Leetcode 1203. Sort Items by Groups Respecting Dependencies

Description

There are n items each belonging to zero or one of m groups where group[i] is the group that the i-th item belongs to and it's equal to -1 if the i-th item belongs to no group. The items and the groups are zero indexed. A group can have no item belonging to it.

Return a sorted list of the items such that:

  • The items that belong to the same group are next to each other in the sorted list.
  • There are some relations between these items where beforeItems[i] is a list containing all the items that should come before the i-th item in the sorted array (to the left of the i-th item).

Return any solution if there is more than one solution and return an empty list if there is no solution.

Example 1:

Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]
Output: [6,3,4,1,5,2,0,7]

Example 2:

Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]]
Output: []
Explanation: This is the same as example 1 except that 4 needs to be before 6 in the sorted list.

Constraints:

  • \(1 <= m <= n <= 3*10^4\)
  • group.length == beforeItems.length == n
  • -1 <= group[i] <= m-1
  • 0 <= beforeItems[i].length <= n-1
  • 0 <= beforeItems[i][j] <= n-1
  • i != beforeItems[i][j]
  • beforeItems[i] does not contain duplicate elements

这题的主要考察点是拓扑排序,之前自己的想法是对每个group进行拓扑排序,然后将牌号的group当作一个新的item,但是这种想法实现比较麻烦。这题给人的主要启发就是看问题不要陷入到局部,要从宏观的角度看。参考大佬的思路后总结如下:
这个问题可以看作是两层拓扑排序的问题。

  1. 对group进行拓扑排序;
  2. 对每个group内的item进行拓扑排序;

Python实现

from collections import defaultdict
class Solution:
    def sortItems(self, n: int, m: int, group: List[int], beforeItems: List[List[int]]) -> List[int]:
        def topo_sort(points, front, back):
            order = []
            que = []
            for p in points:
                if not front[p]:
                    que.append(p)
            while que:
                p = que.pop(0)
                order.append(p)
                for i in back[p]:
                    front[i].discard(p)
                    if not front[i]:
                        que.append(i)
            return order if len(order) == len(points) else []
        
        grp_itms = defaultdict(set)
        for i in range(n):
            if group[i] == -1:
                group[i] = m
                m += 1
            grp_itms[group[i]].add(i)
        
        itm_front, itm_back = defaultdict(set), defaultdict(set)
        grp_front, grp_back = defaultdict(set), defaultdict(set)
        for i in range(n):
            for j in beforeItems[i]:
                if group[i] == group[j]:
                    itm_front[i].add(j)
                    itm_back[j].add(i)
                else:
                    grp_front[group[i]].add(group[j])
                    grp_back[group[j]].add(group[i])
        
        # 对group拓扑排序
        grp_sort = topo_sort(grp_itms.keys(), grp_front, grp_back)
        if len(grp_sort) != len(grp_itms.keys()):
            return []
        res = []
        for g in grp_sort:
            items = grp_itms[g]
            #对group内的items进行拓扑排序
            itm_sort = topo_sort(items, itm_front, itm_back)
            if len(itm_sort) != len(items):
                return []
            res += itm_sort
        return res

参考资料

  1. https://leetcode.com/problems/sort-items-by-groups-respecting-dependencies/
  2. https://leetcode.com/problems/sort-items-by-groups-respecting-dependencies/discuss/388308/Concise-Python-two-level-topological-sorting
posted @ 2020-01-04 20:16  zhaoyinghe  阅读(435)  评论(0编辑  收藏  举报