05-Resnet18 图像分类

 

图1 Resnet的残差块

 

 

 图2 Resnet18 网络架构

Cifar10 数据集的Resnet10的框架实现(Pytorch):

  1 import torch
  2 from torch import nn
  3 
  4 # 基础块
  5 from torch.nn import Conv2d, BatchNorm2d, ReLU, MaxPool2d, AdaptiveAvgPool2d, Linear
  6 
  7 
  8 # ResNet18_BasicBlock-残差单元
  9 class ResNet18_BasicBlock(nn.Module):
 10     def __init__(self, input_channel, output_channel, stride, use_conv1_1):
 11         super(ResNet18_BasicBlock, self).__init__()
 12 
 13         # 第一层卷积
 14         self.conv1 = nn.Conv2d(input_channel, output_channel, kernel_size=3, stride=stride, padding=1)
 15         # 第二层卷积
 16         self.conv2 = nn.Conv2d(output_channel, output_channel, kernel_size=3, stride=1, padding=1)
 17 
 18         # 1*1卷积核,在不改变图片尺寸的情况下给通道升维
 19         self.extra = nn.Sequential(
 20             nn.Conv2d(input_channel, output_channel, kernel_size=1, stride=stride, padding=0),
 21             nn.BatchNorm2d(output_channel)
 22         )
 23 
 24         self.use_conv1_1 = use_conv1_1
 25 
 26         self.bn = nn.BatchNorm2d(output_channel)
 27         self.relu = nn.ReLU(inplace=True)
 28 
 29     def forward(self, x):
 30         out = self.bn(self.conv1(x))
 31         out = self.relu(out)
 32 
 33         out = self.bn(self.conv2(out))
 34 
 35         # 残差连接-(B,C,H,W)维度一致才能进行残差连接
 36         if self.use_conv1_1:
 37             out = self.extra(x) + out
 38 
 39         out = self.relu(out)
 40         return out
 41 
 42 
 43 # 构建 ResNet18 网络模型
 44 class ResNet18(nn.Module):
 45     def __init__(self):
 46         super(ResNet18, self).__init__()
 47 
 48         self.conv1 = nn.Sequential(
 49             nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=1),
 50             nn.BatchNorm2d(64)
 51         )
 52         self.block1_1 = ResNet18_BasicBlock(input_channel=64, output_channel=64, stride=1, use_conv1_1=False)
 53         self.block1_2 = ResNet18_BasicBlock(input_channel=64, output_channel=64, stride=1, use_conv1_1=False)
 54 
 55         self.block2_1 = ResNet18_BasicBlock(input_channel=64, output_channel=128, stride=2, use_conv1_1=True)
 56         self.block2_2 = ResNet18_BasicBlock(input_channel=128, output_channel=128, stride=1, use_conv1_1=False)
 57 
 58         self.block3_1 = ResNet18_BasicBlock(input_channel=128, output_channel=256, stride=2, use_conv1_1=True)
 59         self.block3_2 = ResNet18_BasicBlock(input_channel=256, output_channel=256, stride=1, use_conv1_1=False)
 60 
 61         self.block4_1 = ResNet18_BasicBlock(input_channel=256, output_channel=512, stride=2, use_conv1_1=True)
 62         self.block4_2 = ResNet18_BasicBlock(input_channel=512, output_channel=512, stride=1, use_conv1_1=False)
 63 
 64         self.FC_layer = nn.Linear(512 * 1 * 1, 10)
 65 
 66         self.adaptive_avg_pool2d = nn.AdaptiveAvgPool2d((1,1))
 67         self.relu = nn.ReLU(inplace=True)
 68 
 69     def forward(self, x):
 70 
 71         x = self.relu(self.conv1(x))
 72 
 73         # ResNet18-网络模型
 74         x = self.block1_1(x)
 75         x = self.block1_2(x)
 76         x = self.block2_1(x)
 77         x = self.block2_2(x)
 78         x = self.block3_1(x)
 79         x = self.block3_2(x)
 80         x = self.block4_1(x)
 81         x = self.block4_2(x)
 82         
 83         # 平均值池化
 84         x = self.adaptive_avg_pool2d(x)
 85         
 86         # 数据平坦化处理,为接下来的全连接层做准备
 87         x = x.view(x.size(0), -1)
 88         x = self.FC_layer(x)
 89 
 90         return x
 91     
 92     
 93 
 94 class BasicBlock(nn.Module):
 95  
 96     def __init__(self, in_features, out_features) -> None:
 97         super().__init__()
 98  
 99         self.in_features = in_features
100         self.out_features = out_features
101  
102         stride = 1
103         _features = out_features
104         if self.in_features != self.out_features:
105             # 在输入通道和输出通道不相等的情况下计算通道是否为2倍差值
106             if self.out_features / self.in_features == 2.0:
107                 stride = 2  # 在输出特征是输入特征的2倍的情况下 要想参数不翻倍 步长就必须翻倍
108             else:
109                 raise ValueError("输出特征数最多为输入特征数的2倍!")
