五维思考

学习要加,骄傲要减,机会要乘,懒惰要除。 http://www.5dthink.cn

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

巧妙优化sql server数据库的几种方法,在实际操作中导致查询速度慢的原因有很多,其中最为常见有以下的几种:没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)。

  I/O吞吐量小,形成了瓶颈效应。

  没有创建计算列导致查询不优化SQL Server数据库。

  内存不足。

  网络速度慢。

  查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)。

  锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)。

  sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。

  返回了不必要的行和列。

  查询语句不好,没有优化。

  可以通过如下方法来优化查询 :

  1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要。

  2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)。

  3、升级硬件。

  4、根据查询条件,建立索引,优化索引、优化SQL Server数据库访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段。

  5、提高网速。

  6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:

  将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。

  7、增加服务器 CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作Update,Insert, Delete还不能并行处理。

  8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like ‘a%’ 使用索引 like ‘%a’ 不使用索引用 like ‘%a%’ 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。

  9、DB Server 和APPLication Server 分离;OLTP和OLAP分离。

  10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件’分区视图’)在实现分区视图之前,必须先水平分区表。

  在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。

  11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:

  查询语句的词法、语法检查。

  将语句提交给DBMS的查询优化器。

  优化器做代数优化和存取路径的优化SQL Server数据库。

  由预编译模块生成查询规划。

  然后在合适的时间提交给系统处理执行。

  最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。

  12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物. 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) commit trans 或者将动态SQL 写成函数或者存储过程。[SPAN]

  13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。

===========================================================================

针对大数据量表的优化查询

1:索引,我们最先想到的就是创建索引,创建索引可以成倍的提升查询的效率,节省时间。但是如果数据量太过于巨大的时候,这个时候单纯的创建索引是无济于事的,我们知道假如特别是在大数据量中统计查询,就拿1000W数据来说吧,如果使用count函数的话,最少要50-100秒以上,当然如果你的服务器配置够高,处理够快,或许会少很多但是一样会超过10秒。 
单纯的建立索引是无济于事的。我们可以在创建索引的时候给索引加个属性,compress,这个属性可以将所创建的索引进行一个良好的归类,这样的话,查询速度会提升5-10倍,或者更高。但是唯一的缺点是,压缩索引只能手动创建,对于那些KEY是无法进行压缩的,因为KEY(主键)是自动创建的索引,compress必选的属性,一般默认是不创建。所以在创建压缩索引的时候,可以找其他的关键字段进行压缩,比如工单表里面的流水号 
2:尽量少的使用那些函数,比如 IS NUll;IS NOT NULL,IN;NOT IN等这样的匹配函数,可以使用符号程序进行操作 
3:尽量少使用子查询,如果你写个类,里面模仿子查询的效果,你就会发现,简直在要命,我们可以使用联合查询,或者是外连接查询,这样速度会比子查询快很多。 
4:在使用索引的时候,注意如下: 
Where子句中有!=将使索引失效 
select account_name from test where amount != 0  (不使用) 
select account_name from test where amount > 0  (使用) 

Where条件中对字段增加处理函数将不使用该列的索引 
select * from emp where to_char(hire_date,'yyyymmdd')='20080411' (不使用) 
select * from emp where hire_date = to_char('20080411','yyyymmdd') (使用) 

避免在索引列上使用IS NULL和 IS NOT NULL 
select * from emp where dept_code is not null  (不使用) 
select * from emp where dept_code > 0  (使用) 

通配符% 的使用 
select * from emp where name like '%A'  (不使用索引) 
select * from emp where name like 'A%'  (使用索引) 

posted on 2015-03-22 11:20  五维思考  阅读(4026)  评论(0编辑  收藏  举报

QQ群:1. 全栈码农【346906288】2. VBA/VSTO【2660245】