入门

集群和节点:


节点(node) 是一个运行着的Elasticsearch 实例, 集群(cluster)是一组具有相同cluster.name 的节点集合可以组成一个集群。


你最好找一个合适的名字带替换cluster.name的默认值,这样可以防止一个新启动的节点加入到相同的网络中


cluster.name: es_cluster
node.name: node01
path.data: /elk/elasticsearch/data
path.logs: /elk/elasticsearch/logs
network.host: 192.168.32.80
network.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.32.80", "192.168.32.81"]


http://192.168.32.81:9200/_count?pretty/

                             GET

{
"query": {
"match_all": {}
}
}

返回:

{

    "count": 500,
    "_shards": {
        "total": 21,
        "successful": 21,
        "failed": 0
    }

}


面向文档:

Relational DB -> Databases -> Tables -> Rows -> Columns

Elasticsearch -> Indices -> Types -> Documents -> Fields

                 索引->类型->文档->字段

Elasticsearch集群可以包含多个索引,每个索引可以包含多个类型的(type),

每个类型包含多个文档,然后每个文档包含多个字段

所以为了创建员工目录,我们将进行如下操作:

1.为每个员工的文档(document)建立索引,每个文档包含了相应员工的所有信息。

2.每个文档的类型为 employee  。

3.employee  类型归属于索引 megacorp  。

4.megacorp  索引存储在Elasticsearch集群中。



http://192.168.32.81:9200/megacorp/employee/1/
                                         PUT

{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}

我们看到path: /megacorp/employee/1  包含三部分信息:
名字 说明

megacorp 索引名

employee 类型名

1        这个员工的ID



让我们在目录中加入更多额员工信息:

PUT /megacorp/employee/2
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
}

PUT /megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}



Elasticsearch集群可以包含多个索引



检索文档:

http://192.168.32.80:9200/megacorp/employee/1/
                                         GET
{

    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_version": 1,
    "found": true,
    "_source": {
        "first_name": "John",
        "last_name": "Smith",
        "age": 25,
        "about": "I love to go rock climbing",
        "interests": [
            "sports"
            ,
            "music"
        ]
    }

}

 我们通过HTTP 方法get来检索文档,同样的,我们可以使用DELETE 方法删除文档,

使用HEAD 方法检索某文档是否存在。如果想要更新已存在的文档,我们只需要PUT一次。



简单搜索:

GET 请求非常简单---你能轻松获取你想要的文档,让我们来进一步尝试一些东西,比如简单的搜索!

我们尝试一个最简单的搜索全部员工的请求:

http://192.168.32.80:9200/megacorp/employee/_search/


你可以看到我们依然使用megacorp 索引和employee 索引,但是我们在结尾使用关键字_search 来

取代原来的文档ID.响应内部的hits 数组包含了我们所有的三个文档,默认情况下搜索返回前10个结果


接下来,让我们搜索姓氏包含"Smith"的员工,要做到这一点,我们将在命令行中使用轻量级的搜索方法。

这种方法被称作查询字符串(query string)搜索,因为我们像传递URL参数一样去传递查询语句



curl localhost:9200/films/md/_search?q=tag:good 

demo:/root# curl http://192.168.32.81:9200/megacorp/employee/_search?q=last_name:lee
{"took":6,"timed_out":false,"_shards":{"total":5,"successful":5,"failed":0},"hits":

{"total":1,"max_score":0.30685282,"hits":

[{"_index":"megacorp","_type":"employee","_id":"3","_score":0.30685282,"_source":

{"first_name":"Jane","last_name":"lee","age":32,"about":"I like to collect rock albums","interests":["music"]}}]}}

demo:/root# 


http://192.168.32.81:9200/megacorp/employee/_search/
                                         
?q=last_name:lee                          GET

{

    "took": 7,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.30685282,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "3",
                "_score": 0.30685282,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "lee",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    }




使用DSL语句查询:


DSL 以JSON 请求体的形式出现,我们可以这样表示之前关于“Smith”的查询:


必须POST 请求:

http://192.168.32.81:9200/megacorp/employee/_search/
            
                                           POST

{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}


更复杂的搜索:

  我们让搜索稍微改变的复杂一些,我们依旧像要找到姓氏为"Smith"的员工,但是我们只想得到

年龄大于30岁的员工。 我们的语句将添加过滤器(filter),它是得我们高效率的执行一个结果话的检索:


http://192.168.32.81:9200/megacorp/employee/_search/
     
                                             POST


{
"query" : {
"filtered" : {
"filter" : {
"range" : {
"age" : { "gt" : 30 } 
}
},
"query" : {
"match" : {
"last_name" : "smith" 
}
}
}
}
}


返回:

{

    "took": 29,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.30685282,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "2",
                "_score": 0.30685282,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "Smith",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    }

}

<1> 这部分查询属于区间过滤器(range filter),它用于查找所有年龄大于30岁的数据


<2> 这部分查询与之前的 match  语句(query)一致。



全文搜索:


到目前为止搜索都很简单:搜索特定的名字,通过年龄筛选。让我们尝试一种更高级的搜索,

全文搜索---一种传统数据库很难实现的功能。




http://192.168.32.80:9200/megacorp/employee/_search/

                                             POST
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}


返回:

{

    "took": 6,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 3,
        "max_score": 0.16273327,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "1",
                "_score": 0.16273327,
                "_source": {
                    "first_name": "John",
                    "last_name": "Smith",
                    "age": 25,
                    "about": "I love to go rock climbing",
                    "interests": [
                        "sports"
                        ,
                        "music"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "2",
                "_score": 0.016878016,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "Smith",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "3",
                "_score": 0.016878016,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "lee",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    }

}默认情况下,Elasticsearch根据结果相关性评分来对结果集进行排序,所谓的「结果相关性
评分」就是文档与查询条件的匹配程度。很显然,排名第一的 John Smith  的 about  字段明确
的写到“rock climbing”。
但是为什么 Jane Smith  也会出现在结果里呢?原因是“rock”在她的 abuot  字段中被提及了。
因为只有“rock”被提及而“climbing”没有,所以她的 _score  要低于John。
这个例子很好的解释了Elasticsearch如何在各种文本字段中进行全文搜索,并且返回相关性
最大的结果集。相关性(relevance)的概念在Elasticsearch中非常重要,而这个概念在传统关
系型数据库中是不可想象的,因为传统数据库对记录的查询只有匹配或者不匹配





短语搜索:


目前我们可以在字段搜索单独的一个词,这挺好的,但是有时候你想要确切的匹配若干个单词或者短语(phrases).


例如我们想要查询同时包含"rock" 和"combing"(并且是相邻的)员工记录。


要做到这个,我们只要将match查询变更为match_phrase查询既可:



http://192.168.32.80:9200/megacorp/employee/_search/
 
                                            POST
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}

查询

{"query":{"match_all":{}}}
易读
结果转换器?
重复请求
显示选项?
{

    "took": 15,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.23013961,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "1",
                "_score": 0.23013961,
                "_source": {
                    "first_name": "John",
                    "last_name": "Smith",
                    "age": 25,
                    "about": "I love to go rock climbing",
                    "interests": [
                        "sports"
                        ,
                        "music"
                    ]
                }
            }
        ]
    }

}


分析;

最后,我们还有一个需求需要完成:允许管理者在职员中进行分析。

Elasticsearch 有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计。它很像SQL中的

GROUP BY 但是功能更强大。



http://192.168.32.80:9200/megacorp/employee/_search/

                                            POST


{
"aggs": {
"all_interests": {
"terms": { "field": "interests" }
}
}


{

    "took": 8,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 3,
        "max_score": 1,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "2",
                "_score": 1,
                "_source": {
                    "first_name": "Douglas",
                    "last_name": "Fir",
                    "age": 35,
                    "about": "I like to build cabinets",
                    "interests": [
                        "forestry"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "1",
                "_score": 1,
                "_source": {
                    "first_name": "John",
                    "last_name": "Smith",
                    "age": 25,
                    "about": "I love to go rock climbing",
                    "interests": [
                        "sports"
                        ,
                        "music"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "3",
                "_score": 1,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "lee",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    },
    "aggregations": {
        "all_interests": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": "music",
                    "doc_count": 2
                }
                ,
                {
                    "key": "forestry",
                    "doc_count": 1
                }
                ,
                {
                    "key": "sports",
                    "doc_count": 1
                }
            ]
        }
    }

}




我们可以看到两个职员对音乐有兴趣,一个喜欢林学,一个喜欢运动。这些数据并没有被预
先计算好,它们是实时的从匹配查询语句的文档中动态计算生成的。如果我们想知道所有
姓"Smith"的人最大的共同点(兴趣爱好),我们只需要增加合适的语句既可:


/megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "smith",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "music" ]
}



http://192.168.32.80:9200/megacorp/employee/_search/
                                          
                                           POST

{
"query": {
"match": {
"last_name": "smith"
}
},
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
}
}
}
}


http://192.168.32.80:9200/megacorp/employee/_search/
                                      POST

{
"aggs" : {
"all_interests" : {
"terms" : { "field" : "interests" },
"aggs" : {
"avg_age" : {
"avg" : { "field" : "age" }
}
}
}
}
}

聚合也允许分级汇总。例如,让我们统计每种兴趣下职员的平均年龄:


分布式的特性;


Elasticsearch致力于隐藏分布式系统的复杂性。以下这些操作都是在底层自动完成的:
将你的文档分区到不同的容器或者分片(shards)中,它们可以存在于一个或多个节点
中。
将分片均匀的分配到各个节点,对索引和搜索做负载均衡。
冗余每一个分片,防止硬件故障造成的数据丢失。
将集群中任意一个节点上的请求路由到相应数据所在的节点。
无论是增加节点,还是移除节点,分片都可以做到无缝的扩展和迁移。














posted @ 2016-08-02 11:18  czcb  阅读(135)  评论(0编辑  收藏  举报