110  
111         self.conv1 = Conv2d(in_features, _features, kernel_size=3, stride=stride, padding=1, bias=False)
112         self.bn1 = BatchNorm2d(_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
113         self.relu = ReLU(inplace=True)
114         self.conv2 = Conv2d(_features, _features, kernel_size=3, stride=1, padding=1, bias=False)
115         self.bn2 = BatchNorm2d(_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
116  
117         # 下采样
118         self.downsample = None if self.in_features == self.out_features else nn.Sequential(
119             Conv2d(in_features, out_features, kernel_size=1, stride=2, bias=False),
120             BatchNorm2d(out_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
121         )
122  
123     def forward(self, x):
124         identity = x
125         out = self.conv1(x)
126         out = self.bn1(out)
127         out = self.relu(out)
128         out = self.conv2(out)
129         out = self.bn2(out)
130  
131         # 输入输出的特征数不同时使用下采样层
132         if self.in_features != self.out_features:
133             identity = self.downsample(x)
134  
135         # 残差求和
136         out += identity
137         out = self.relu(out)
138         return out
139  
140  
141 class ResNet18_new(nn.Module):
142     def __init__(self) -> None:
143         super().__init__()
144  
145         self.conv1 = Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
146         self.bn1 = BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
147         self.relu = ReLU(inplace=True)
148         # self.maxpool = MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
149         self.layer1 = nn.Sequential(
150             BasicBlock(64, 64),
151             BasicBlock(64, 64)
152         )
153         self.layer2 = nn.Sequential(
154             BasicBlock(64, 128),
155             BasicBlock(128, 128)
156         )
157         self.layer3 = nn.Sequential(
158             BasicBlock(128, 256),
159             BasicBlock(256, 256)
160         )
161         self.layer4 = nn.Sequential(
162             BasicBlock(256, 512),
163             BasicBlock(512, 512)
164         )
165         self.avgpool = AdaptiveAvgPool2d(output_size=(1, 1))
166         self.fc = Linear(in_features=512, out_features=10, bias=True)
167  
168     def forward(self, x):
169         x = self.conv1(x)
170         x = self.bn1(x)
171         x = self.relu(x)
172         # x = self.maxpool(x)
173         x = self.layer1(x)
174         x = self.layer2(x)
175         x = self.layer3(x)
176         x = self.layer4(x)
177         x = self.avgpool(x)  # <---- 输出为{Tensor:(64,512,1,1)}
178         x = torch.flatten(x, 1)  # <----------------这里是个坑 很容易漏 从池化层到全连接需要一个压平 输出为{Tensor:(64,512)}
179         x = self.fc(x)  # <------------ 输出为{Tensor:(64,10)}
180         return x
181  
View Code

classfyNet_main.py

  1 import torch
  2 from torch.utils.data import DataLoader
  3 from torch import nn, optim
  4 from torchvision import datasets, transforms
  5 from torchvision.transforms.functional import InterpolationMode
  6 
  7 from matplotlib import pyplot as plt
  8 
  9 
 10 import time
 11 
 12 from Lenet5 import Lenet5_new
 13 from Resnet18 import ResNet18,ResNet18_new
 14 from AlexNet import AlexNet
 15 
 16 def main():
 17     
 18     print("Load datasets...")
 19     
 20     # transforms.RandomHorizontalFlip(p=0.5)---以0.5的概率对图片做水平横向翻转
 21     # transforms.ToTensor()---shape从(H,W,C)->(C,H,W), 每个像素点从(0-255)映射到(0-1):直接除以255
 22     # transforms.Normalize---先将输入归一化到(0,1),像素点通过"(x-mean)/std",将每个元素分布到(-1,1)
 23     transform_train = transforms.Compose([
 24                         # transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
 25                         transforms.RandomCrop(32, padding=4),  # 先四周填充0,在吧图像随机裁剪成32*32
 26                         transforms.RandomHorizontalFlip(p=0.5),
 27                         transforms.ToTensor(),
 28                         transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
 29                     ])
 30 
 31     transform_test = transforms.Compose([
 32                         # transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
 33                         transforms.RandomCrop(32, padding=4),  # 先四周填充0,在吧图像随机裁剪成32*32
 34                         transforms.ToTensor(),
 35                         transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
 36                     ])
 37     
 38     # 内置函数下载数据集
 39     train_dataset = datasets.CIFAR10(root="./data/Cifar10/", train=True, 
 40                                      transform = transform_train,
 41                                      download=True)
 42     test_dataset = datasets.CIFAR10(root = "./data/Cifar10/", 
 43                                     train = False, 
 44                                     transform = transform_test,
 45                                     download=True)
 46     
 47     print(len(train_dataset), len(test_dataset))
 48     
 49     Batch_size = 64
 50     train_loader = DataLoader(train_dataset, batch_size=Batch_size,  shuffle = True, num_workers=4)
 51     test_loader = DataLoader(test_dataset, batch_size = Batch_size, shuffle = False, num_workers=4)
 52     
 53     # 设置CUDA
 54     device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 55 
 56     # 初始化模型
 57     # 直接更换模型就行,其他无需操作
 58     # model = Lenet5_new().to(device)
 59     # model = ResNet18().to(device)
 60     model = ResNet18_new().to(device)
 61     
 62     # model = AlexNet(num_classes=10, init_weights=True).to(device)
 63     print("Resnet_new train...")
 64       
 65     # 构造损失函数和优化器
 66     criterion = nn.CrossEntropyLoss() # 多分类softmax构造损失
 67     # opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.8, weight_decay=0.001)
 68     opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0005)
 69     
 70     # 动态更新学习率 ------每隔step_size : lr = lr * gamma
 71     schedule = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.6, last_epoch=-1)
 72     
 73     # 开始训练
 74     print("Start Train...")
