[BZOJ3196] [Tyvj1730] 二逼平衡树(线段树 套 Splay)
至少BZOJ过了,其他的直接弃。
您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:
1.查询k在区间内的排名
2.查询区间内排名为k的值
3.修改某一位值上的数值
4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)
5.查询k在区间内的后继(后继定义为大于x,且最小的数)
最外层套一颗线段树,用来表示区间,线段树下面套个splay用来维护当前线段树节点的区间。
对于第二问可以二分,看看哪个数的排名为 k。
——代码
1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 #define root 1, 1, n 5 #define lson now << 1, l, mid 6 #define rson now << 1 | 1, mid + 1, r 7 #define ls son[now][0] 8 #define rs son[now][1] 9 #define debug puts("**************"); 10 11 const int MAXN = 3500001, INF = 2147483647; 12 13 int n, m, sz; 14 int seq[MAXN], rt[MAXN]; 15 int f[MAXN], son[MAXN][2], cnt[MAXN], key[MAXN], size[MAXN]; 16 17 inline int read() 18 { 19 int f = 1, x = 0; 20 char ch = getchar(); 21 for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; 22 for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; 23 return x * f; 24 } 25 26 inline int max(int x, int y) 27 { 28 return x > y ? x : y; 29 } 30 31 inline int min(int x, int y) 32 { 33 return x < y ? x : y; 34 } 35 36 inline void Splay_clear(int now) 37 { 38 f[now] = cnt[now] = key[now] = size[now] = ls = rs = 0; 39 } 40 41 inline void Splay_update(int now) 42 { 43 if(now) 44 { 45 size[now] = cnt[now]; 46 if(ls) size[now] += size[ls]; 47 if(rs) size[now] += size[rs]; 48 } 49 } 50 51 inline int Splay_get(int x) 52 { 53 return son[f[x]][1] == x; 54 } 55 56 inline void Splay_rotate(int x) 57 { 58 int old = f[x], oldf = f[old], wh = Splay_get(x); 59 60 son[old][wh] = son[x][wh ^ 1]; 61 f[son[old][wh]] = old; 62 63 son[x][wh ^ 1] = old; 64 f[old] = x; 65 66 if(oldf) son[oldf][son[oldf][1] == old] = x; 67 f[x] = oldf; 68 69 Splay_update(old); 70 Splay_update(x); 71 } 72 73 inline void Splay_splay(int x) 74 { 75 for(int fa; fa = f[x]; Splay_rotate(x)) 76 if(f[fa]) 77 Splay_rotate(Splay_get(x) ^ Splay_get(fa) ? x : fa); 78 } 79 80 inline void Splay_insert(int x, int k) 81 { 82 int now = rt[x], fa = 0; 83 if(!rt[x]) 84 { 85 rt[x] = ++sz; 86 key[sz] = k; 87 size[sz] = cnt[sz] = 1; 88 return; 89 } 90 while(1) 91 { 92 if(k == key[now]) 93 { 94 cnt[now]++; 95 Splay_update(now); 96 Splay_splay(now); 97 rt[x] = now; 98 return; 99 } 100 fa = now; 101 now = son[now][k > key[now]]; 102 if(!now) 103 { 104 rt[x] = ++sz; 105 f[sz] = fa; 106 key[sz] = k; 107 size[sz] = cnt[sz] = 1; 108 son[fa][k > key[fa]] = sz; 109 //Splay_update(fa); 110 Splay_splay(sz); 111 return; 112 } 113 } 114 } 115 116 inline int Splay_findrank(int x, int k) 117 { 118 int now = rt[x], ans = 0; 119 while(1) 120 { 121 if(!now) return ans; 122 if(key[now] == k) return ans + size[ls]; 123 else if(key[now] < k) 124 { 125 ans += cnt[now] + size[ls]; 126 now = rs; 127 } 128 else now = ls; 129 } 130 } 131 132 inline int Splay_find(int x, int k) 133 { 134 int now = rt[x]; 135 while(1) 136 { 137 if(key[now] > k) now = ls; 138 else if(key[now] < k) now = rs; 139 else 140 { 141 rt[x] = now; 142 Splay_splay(now); 143 return now; 144 } 145 } 146 } 147 148 inline int Splay_pre(int x) 149 { 150 int now = son[rt[x]][0]; 151 while(rs) now = rs; 152 return now; 153 } 154 155 inline int Splay_suc(int x) 156 { 157 int now = son[rt[x]][1]; 158 while(ls) now = ls; 159 return now; 160 } 161 162 inline void Splay_del(int x) 163 { 164 int now = rt[x]; 165 if(cnt[now] > 1) 166 { 167 cnt[now]--; 168 Splay_update(now); 169 return; 