1.算法讲解

KNN算法是一个最基本、最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签;

训练过程:只需要加载训练数据;

测试过程:通过之前加载的训练数据,计算测试数据集中各个样本的标签,从而完成测试数据集的标注;

2.代码

具体代码如下:

#!/usr/bin/env/ python
# -*- coding: utf-8 -*-

import csv
import random
from matplotlib import pyplot as plt
import numpy as np
from sklearn.decomposition import PCA

class KNN(object):
    def __init__(self):
        self._trainData = None
        self._trainDataLabel = None

    # 计算距离
    def _computerDist(self,testData):
        m = testData.shape[0]
        n = self._trainData.shape[0]
        dist = np.zeros((m,n))
        for i in range(m):
            for j in range(n):
                dist[i][j] = np.sum( (testData[i,:] - self._trainData[j,:])**2 )
        return dist

    # 模型训练,knn只需要加载训练数据集
    def train(self,dataset):
        self._trainData = dataset[:,0:-1]
        self._trainDataLabel = np.array(dataset[:,-1],dtype = np.int)

    # 预测测试数据集
    def predict(self,testData,topK = 3):
        dist = self._computerDist(testData)
        num_test = testData.shape[0]
        predLable = np.zeros(num_test)

        for i in range(num_test):
            labelList = []
            # 得到前topK样本的索引
            idxList = np.argsort(dist[i,:])[:topK].tolist()
            # 根据这些索引,得到对应的标签
            labelList = self._trainDataLabel[idxList]
            # 统计各个标签数目
            counts = np.bincount(labelList)
            # 将标签数目最大的标签值作为样本的标签
            predLable[i] = np.argmax(counts)
        return predLable

    # 测试准确率
    def test(self,testData,testLabel,topK = 3):
        predLabel = self.predict(testData,topK)
        predLabel = np.array(predLabel,dtype = int)
        num_correct = np.sum(predLabel == testLabel)
        num_test = testLabel.shape[0]
        accuracy = float(num_correct) / num_test
        print "testLabel:" + str(testLabel)
        print "predLabel:" + str(predLabel)
        print "get: %d / % d => accuracy: %f" %(num_correct,num_test,accuracy)
        return predLabel

    # 画出结果图
    def plotResult(self,testData,predLable):
        X = self._trainData
        y = self._trainDataLabel

        pca = PCA(n_components=2)
        X_r = pca.fit(X).transform(X)

        test_r = pca.fit(testData).transform(testData)

        plt.figure()
        for c, i in zip("rgb", [0, 1, 2]):
            plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c)
            plt.scatter(test_r[predLable == i,0],test_r[predLable == i,1],s= 30,c = c,marker = 'D')
        plt.legend()
        plt.title('KNN of IRIS dataset')
        plt.show()

    # 加载数据集
    def loadDataSet(self,fileName,splitRatio = 0.9):
        lines = csv.reader(open(fileName,"rb") )
        dataset = list(lines)
        for i in range(len(dataset)):
            dataset[i] = [float(x) for x in dataset[i]]

        trainSize = int(len(dataset) * splitRatio)
        random.shuffle(dataset)
        trainData = np.array(dataset[:trainSize])
        testData = np.array(dataset[trainSize:])
        return trainData,testData

if __name__ == "__main__":
    fileName = 'iris.csv'
    KNNobj = KNN()
    trainData,testData = KNNobj.loadDataSet(fileName,0.8)
    # 抽取出测试数据
    testdata = testData[:,0:-1]
    # 抽取出测试标签数据
    testdataLabel = np.array(testData[:,-1],dtype = int)
    # 训练模型
    KNNobj.train(trainData)
    # 测试模型
    predLabel = KNNobj.test(testdata,testdataLabel,3)
    # 画出结果分布
    KNNobj.plotResult(testdata,predLabel)

3.结果分析

本实例中,训练数据样本量为120个,测试数据样本量为30个,topK=3;

运行结果如下:

get: 29 /  30 => accuracy: 0.966667

结果分布图如下所示:

其中圆心点为训练数据,菱形点为测试数据;不同颜色代表不同的类;

4.参考链接

Comparison of LDA and PCA 2D projection of Iris dataset

posted on 2016-05-25 18:42  老顽童2007  阅读(497)  评论(2编辑  收藏  举报