 75 
 76     epochs = 100
 77    
 78     loss_list = []
 79     train_acc_list =[]
 80     test_acc_list = []
 81     epochs_list = []
 82     
 83     for epoch in range(0, epochs):
 84          
 85         start = time.time()
 86         
 87         model.train()
 88         
 89         running_loss = 0.0
 90         batch_num = 0
 91         
 92         for i, (inputs, labels) in enumerate(train_loader):
 93             
 94             inputs, labels = inputs.to(device), labels.to(device)
 95             
 96             # 将数据送入模型训练
 97             outputs = model(inputs)
 98             # 计算损失
 99             loss = criterion(outputs, labels).to(device)
100             
101             # 重置梯度
102             opt.zero_grad()
103             # 计算梯度,反向传播
104             loss.backward()
105             # 根据反向传播的梯度值优化更新参数
106             opt.step()
107             
108             # 100个batch的 loss 之和
109             running_loss += loss.item()
110             # loss_list.append(loss.item())
111             batch_num+=1
112             
113             
114         epochs_list.append(epoch)
115             
116         # 每一轮结束输出一下当前的学习率 lr
117         lr_1 = opt.param_groups[0]['lr']
118         print("learn_rate:%.15f" % lr_1)
119         schedule.step()
120         
121         end = time.time()
122         print('epoch = %d/100, batch_num = %d, loss = %.6f, time = %.3f' % (epoch+1, batch_num, running_loss/batch_num, end-start))
123         running_loss=0.0    
124         
125         # 每个epoch训练结束,都进行一次测试验证
126         model.eval()
127         train_correct = 0.0
128         train_total = 0
129 
130         test_correct = 0.0
131         test_total = 0
132         
133          # 训练模式不需要反向传播更新梯度
134         with torch.no_grad():
135             
136             # print("=======================train=======================")
137             for inputs, labels in train_loader:
138                 inputs, labels = inputs.to(device), labels.to(device)
139                 outputs = model(inputs)
140 
141                 pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
142                 train_total += inputs.size(0)
143                 train_correct += torch.eq(pred, labels).sum().item()
144           
145             
146             # print("=======================test=======================")
147             for inputs, labels in test_loader:
148                 inputs, labels = inputs.to(device), labels.to(device)
149                 outputs = model(inputs)
150 
151                 pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
152                 test_total += inputs.size(0)
153                 test_correct += torch.eq(pred, labels).sum().item()
154 
155             print("train_total = %d, Accuracy = %.5f %%,  test_total= %d, Accuracy = %.5f %%" %(train_total, 100 * train_correct / train_total, test_total, 100 * test_correct / test_total))    
156 
157             train_acc_list.append(100 * train_correct / train_total)
158             test_acc_list.append(100 * test_correct / test_total)
159 
160         # print("Accuracy of the network on the 10000 test images:%.5f %%" % (100 * test_correct / test_total))
161         # print("===============================================")
162 
163     fig = plt.figure(figsize=(4, 4))
164     
165     plt.plot(epochs_list, train_acc_list, label='train_acc_list')
166     plt.plot(epochs_list, test_acc_list, label='test_acc_list')
167     plt.legend()
168     plt.title("train_test_acc")
169     plt.savefig('Resnet18_acc_epoch_{:04d}.png'.format(epochs))
170     plt.close()
171     
172 if __name__ == "__main__":
173     
174     main()
View Code

对比代码中的Resnet18模型和Resnet18_new模型的loss:

Resnet18的loss:

  1 (pytorch-CycleGAN-and-pix2pix) python classfyNet_train.py
  2 torch.Size([64, 10])
  3 Load datasets...
  4 Files already downloaded and verified
  5 Files already downloaded and verified
  6 50000 10000
  7 Start Train...
  8 learn_rate:0.010000000000000
  9 epoch = 1/100, batch_num = 782, loss = 1.478429, time = 20.609
 10 train_total = 50000, Accuracy = 31.06600 %,  test_total= 10000, Accuracy = 30.85000 %
 11 learn_rate:0.010000000000000
 12 epoch = 2/100, batch_num = 782, loss = 1.082994, time = 20.526
 13 train_total = 50000, Accuracy = 35.33400 %,  test_total= 10000, Accuracy = 35.15000 %