170 } 171 if(!ls && !rs) 172 { 173 rt[x] = 0; 174 Splay_clear(now); 175 return; 176 } 177 if(!ls || !rs) 178 { 179 rt[x] = ls + rs; 180 f[rt[x]] = 0; 181 Splay_clear(now); 182 return; 183 } 184 int pre = Splay_pre(x); 185 Splay_splay(pre); 186 rt[x] = pre; 187 son[pre][1] = rs; 188 f[rs] = pre; 189 Splay_clear(now); 190 Splay_update(pre); 191 } 192 193 inline int Splay_findpre(int x, int k) 194 { 195 int now = rt[x], ans = -INF; 196 while(now) 197 { 198 if(key[now] < k) 199 { 200 ans = max(ans, key[now]); 201 now = rs; 202 } 203 else now = ls; 204 } 205 return ans; 206 } 207 208 inline int Splay_findsuc(int x, int k) 209 { 210 int now = rt[x], ans = INF; 211 while(now) 212 { 213 if(key[now] > k) 214 { 215 ans = min(ans, key[now]); 216 now = ls; 217 } 218 else now = rs; 219 } 220 return ans; 221 } 222 223 inline void SegTree_insert(int x, int k, int now, int l, int r) 224 { 225 Splay_insert(now, k); 226 if(l == r) return; 227 int mid = (l + r) >> 1; 228 if(x <= mid) SegTree_insert(x, k, lson); 229 else SegTree_insert(x, k, rson); 230 } 231 232 inline int SegTree_askrank(int x, int y, int k, int now, int l, int r) 233 { 234 if(x <= l && r <= y) return Splay_findrank(now, k); 235 if(l > y || r < x) return 0; 236 int mid = (l + r) >> 1; 237 return SegTree_askrank(x, y, k, lson) + SegTree_askrank(x, y, k, rson); 238 } 239 240 inline void SegTree_change(int x, int k, int now, int l, int r) 241 { 242 Splay_find(now, seq[x]); 243 Splay_del(now); 244 Splay_insert(now, k); 245 if(l == r) return; 246 int mid = (l + r) >> 1; 247 if(x <= mid) SegTree_change(x, k, lson); 248 else SegTree_change(x, k, rson); 249 } 250 251 inline int SegTree_findpre(int x, int y, int k, int now, int l, int r) 252 { 253 if(x <= l && r <= y) return Splay_findpre(now, k); 254 if(l > y || r < x) return -INF; 255 int mid = (l + r) >> 1; 256 return max(SegTree_findpre(x, y, k, lson), SegTree_findpre(x, y, k, rson)); 257 } 258 259 inline int SegTree_findsuc(int x, int y, int k, int now, int l, int r) 260 { 261 if(x <= l && r <= y) return Splay_findsuc(now, k); 262 if(l > y || r < x) return INF; 263 int mid = (l + r) >> 1; 264 return min(SegTree_findsuc(x, y, k, lson), SegTree_findsuc(x, y, k, rson)); 265 } 266 267 int main() 268 { 269 int i, opt, x, y, z, ans, h, t, mid, maxn = 0; 270 n = read(); 271 m = read(); 272 for(i = 1; i <= n; i++) seq[i] = read(), maxn = max(maxn, seq[i]), SegTree_insert(i, seq[i], root); 273 for(i = 1; i <= m; i++) 274 { 275 opt = read(); 276 switch(opt) 277 { 278 case 1: 279 { 280 x = read(); 281 y = read(); 282 z = read(); 283 printf("%d\n", SegTree_askrank(x, y, z, root) + 1); 284 break; 285 } 286 case 2: 287 { 288 x = read(); 289 y = read(); 290 z = read(); 291 h = 0, t = maxn; 292 while(h <= t) 293 { 294 mid = (h + t) >> 1; 295 if(SegTree_askrank(x, y, mid, root) + 1 <= z) h = mid + 1; 296 else ans = mid, t = mid - 1; 297 } 298 printf("%d\n", ans - 1); 299 break; 300 } 301 case 3: 302 { 303 x = read(); 304 z = read(); 305 SegTree_change(x, z, root); 306 seq[x] = z; 307 maxn = max(maxn, z); 308 break; 309 } 310 case 4: 311 { 312 x = read(); 313 y = read(); 314 z = read(); 315 printf("%d\n", SegTree_findpre(x, y, z, root)); 316 break; 317 } 318 case 5: 319 { 320 x = read(); 321 y = read(); 322 z = read(); 323 printf("%d\n", SegTree_findsuc(x, y, z, root)); 324 break; 325 } 326 } 327 } 328 return 0; 329 }