pytorch识别CIFAR10:训练ResNet-34(自定义transform,动态调整学习率,准确率提升到94.33%)

版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com

前面通过数据增强,ResNet-34残差网络识别CIFAR10,准确率达到了92.6。

这里对训练过程增加2个处理:

  1、训练数据集做进一步处理:对图片随机加正方形马赛克。

  2、每50个epoch,学习率降低0.1倍。

代码具体修改如下:

自定义transform:

 1 class Cutout(object):
 2     def __init__(self, hole_size):
 3         # 正方形马赛克的边长,像素为单位
 4         self.hole_size = hole_size
 5 
 6     def __call__(self, img):
 7         return cutout(img, self.hole_size)
 8 
 9 
10 def cutout(img, hole_size):
11     y = np.random.randint(32)
12     x = np.random.randint(32)
13 
14     half_size = hole_size // 2
15 
16     x1 = np.clip(x - half_size, 0, 32)
17     x2 = np.clip(x + half_size, 0, 32)
18     y1 = np.clip(y - half_size, 0, 32)
19     y2 = np.clip(y + half_size, 0, 32)
20 
21     imgnp = np.array(img)
22 
23     imgnp[y1:y2, x1:x2] = 0
24     img = Image.fromarray(imgnp.astype('uint8')).convert('RGB')
25     return img

数据集处理修改:

 1     transform_train = transforms.Compose([
 2         # 对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪成32*32
 3         transforms.RandomCrop(32, padding=4),
 4         
 5         # 随机马赛克,大小为6*6
 6         Cutout(6),
 7 
 8         # 按0.5的概率水平翻转图片
 9         transforms.RandomHorizontalFlip(),
10 
11         transforms.ToTensor(),
12         transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
13 
14     transform_test = tv.transforms.Compose([
15         transforms.ToTensor(),
16         transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
17 
18     # 定义数据集
19     train_data = tv.datasets.CIFAR10(root=ROOT, train=True, download=True, transform=transform_train)
20     test_data = tv.datasets.CIFAR10(root=ROOT, train=False, download=False, transform=transform_test)

训练过程中调整学习率:

 1     for epoch in range(1, args.epochs + 1):
 2         if epoch % 50 == 0:
 3             lr = args.lr * (0.1 ** (epoch // 50))
 4 
 5             for params in optimizer.param_groups:
 6                 params['lr'] = lr
 7 
 8         net_train(net, train_load, optimizer, epoch, args.log_interval)
 9 
10         # 每个epoch结束后用测试集检查识别准确度
11         net_test(net, test_load, epoch)

运行结果如下:

Files already downloaded and verified

ResNet34(

(first): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(2): ReLU(inplace)

(3): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)

)

(layer1): Sequential(

(0): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(1): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer2): Sequential(

(0): ResBlock(

(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(3): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer3): Sequential(

(0): ResBlock(

(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(3): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(4): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(5): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer4): Sequential(

(0): ResBlock(

(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(avg_pool): AvgPool2d(kernel_size=4, stride=4, padding=0)

(fc): Linear(in_features=512, out_features=10, bias=True)

)

one epoch spend: 0:01:11.775634

EPOCH:1, ACC:44.28


one epoch spend: 0:01:12.244757

EPOCH:2, ACC:54.46


one epoch spend: 0:01:12.360205

EPOCH:3, ACC:56.84

............

one epoch spend: 0:01:19.172188

EPOCH:198, ACC:94.2


one epoch spend: 0:01:19.213334

EPOCH:199, ACC:94.19


one epoch spend: 0:01:19.222612

EPOCH:200, ACC:94.21


CIFAR10 pytorch ResNet34 Train: EPOCH:200, BATCH_SZ:128, LR:0.1, ACC:94.33

train spend time: 4:21:32.548834

 

运行200个迭代,每个迭代耗时80秒,准确率提升了1.73%,达到94.33%。准确率变化曲线如下:

 

posted @ 2019-03-20 22:46  碧水青山  阅读(4040)  评论(0编辑  收藏  举报