 14 learn_rate:0.010000000000000
 15 epoch = 3/100, batch_num = 782, loss = 0.888856, time = 20.156
 16 train_total = 50000, Accuracy = 37.90400 %,  test_total= 10000, Accuracy = 37.06000 %
 17 learn_rate:0.010000000000000
 18 epoch = 4/100, batch_num = 782, loss = 0.768423, time = 20.295
 19 train_total = 50000, Accuracy = 39.49000 %,  test_total= 10000, Accuracy = 38.76000 %
 20 learn_rate:0.010000000000000
 21 epoch = 5/100, batch_num = 782, loss = 0.677779, time = 20.365
 22 train_total = 50000, Accuracy = 43.15800 %,  test_total= 10000, Accuracy = 42.09000 %
 23 learn_rate:0.010000000000000
 24 epoch = 6/100, batch_num = 782, loss = 0.615038, time = 20.242
 25 train_total = 50000, Accuracy = 49.67600 %,  test_total= 10000, Accuracy = 48.32000 %
 26 learn_rate:0.010000000000000
 27 epoch = 7/100, batch_num = 782, loss = 0.557970, time = 20.275
 28 train_total = 50000, Accuracy = 41.97000 %,  test_total= 10000, Accuracy = 40.59000 %
 29 learn_rate:0.010000000000000
 30 epoch = 8/100, batch_num = 782, loss = 0.515727, time = 20.195
 31 train_total = 50000, Accuracy = 43.56000 %,  test_total= 10000, Accuracy = 42.16000 %
 32 learn_rate:0.010000000000000
 33 epoch = 9/100, batch_num = 782, loss = 0.475527, time = 20.332
 34 train_total = 50000, Accuracy = 49.66600 %,  test_total= 10000, Accuracy = 47.85000 %
 35 learn_rate:0.010000000000000
 36 epoch = 10/100, batch_num = 782, loss = 0.439108, time = 20.374
 37 train_total = 50000, Accuracy = 45.68400 %,  test_total= 10000, Accuracy = 43.56000 %
 38 learn_rate:0.006000000000000
 39 epoch = 11/100, batch_num = 782, loss = 0.319711, time = 20.288
 40 train_total = 50000, Accuracy = 38.37200 %,  test_total= 10000, Accuracy = 36.85000 %
 41 learn_rate:0.006000000000000
 42 epoch = 12/100, batch_num = 782, loss = 0.283212, time = 20.325
 43 train_total = 50000, Accuracy = 47.74200 %,  test_total= 10000, Accuracy = 45.71000 %
 44 learn_rate:0.006000000000000
 45 epoch = 13/100, batch_num = 782, loss = 0.272696, time = 20.214
 46 train_total = 50000, Accuracy = 52.00200 %,  test_total= 10000, Accuracy = 48.94000 %
 47 learn_rate:0.006000000000000
 48 epoch = 14/100, batch_num = 782, loss = 0.255000, time = 20.214
 49 train_total = 50000, Accuracy = 47.10800 %,  test_total= 10000, Accuracy = 44.11000 %
 50 learn_rate:0.006000000000000
 51 epoch = 15/100, batch_num = 782, loss = 0.239320, time = 20.285
 52 train_total = 50000, Accuracy = 49.55000 %,  test_total= 10000, Accuracy = 46.55000 %
 53 learn_rate:0.006000000000000
 54 epoch = 16/100, batch_num = 782, loss = 0.224698, time = 20.250
 55 train_total = 50000, Accuracy = 45.11400 %,  test_total= 10000, Accuracy = 41.64000 %
 56 learn_rate:0.006000000000000
 57 epoch = 17/100, batch_num = 782, loss = 0.215493, time = 20.155
 58 train_total = 50000, Accuracy = 38.18400 %,  test_total= 10000, Accuracy = 36.62000 %
 59 learn_rate:0.006000000000000
 60 epoch = 18/100, batch_num = 782, loss = 0.204470, time = 20.333
 61 train_total = 50000, Accuracy = 43.55400 %,  test_total= 10000, Accuracy = 40.96000 %
 62 learn_rate:0.006000000000000
 63 epoch = 19/100, batch_num = 782, loss = 0.192821, time = 20.248
 64 train_total = 50000, Accuracy = 47.45000 %,  test_total= 10000, Accuracy = 44.57000 %
 65 learn_rate:0.006000000000000
 66 epoch = 20/100, batch_num = 782, loss = 0.186118, time = 20.287
 67 train_total = 50000, Accuracy = 46.74800 %,  test_total= 10000, Accuracy = 43.04000 %
 68 learn_rate:0.003600000000000
 69 epoch = 21/100, batch_num = 782, loss = 0.107671, time = 20.394
 70 train_total = 50000, Accuracy = 42.69800 %,  test_total= 10000, Accuracy = 40.10000 %
 71 learn_rate:0.003600000000000
 72 epoch = 22/100, batch_num = 782, loss = 0.078854, time = 20.334
 73 train_total = 50000, Accuracy = 48.80000 %,  test_total= 10000, Accuracy = 45.33000 %
 74 learn_rate:0.003600000000000
 75 epoch = 23/100, batch_num = 782, loss = 0.075158, time = 20.473
 76 train_total = 50000, Accuracy = 47.88200 %,  test_total= 10000, Accuracy = 43.72000 %
 77 learn_rate:0.003600000000000
 78 epoch = 24/100, batch_num = 782, loss = 0.073704, time = 20.326
 79 train_total = 50000, Accuracy = 50.65200 %,  test_total= 10000, Accuracy = 46.09000 %
 80 learn_rate:0.003600000000000
 81 epoch = 25/100, batch_num = 782, loss = 0.065607, time = 20.183
