - dis[i]
要使得ans最小,需要dis[u] + dis[v] + w最小,
那么直接树剖暴力修改不就好了?
另一种思路
我们可以把所有非树边取出,以dis[u] + dis[v] + w为关键字排一下,
显然,每一个点都只会求解一次,往后都不会更新答案
可以用并查集,已经更新答案的点就用并查集连接到lca,下次遇到已经更新过的点直接往上跳即可
找lca的过程和树剖类似
时间复杂度比树剖不知道高到哪里去了!
网上还有一些用左偏树或是单调队列做的,看样子好高深,蒟蒻没搞懂。。
#include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define N 200001 #define heap pair<int, int> using namespace std; int n, m, cnt, tot; int head[N], to[N << 1], val[N << 1], next[N << 1], dis[N], deep[N], ans[N], pre[N], f[N]; bool vis[N << 1]; priority_queue <heap, vector <heap>, greater <heap> > q; vector <int> g; struct node { int x, y, z; node(int x = 0, int y = 0, int z = 0) : x(x), y(y), z(z) {} }p[N << 1]; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * f; } inline void add(int x, int y, int z) { to[cnt] = y; val[cnt] = z; next[cnt] = head[x]; head[x] = cnt++; } inline void dijkstra() { int i, u, v; memset(dis, 127, sizeof(dis)); dis[1] = 0; q.push(make_pair(0, 1)); while(!q.empty()) { u = q.top().second; q.pop(); if(vis[u]) continue; vis[u] = 1; for(i = head[u]; i ^ -1; i = next[i]) { v = to[i]; if(dis[v] > dis[u] + val[i]) { dis[v] = dis[u] + val[i]; q.push(make_pair(dis[v], v)); } } } } inline void dfs(int u, int d) { int i, v; deep[u] = d; for(i = head[u]; i ^ -1; i = next[i]) { v = to[i]; if(dis[v] == dis[u] + val[i]) { vis[i] = vis[i ^ 1] = 1; pre[v] = u; dfs(v, d + 1); } } } inline bool cmp(node x, node y) { return dis[x.x] + dis[x.y] + x.z < dis[y.x] + dis[y.y] + y.z; } inline int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); } int main() { int i, j, x, y, z, u, v; n = read(); m = read(); memset(head, -1, sizeof(head)); for(i = 1; i <= m; i++) { x = read(); y = read(); z = read(); add(x, y, z); add(y, x, z); } dijkstra(); memset(vis, 0, sizeof(vis)); dfs(1, 1); for(u = 1; u <= n; u++) for(i = head[u]; i ^ -1; i = next[i]) { if(vis[i]) continue; v = to[i]; vis[i] = vis[i ^ 1] = 1; p[++tot] = node(u, v, val[i]); } sort(p + 1, p + tot + 1, cmp); memset(ans, 127, sizeof(ans)); for(i = 1; i <= n; i++) f[i] = i; for(i = 1; i <= tot; i++) { x = p[i].x; y = p[i].y; g.clear(); while(x ^ y) { if(deep[x] < deep[y]) x ^= y ^= x ^= y; if(ans[x] <= 1e9) x = find(x); else { ans[x] = dis[p[i].x] + dis[p[i].y] + p[i].z - dis[x]; g.push_back(x); x = pre[x]; } } for(j = 0; j < g.size(); j++) f[g[j]] = find(x); } for(i = 2; i <= n; i++) printf("%d\n", ans[i] <= 1e9 ? ans[i] : -1); return 0; }