python plt画图横纵坐标0点重合
# -*- coding: utf-8 -*- import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt from scipy import optimize plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号 ax = plt.gca() #去掉边框 ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') #移位置 设为原点相交 ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0)) # 数据 mu = 100 # mean of distribution sigma = 15 # standard deviation of distribution x = mu + sigma * np.random.randn(10000) percentage = 0.95 num_bins = 20 cnt = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5, cumulative=True) x = [] y = [] for index in range(len(cnt[1])): if index != 0: x.append(cnt[1][index]) for index in range(len(cnt[0])): y.append(cnt[0][index]) plt.plot(x, y, "red") x_per = [] y_per = [] for index in range(len(y)): if y[index] > 0.95: y_per.append(y[index-1]) y_per.append(y[index]) x_per.append(x[index-1]) x_per.append(x[index]) break a = (y_per[1]-y_per[0])/(x_per[1]-x_per[0]) b = y_per[1]-a*x_per[1] y_label = percentage x_label = (y_label-b)/a print(x_label) print(y_label) x1 = np.linspace(0, x_label, 50) y1 = x1*0+percentage plt.plot(x1, y1, "r--") plt.xlabel('品位') plt.ylabel('累计频率') plt.title(r'品位频率累积分布直方图') # Tweak spacing to prevent clipping of ylabel plt.show()
效果如下:
关键代码如下:
ax = plt.gca() #去掉边框 ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') #移位置 设为原点相交 ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0))