 82 train_total = 50000, Accuracy = 58.66600 %,  test_total= 10000, Accuracy = 52.69000 %
 83 learn_rate:0.003600000000000
 84 epoch = 26/100, batch_num = 782, loss = 0.073630, time = 20.378
 85 train_total = 50000, Accuracy = 51.99200 %,  test_total= 10000, Accuracy = 47.71000 %
 86 learn_rate:0.003600000000000
 87 epoch = 27/100, batch_num = 782, loss = 0.070075, time = 20.228
 88 train_total = 50000, Accuracy = 45.31600 %,  test_total= 10000, Accuracy = 41.69000 %
 89 learn_rate:0.003600000000000
 90 epoch = 28/100, batch_num = 782, loss = 0.069032, time = 19.904
 91 train_total = 50000, Accuracy = 48.39000 %,  test_total= 10000, Accuracy = 44.84000 %
 92 learn_rate:0.003600000000000
 93 epoch = 29/100, batch_num = 782, loss = 0.071921, time = 20.349
 94 train_total = 50000, Accuracy = 55.82400 %,  test_total= 10000, Accuracy = 50.86000 %
 95 learn_rate:0.003600000000000
 96 epoch = 30/100, batch_num = 782, loss = 0.071051, time = 20.184
 97 train_total = 50000, Accuracy = 53.07200 %,  test_total= 10000, Accuracy = 48.05000 %
 98 learn_rate:0.002160000000000
 99 epoch = 31/100, batch_num = 782, loss = 0.039924, time = 20.472
100 train_total = 50000, Accuracy = 52.69200 %,  test_total= 10000, Accuracy = 48.10000 %
101 learn_rate:0.002160000000000
102 epoch = 32/100, batch_num = 782, loss = 0.020253, time = 20.357
103 train_total = 50000, Accuracy = 51.39600 %,  test_total= 10000, Accuracy = 47.06000 %
104 learn_rate:0.002160000000000
105 epoch = 33/100, batch_num = 782, loss = 0.016212, time = 20.455
106 train_total = 50000, Accuracy = 48.52400 %,  test_total= 10000, Accuracy = 44.42000 %
107 learn_rate:0.002160000000000
108 epoch = 34/100, batch_num = 782, loss = 0.013587, time = 20.243
109 train_total = 50000, Accuracy = 54.30800 %,  test_total= 10000, Accuracy = 48.65000 %
110 learn_rate:0.002160000000000
111 epoch = 35/100, batch_num = 782, loss = 0.012355, time = 20.483
112 train_total = 50000, Accuracy = 56.43400 %,  test_total= 10000, Accuracy = 51.17000 %
113 learn_rate:0.002160000000000
114 epoch = 36/100, batch_num = 782, loss = 0.013484, time = 20.341
115 train_total = 50000, Accuracy = 56.60800 %,  test_total= 10000, Accuracy = 50.81000 %
116 learn_rate:0.002160000000000
117 epoch = 37/100, batch_num = 782, loss = 0.010007, time = 20.286
118 train_total = 50000, Accuracy = 50.47000 %,  test_total= 10000, Accuracy = 45.95000 %
119 learn_rate:0.002160000000000
120 epoch = 38/100, batch_num = 782, loss = 0.009641, time = 20.268
121 train_total = 50000, Accuracy = 55.58600 %,  test_total= 10000, Accuracy = 50.60000 %
122 learn_rate:0.002160000000000
123 epoch = 39/100, batch_num = 782, loss = 0.008131, time = 20.245
124 train_total = 50000, Accuracy = 50.35200 %,  test_total= 10000, Accuracy = 46.15000 %
125 learn_rate:0.002160000000000
126 epoch = 40/100, batch_num = 782, loss = 0.009149, time = 20.268
127 train_total = 50000, Accuracy = 47.47200 %,  test_total= 10000, Accuracy = 43.46000 %
128 learn_rate:0.001296000000000
129 epoch = 41/100, batch_num = 782, loss = 0.005920, time = 20.269
130 train_total = 50000, Accuracy = 51.38200 %,  test_total= 10000, Accuracy = 46.52000 %
131 learn_rate:0.001296000000000
132 epoch = 42/100, batch_num = 782, loss = 0.003914, time = 20.295
133 train_total = 50000, Accuracy = 51.71200 %,  test_total= 10000, Accuracy = 47.06000 %
134 learn_rate:0.001296000000000
135 epoch = 43/100, batch_num = 782, loss = 0.003080, time = 20.224
136 train_total = 50000, Accuracy = 51.05800 %,  test_total= 10000, Accuracy = 46.26000 %
137 learn_rate:0.001296000000000
138 epoch = 44/100, batch_num = 782, loss = 0.002413, time = 20.320
139 train_total = 50000, Accuracy = 53.42600 %,  test_total= 10000, Accuracy = 48.32000 %
140 learn_rate:0.001296000000000
141 epoch = 45/100, batch_num = 782, loss = 0.002489, time = 20.297
142 train_total = 50000, Accuracy = 54.24800 %,  test_total= 10000, Accuracy = 49.09000 %
143 learn_rate:0.001296000000000
144 epoch = 46/100, batch_num = 782, loss = 0.002178, time = 20.256
145 train_total = 50000, Accuracy = 55.79000 %,  test_total= 10000, Accuracy = 50.57000 %
146 learn_rate:0.001296000000000
147 epoch = 47/100, batch_num = 782, loss = 0.002345, time = 20.361
148 train_total = 50000, Accuracy = 53.50000 %,  test_total= 10000, Accuracy = 48.63000 %
149 learn_rate:0.001296000000000
