Pytorch中保存图片(tensor,cv2,pillow)
tensor直接保存
#!/usr/bin/env python # _*_ coding:utf-8 _*_ import torch from torchvision import utils as vutils def save_image_tensor(input_tensor: torch.Tensor, filename): """ 将tensor保存为图片 :param input_tensor: 要保存的tensor :param filename: 保存的文件名 """ assert (len(input_tensor.shape) == 4 and input_tensor.shape[0] == 1) # 复制一份 input_tensor = input_tensor.clone().detach() # 到cpu input_tensor = input_tensor.to(torch.device('cpu')) # 反归一化 # input_tensor = unnormalize(input_tensor) vutils.save_image(input_tensor, filename)
tensor转cv2保存
如果你是先转numpy,再交换维度,一定用transpose,而不是swapaxes,不然颜色会出问题= =
就像下面这张图
原图
tensor转cv2保存 正确的代码
#!/usr/bin/env python # _*_ coding:utf-8 _*_ import torch import cv2 def save_image_tensor2cv2(input_tensor: torch.Tensor, filename): """ 将tensor保存为cv2格式 :param input_tensor: 要保存的tensor :param filename: 保存的文件名 """ assert (len(input_tensor.shape) == 4 and input_tensor.shape[0] == 1) # 复制一份 input_tensor = input_tensor.clone().detach() # 到cpu input_tensor = input_tensor.to(torch.device('cpu')) # 反归一化 # input_tensor = unnormalize(input_tensor) # 去掉批次维度 input_tensor = input_tensor.squeeze() # 从[0,1]转化为[0,255],再从CHW转为HWC,最后转为cv2 input_tensor = input_tensor.mul_(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).type(torch.uint8).numpy() # RGB转BRG input_tensor = cv2.cvtColor(input_tensor, cv2.COLOR_RGB2BGR) cv2.imwrite(filename, input_tensor)
tensor转pillow保存
def save_image_tensor2pillow(input_tensor: torch.Tensor, filename): """ 将tensor保存为pillow :param input_tensor: 要保存的tensor :param filename: 保存的文件名 """ assert (len(input_tensor.shape) == 4 and input_tensor.shape[0] == 1) # 复制一份 input_tensor = input_tensor.clone().detach() # 到cpu input_tensor = input_tensor.to(torch.device('cpu')) # 反归一化 # input_tensor = unnormalize(input_tensor) # 去掉批次维度 input_tensor = input_tensor.squeeze() # 从[0,1]转化为[0,255],再从CHW转为HWC,最后转为numpy input_tensor = input_tensor.mul_(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).type(torch.uint8).numpy() # 转成pillow im = Image.fromarray(input_tensor) im.save(filename)