Loading [MathJax]/extensions/TeX/mathchoice.js

基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

PDF version

PMF

Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called "success" and "failure". In each trial the probability of success is p and of failure is (1p). We are observing this sequence until a predefined number r of failures has occurred. Then the random number of successes we have seen, X, will have the negative binomial (or Pascal) distribution: f(x; r, p) = \Pr(X=x) = {x + r-1\choose x}p^{x}(1-p)^{r} for x = 0, 1, 2, \cdots.

Proof:

\begin{align*} \sum_{x =0}^{\infty}P(X = x) &= \sum_{x= 0}^{\infty} {x + r-1\choose x}p^{x}(1-p)^{r}\\ &= (1-p)^{r}\sum_{x=0}^{\infty} (-1)^{x}{-r\choose x}p^{x}\;\;\quad\quad (\mbox{identity}\ (-1)^{x}{-r\choose x}= {x+r-1\choose x})\\ &= (1-p)^r(1-p)^{-r}\;\;\quad\quad\quad\quad\quad\quad (\mbox{binomial theorem})\\ &= 1 \end{align*} Using the identity (-1)^{x}{-r\choose x}= {x+r-1\choose x}: \begin{align*} {x+r-1\choose x} &= {(x+r-1)!\over x!(r-1)!}\\ &= {(x+r-1)(x+r-2) \cdots r\over x!}\\ &= (-1)^{x}{(-r-(x-1))(-r-(x-2))\cdots(-r)\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))(-r-x)!\over x!(-r-x)!}\\ &=(-1)^{x}{-r\choose x} \end{align*}

Mean

The expected value is \mu = E[X] = {rp\over 1-p}

Proof:

\begin{align*} E[X] &= \sum_{x=0}^{\infty}xf(x; r, p)\\ &= \sum_{x=0}^{\infty}x{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}r{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad \mbox{setting}\ y= x-1\\ &= {rp\over 1-p} \end{align*} where the last summation follows Y\sim\mbox{NB}(r+1; p).

Variance

The variance is \sigma^2 = \mbox{Var}(X) = {rp\over(1-p)^2}

Proof:

\begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2f(x; r, p)\\ &= \sum_{x=0}^{\infty}x^2{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}x{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}rx{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}x{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}(y+1){y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad (\mbox{setting}\ y= x-1)\\ &= {rp\over 1-p}\left(\sum_{y=0}^{\infty}y{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}+\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1} \right)\\ &= {rp\over 1-p}\left({(r+1)p\over 1-p} + 1\right)\quad\quad\quad\quad\quad\quad(Y\sim\mbox{NB}(r+1; p),\ E[Y] = {(r+1)p\over1-p})\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p} \end{align*} Thus the variance is \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p}- \left({rp\over 1-p}\right)^2\\ &= {rp\over 1-p}\left({rp+1\over 1-p} - {rp\over 1-p}\right)\\ &= {rp\over(1-p)^2} \end{align*}

Examples

1. Find the expected value and the variance of the number of times one must throw a die until the outcome 1 has occurred 4 times.

Solution:

Let X be the number of times and Y be the number of success in the trials. Obviously, we have X = Y+4. Then the problem can be rewritten as ``the expected value and the variance of the number of times one must throw a die until the outcome 1 has NOT occurred 4 times''. That is, r = 4, p = {5\over 6} and Y\sim\mbox{NB}(r; p). Thus E[X] = E[Y+4]= E[Y] + 4 = {rp\over 1-p}+4 = 24 \mbox{Var}(X) = \mbox{Var}(Y+4) = \mbox{Var}(Y) = {rp\over(1-p)^2}= 120

 

 

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Chen, H. Advanced Statistical Inference. Class Notes. PDF

posted on   赵胤  阅读(296)  评论(0编辑  收藏  举报

编辑推荐:
· .NET开发智能桌面机器人:用.NET IoT库编写驱动控制两个屏幕
· 用纯.NET开发并制作一个智能桌面机器人:从.NET IoT入门开始
· 一个超经典 WinForm,WPF 卡死问题的终极反思
· ASP.NET Core - 日志记录系统(二)
· .NET 依赖注入中的 Captive Dependency
阅读排行:
· 在外漂泊的这几年总结和感悟,展望未来
· 博客园 & 1Panel 联合终身会员上线
· 支付宝事故这事儿,凭什么又是程序员背锅?有没有可能是这样的...
· https证书一键自动续期,帮你解放90天限制
· 在 ASP.NET Core WebAPI如何实现版本控制?

导航

统计

点击右上角即可分享
微信分享提示