150 epoch = 48/100, batch_num = 782, loss = 0.001805, time = 20.261
151 train_total = 50000, Accuracy = 55.94000 %,  test_total= 10000, Accuracy = 50.40000 %
152 learn_rate:0.001296000000000
153 epoch = 49/100, batch_num = 782, loss = 0.001786, time = 20.178
154 train_total = 50000, Accuracy = 54.48600 %,  test_total= 10000, Accuracy = 48.75000 %
155 learn_rate:0.001296000000000
156 epoch = 50/100, batch_num = 782, loss = 0.001872, time = 20.300
157 train_total = 50000, Accuracy = 54.22400 %,  test_total= 10000, Accuracy = 48.62000 %
158 learn_rate:0.000777600000000
159 epoch = 51/100, batch_num = 782, loss = 0.001727, time = 20.183
160 train_total = 50000, Accuracy = 53.55400 %,  test_total= 10000, Accuracy = 48.19000 %
161 learn_rate:0.000777600000000
162 epoch = 52/100, batch_num = 782, loss = 0.001520, time = 20.245
163 train_total = 50000, Accuracy = 53.02800 %,  test_total= 10000, Accuracy = 48.03000 %
164 learn_rate:0.000777600000000
165 epoch = 53/100, batch_num = 782, loss = 0.001509, time = 20.378
166 train_total = 50000, Accuracy = 52.19200 %,  test_total= 10000, Accuracy = 46.78000 %
167 learn_rate:0.000777600000000
168 epoch = 54/100, batch_num = 782, loss = 0.001584, time = 20.280
169 train_total = 50000, Accuracy = 52.67200 %,  test_total= 10000, Accuracy = 47.31000 %
170 learn_rate:0.000777600000000
171 epoch = 55/100, batch_num = 782, loss = 0.001645, time = 20.257
172 train_total = 50000, Accuracy = 53.00600 %,  test_total= 10000, Accuracy = 47.83000 %
173 learn_rate:0.000777600000000
174 epoch = 56/100, batch_num = 782, loss = 0.001490, time = 20.254
175 train_total = 50000, Accuracy = 55.50400 %,  test_total= 10000, Accuracy = 49.49000 %
176 learn_rate:0.000777600000000
177 epoch = 57/100, batch_num = 782, loss = 0.001473, time = 20.464
178 train_total = 50000, Accuracy = 53.84200 %,  test_total= 10000, Accuracy = 48.34000 %
179 learn_rate:0.000777600000000
180 epoch = 58/100, batch_num = 782, loss = 0.001487, time = 20.422
181 train_total = 50000, Accuracy = 54.26800 %,  test_total= 10000, Accuracy = 48.84000 %
182 learn_rate:0.000777600000000
183 epoch = 59/100, batch_num = 782, loss = 0.001462, time = 20.241
184 train_total = 50000, Accuracy = 55.90800 %,  test_total= 10000, Accuracy = 50.13000 %
185 learn_rate:0.000777600000000
186 epoch = 60/100, batch_num = 782, loss = 0.001440, time = 20.214
187 train_total = 50000, Accuracy = 54.86600 %,  test_total= 10000, Accuracy = 49.09000 %
188 learn_rate:0.000466560000000
189 epoch = 61/100, batch_num = 782, loss = 0.001482, time = 20.234
190 train_total = 50000, Accuracy = 54.52800 %,  test_total= 10000, Accuracy = 48.95000 %
191 learn_rate:0.000466560000000
192 epoch = 62/100, batch_num = 782, loss = 0.001477, time = 20.284
193 train_total = 50000, Accuracy = 54.04400 %,  test_total= 10000, Accuracy = 48.53000 %
194 learn_rate:0.000466560000000
195 epoch = 63/100, batch_num = 782, loss = 0.001458, time = 20.278
196 train_total = 50000, Accuracy = 55.12200 %,  test_total= 10000, Accuracy = 49.43000 %
197 learn_rate:0.000466560000000
198 epoch = 64/100, batch_num = 782, loss = 0.001461, time = 20.281
199 train_total = 50000, Accuracy = 55.31400 %,  test_total= 10000, Accuracy = 49.36000 %
200 learn_rate:0.000466560000000
201 epoch = 65/100, batch_num = 782, loss = 0.001469, time = 20.215
202 train_total = 50000, Accuracy = 54.66600 %,  test_total= 10000, Accuracy = 48.85000 %
203 learn_rate:0.000466560000000
204 epoch = 66/100, batch_num = 782, loss = 0.001485, time = 20.369
205 train_total = 50000, Accuracy = 54.86400 %,  test_total= 10000, Accuracy = 49.28000 %
206 learn_rate:0.000466560000000
207 epoch = 67/100, batch_num = 782, loss = 0.001469, time = 20.219
208 train_total = 50000, Accuracy = 54.04800 %,  test_total= 10000, Accuracy = 48.46000 %
209 learn_rate:0.000466560000000
210 epoch = 68/100, batch_num = 782, loss = 0.001484, time = 20.315
211 train_total = 50000, Accuracy = 55.65400 %,  test_total= 10000, Accuracy = 49.71000 %
212 learn_rate:0.000466560000000
213 epoch = 69/100, batch_num = 782, loss = 0.001469, time = 20.336
214 train_total = 50000, Accuracy = 54.09200 %,  test_total= 10000, Accuracy = 48.69000 %
215 learn_rate:0.000466560000000
216 epoch = 70/100, batch_num = 782, loss = 0.001514, time = 20.383
217 train_total = 50000, Accuracy = 54.48400 %,  test_total= 10000, Accuracy = 48.92000 %
