HDU5312 Sequence
题意:t组数据,每组数据给个m。问m最少能由几项形如3*n*(n-1)+1的数表示
eg 7=1(n=1)+1(n=1)+1(n=1)+1(n=1)+1(n=1)+1(n=1)+1(n=1);
7=7(n=2);
所以7最少能由1个数表示
分析:3*n*(n-1)+1能够转换为6*(n*(n-1)/2)+1,而n*(n-1)/2是一个三角形数。设为An,
则m能够表示为m=6*(A1+A2+…+Ak)+k(如果m最少能由k个数表示)看,由三 角形数的性质(一个自然数最多能由三个三角形数表示)可得,当k>=3时,A1+… +Ak能够表示随意自然数,此时k=(m-1)%6+1+6*n(n=0,1,2,…)(A1+A2+…Ak 是自然 数)此时最小值k取n=0,即k=(m-1)%6+1(k>=3).另外,假设当n=0时, k的值为1或者2。此时须要考虑是否存在一个或者两个三角形数能表示出 该数m。假设能够,则k的最小值即为1或者2。假设不能够,则取n=1, k+=6。
#include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<map> #include<iostream> using namespace std; const int maxn = 1e6+5; map<int,int>Map; int v[maxn]; int main() { int t; for(int i=1;i<=100000;i++){ //预处理 int tmp=3*i*(i-1)+1; if(tmp>1e9) break; v[i]=tmp; Map[tmp]=1; //用于后面查看此数是否可以由3*n*(n-1)+1表示 } scanf("%d",&t); while(t--) { int n; scanf("%d",&n); int k=(n-1)%6+1; //(n-1)%6+1==n%6=0?6:n%6,两种写法都可以 if(k>=3){ //k>=3,此时一定存在自然数能由A1+…Ak的数表示 printf("%d\n",k); } else if(k==1){ //k==1 检验n能否由该式子表示 if(Map.count(n)) printf("1\n"); else printf("7\n"); } else if(k==2){ //k==2,检验n能否由两个该式子的数表示 int flag=0; for(int i=1;v[i]<=n/2;i++){ if(Map.count(n-v[i])) flag=1; } if(flag) printf("2\n"); else printf("8\n"); } } }