pandas真是数据分析的好东西,使得代码简洁了不少

利用python做了爬虫,服务端,自动化测试,也都做了相应的编码以及架构处理,近期就想来玩玩数据分析,这个才是好前景呀!

 

我们来看看这个网站,url = "http://www.compassedu.hk/qs",爬取里面的table数据, 今天就来爬虫这个地址,并保存csv以及自动创建数据库

 

 

 

 

在还没学习数据分析前,像这种静态网站我们一般使用requests+BeautifulSoup进行请求和解析,以下是我的代码,不使用pandas的

# -*- coding: utf-8 -*-
import requests
import pandas as pd
from bs4 import BeautifulSoup
from sqlalchemy import create_engine
import pymysql
import numpy as np
import traceback
from openpyxl import Workbook

url = "http://www.compassedu.hk/qs"
res = requests.get(url)

#提取表格数据
soup = BeautifulSoup(res.content,"lxml")
table = soup.select("table#rk")[0]

table_datas = []

#提取列名
one_tr = table.select("tr")[0]
tr_datas = []
for th in one_tr.select("th"):
    tr_datas.append(th.get_text())
table_datas.append(tr_datas)

for tr in table.select("tr"):
    tr_datas = []
    for th in tr.select("td"):
        tr_datas.append(th.get_text())
    if tr_datas:
        table_datas.append(tr_datas)

#保存excel
wb = Workbook()
ws = wb.active
for table in table_datas:
    ws.append(table)
wb.save("result3.xlsx")


mysql_conf = {
    "host": '127.0.0.1',
    "port": 3306,
    "user": 'root',
    "password": '你自己的数据库密码',
    "db": 'analysis',
    "charset": "utf8",
    "cursorclass": pymysql.cursors.DictCursor
}
def get_connection():
    try:
        conn = pymysql.connect(**mysql_conf)
        return conn
    except:
        return None

#创建数据库连接
conn = get_connection()
ok_table_datas = []
for i in range(1,len(table_datas)):
    ok_table_datas.append(tuple(table_datas[i]))

try:
    with conn.cursor() as cursor:
        #以元组形式插入 一次插入完 这个快
        sql = '''insert into university2020three values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)'''
        cursor.executemany(sql,ok_table_datas)
        conn.commit()
        
        #分条插入 分条提交 效率比较慢
        # for i in range(1,len(table_datas)):
        #     print(table_datas[i])
        #     sql = '''insert into university2020three values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)'''
        #     cursor.execute(sql,(table_datas[i]))
        #     conn.commit()
except Exception as e:
    print(traceback.format_exc())
    print(e)
finally:
    conn.close()

 

在我学习完pandas之后,我就觉得这个写法太笨了,我就解析还是用BeautifulSoup,保存excel和sql用pandas

# -*- coding: utf-8 -*-
import requests
import pandas as pd
from bs4 import BeautifulSoup
from sqlalchemy import create_engine
import pymysql
import numpy as np
import traceback
from openpyxl import Workbook

url = "http://www.compassedu.hk/qs"
res = requests.get(url)

soup = BeautifulSoup(res.content,"lxml")
table = soup.select("table#rk")[0]

table_datas = []

#获取列标题
one_tr = table.select("tr")[0]
tr_datas = []
for th in one_tr.select("th"):
    tr_datas.append(th.get_text())
table_datas.append(tr_datas)

#获取table的数据
for tr in table.select("tr"):
    tr_datas = []
    for th in tr.select("td"):
        tr_datas.append(th.get_text())
    if tr_datas:
        table_datas.append(tr_datas)

# data = pd.DataFrame(table_datas)
#指定标题 上面是不指定标题
# data = pd.DataFrame(table_datas,columns=['Ranking', 'University Name','Country/Region','Academic Reputation','Employer Reputation','Faculty Student','International Faculty','International Students','Citations per Faculty','Overall Score','Free'])
#转numpy.ndarray
data = np.array(table_datas)
#获取列名称 并转数据类型 和上面注释的data一样
data = pd.DataFrame(data[1:],columns=data[0])


data.to_csv("results_2.csv",index=None,encoding='utf_8_sig')

conn = create_engine("mysql+pymysql://root:数据库密码@127.0.0.1:3306/analysis")
data.to_sql("university2020-2",con=conn,if_exists='append',index=False)

 

最后我发现pandas不止可以用来csv,和sql简化很多,还可以直接读取就完事了,请看接下来的表演

# -*- coding: utf-8 -*-
import requests
import pandas as pd
from bs4 import BeautifulSoup
from sqlalchemy import create_engine
import pymysql
import numpy as np
import traceback
from openpyxl import Workbook

url = "http://www.compassedu.hk/qs"
res = requests.get(url)

# 比较简便 还会根据数据类型创建数据库
html=res.content.decode(encoding=res.apparent_encoding)
soup = BeautifulSoup(html,"lxml")
table = soup.find("table",id="rk")

datas = pd.read_html(table.prettify())

data = datas[0]
data.to_csv("results.csv",encoding='utf_8_sig',index=False)
conn = create_engine("mysql+pymysql://root:数据库地址@127.0.0.1:3306/analysis")
data.to_sql("university2020",con=conn,if_exists='append',index=False)

 

第三种简简单单就搞定了,利用python有时候已经很方便了,但是会数据分析之后,有些东西不管爬虫还是什么的都会更加便捷,加油,未来可期。

 

posted @ 2020-12-04 11:09  WangHello  阅读(273)  评论(0编辑  收藏  举报