218 learn_rate:0.000279936000000
219 epoch = 71/100, batch_num = 782, loss = 0.001444, time = 20.361
220 train_total = 50000, Accuracy = 54.71600 %,  test_total= 10000, Accuracy = 49.39000 %
221 learn_rate:0.000279936000000
222 epoch = 72/100, batch_num = 782, loss = 0.001429, time = 20.252
223 train_total = 50000, Accuracy = 53.90800 %,  test_total= 10000, Accuracy = 48.27000 %
224 learn_rate:0.000279936000000
225 epoch = 73/100, batch_num = 782, loss = 0.001452, time = 20.221
226 train_total = 50000, Accuracy = 55.43600 %,  test_total= 10000, Accuracy = 49.66000 %
227 learn_rate:0.000279936000000
228 epoch = 74/100, batch_num = 782, loss = 0.001466, time = 20.291
229 train_total = 50000, Accuracy = 55.00800 %,  test_total= 10000, Accuracy = 49.34000 %
230 learn_rate:0.000279936000000
231 epoch = 75/100, batch_num = 782, loss = 0.001456, time = 20.268
232 train_total = 50000, Accuracy = 53.05600 %,  test_total= 10000, Accuracy = 47.84000 %
233 learn_rate:0.000279936000000
234 epoch = 76/100, batch_num = 782, loss = 0.001482, time = 20.403
235 train_total = 50000, Accuracy = 54.63400 %,  test_total= 10000, Accuracy = 49.00000 %
236 learn_rate:0.000279936000000
237 epoch = 77/100, batch_num = 782, loss = 0.001481, time = 20.300
238 train_total = 50000, Accuracy = 54.45400 %,  test_total= 10000, Accuracy = 48.95000 %
239 learn_rate:0.000279936000000
240 epoch = 78/100, batch_num = 782, loss = 0.001469, time = 20.349
241 train_total = 50000, Accuracy = 55.05000 %,  test_total= 10000, Accuracy = 49.47000 %
242 learn_rate:0.000279936000000
243 epoch = 79/100, batch_num = 782, loss = 0.001516, time = 20.179
244 train_total = 50000, Accuracy = 54.71000 %,  test_total= 10000, Accuracy = 48.91000 %
245 learn_rate:0.000279936000000
246 epoch = 80/100, batch_num = 782, loss = 0.001528, time = 20.335
247 train_total = 50000, Accuracy = 53.93200 %,  test_total= 10000, Accuracy = 48.56000 %
248 learn_rate:0.000167961600000
249 epoch = 81/100, batch_num = 782, loss = 0.001489, time = 20.238
250 train_total = 50000, Accuracy = 55.02000 %,  test_total= 10000, Accuracy = 49.48000 %
251 learn_rate:0.000167961600000
252 epoch = 82/100, batch_num = 782, loss = 0.001494, time = 20.359
253 train_total = 50000, Accuracy = 54.74800 %,  test_total= 10000, Accuracy = 48.92000 %
254 learn_rate:0.000167961600000
255 epoch = 83/100, batch_num = 782, loss = 0.001531, time = 20.469
256 train_total = 50000, Accuracy = 53.87200 %,  test_total= 10000, Accuracy = 48.33000 %
257 learn_rate:0.000167961600000
258 epoch = 84/100, batch_num = 782, loss = 0.001547, time = 20.333
259 train_total = 50000, Accuracy = 54.89000 %,  test_total= 10000, Accuracy = 49.50000 %
260 learn_rate:0.000167961600000
261 epoch = 85/100, batch_num = 782, loss = 0.001479, time = 20.248
262 train_total = 50000, Accuracy = 52.95000 %,  test_total= 10000, Accuracy = 47.83000 %
263 learn_rate:0.000167961600000
264 epoch = 86/100, batch_num = 782, loss = 0.001508, time = 20.275
265 train_total = 50000, Accuracy = 56.31800 %,  test_total= 10000, Accuracy = 50.58000 %
266 learn_rate:0.000167961600000
267 epoch = 87/100, batch_num = 782, loss = 0.001515, time = 20.320
268 train_total = 50000, Accuracy = 55.44400 %,  test_total= 10000, Accuracy = 49.58000 %
269 learn_rate:0.000167961600000
270 epoch = 88/100, batch_num = 782, loss = 0.001507, time = 20.327
271 train_total = 50000, Accuracy = 53.90000 %,  test_total= 10000, Accuracy = 48.48000 %
272 learn_rate:0.000167961600000
273 epoch = 89/100, batch_num = 782, loss = 0.001480, time = 20.315
274 train_total = 50000, Accuracy = 56.02600 %,  test_total= 10000, Accuracy = 50.01000 %
275 learn_rate:0.000167961600000
276 epoch = 90/100, batch_num = 782, loss = 0.001472, time = 20.310
277 train_total = 50000, Accuracy = 55.20000 %,  test_total= 10000, Accuracy = 49.51000 %
278 learn_rate:0.000100776960000
279 epoch = 91/100, batch_num = 782, loss = 0.001521, time = 20.263
280 train_total = 50000, Accuracy = 56.23400 %,  test_total= 10000, Accuracy = 50.64000 %
281 learn_rate:0.000100776960000
282 epoch = 92/100, batch_num = 782, loss = 0.001501, time = 20.237
283 train_total = 50000, Accuracy = 55.11600 %,  test_total= 10000, Accuracy = 49.61000 %
284 learn_rate:0.000100776960000
285 epoch = 93/100, batch_num = 782, loss = 0.001574, time = 20.377
286 train_total = 50000, Accuracy = 54.95800 %,  test_total= 10000, Accuracy = 49.18000 %
287 learn_rate:0.000100776960000
288 epoch = 94/100, batch_num = 782, loss = 0.001501, time = 20.296
289 train_total = 50000, Accuracy = 55.77600 %,  test_total= 10000, Accuracy = 49.97000 %
290 learn_rate:0.000100776960000
291 epoch = 95/100, batch_num = 782, loss = 0.001461, time = 20.223
292 train_total = 50000, Accuracy = 54.73600 %,  test_total= 10000, Accuracy = 49.17000 %
293 learn_rate:0.000100776960000
294 epoch = 96/100, batch_num = 782, loss = 0.001491, time = 20.399
295 train_total = 50000, Accuracy = 53.49400 %,  test_total= 10000, Accuracy = 48.26000 %
296 learn_rate:0.000100776960000
297 epoch = 97/100, batch_num = 782, loss = 0.001490, time = 20.291
298 train_total = 50000, Accuracy = 54.63800 %,  test_total= 10000, Accuracy = 49.04000 %
299 learn_rate:0.000100776960000
300 epoch = 98/100, batch_num = 782, loss = 0.001608, time = 20.332
301 train_total = 50000, Accuracy = 52.93600 %,  test_total= 10000, Accuracy = 47.82000 %
302 learn_rate:0.000100776960000
303 epoch = 99/100, batch_num = 782, loss = 0.001496, time = 20.266
304 train_total = 50000, Accuracy = 54.14800 %,  test_total= 10000, Accuracy = 48.89000 %
305 learn_rate:0.000100776960000
306 epoch = 100/100, batch_num = 782, loss = 0.001528, time = 20.385
307 train_total = 50000, Accuracy = 54.02000 %,  test_total= 10000, Accuracy = 48.37000 %
View Code

Resnet18_new的loss:

  1 torch.Size([64, 10])
  2 Load datasets...
  3 Files already downloaded and verified
  4 Files already downloaded and verified
  5 50000 10000
  6 Resnet_new train...
  7 Start Train...
  8 learn_rate:0.010000000000000
  9 epoch = 1/100, batch_num = 782, loss = 1.451053, time = 23.282
 10 train_total = 50000, Accuracy = 58.61800 %,  test_total= 10000, Accuracy = 57.56000 %
 11 learn_rate:0.010000000000000
 12 epoch = 2/100, batch_num = 782, loss = 0.928293, time = 21.907
 13 train_total = 50000, Accuracy = 71.94400 %,  test_total= 10000, Accuracy = 70.90000 %
 14 learn_rate:0.010000000000000
 15 epoch = 3/100, batch_num = 782, loss = 0.724947, time = 22.050
 16 train_total = 50000, Accuracy = 76.09000 %,  test_total= 10000, Accuracy = 74.86000 %
 17 learn_rate:0.010000000000000
 18 epoch = 4/100, batch_num = 782, loss = 0.603777, time = 21.881
 19 train_total = 50000, Accuracy = 78.22600 %,  test_total= 10000, Accuracy = 76.24000 %
 20 learn_rate:0.010000000000000
 21 epoch = 5/100, batch_num = 782, loss = 0.539772, time = 22.380
 22 train_total = 50000, Accuracy = 82.28600 %,  test_total= 10000, Accuracy = 79.82000 %
 23 learn_rate:0.010000000000000
 24 epoch = 6/100, batch_num = 782, loss = 0.477935, time = 22.702
 25 train_total = 50000, Accuracy = 79.59600 %,  test_total= 10000, Accuracy = 77.84000 %
 26 learn_rate:0.010000000000000
 27 epoch = 7/100, batch_num = 782, loss = 0.438771, time = 21.975
 28 train_total = 50000, Accuracy = 85.82200 %,  test_total= 10000, Accuracy = 82.82000 %
 29 learn_rate:0.010000000000000
 30 epoch = 8/100, batch_num = 782, loss = 0.405585, time = 21.700
 31 train_total = 50000, Accuracy = 86.22400 %,  test_total= 10000, Accuracy = 83.42000 %
 32 learn_rate:0.010000000000000
 33 epoch = 9/100, batch_num = 782, loss = 0.374122, time = 21.807
 34 train_total = 50000, Accuracy = 86.95600 %,  test_total= 10000, Accuracy = 83.79000 %
 35 learn_rate:0.010000000000000
 36 epoch = 10/100, batch_num = 782, loss = 0.345220, time = 21.419
 37 train_total = 50000, Accuracy = 88.87400 %,  test_total= 10000, Accuracy = 85.42000 %
 38 learn_rate:0.006000000000000
 39 epoch = 11/100, batch_num = 782, loss = 0.269898, time = 21.788
 40 train_total = 50000, Accuracy = 91.76000 %,  test_total= 10000, Accuracy = 87.69000 %
 41 learn_rate:0.006000000000000
 42 epoch = 12/100, batch_num = 782, loss = 0.251359, time = 22.020
 43 train_total = 50000, Accuracy = 92.01600 %,  test_total= 10000, Accuracy = 87.87000 %
 44 learn_rate:0.006000000000000
 45 epoch = 13/100, batch_num = 782, loss = 0.237086, time = 22.743
 46 train_total = 50000, Accuracy = 92.16000 %,  test_total= 10000, Accuracy = 87.76000 %
 47 learn_rate:0.006000000000000
 48 epoch = 14/100, batch_num = 782, loss = 0.224472, time = 21.741
 49 train_total = 50000, Accuracy = 92.68000 %,  test_total= 10000, Accuracy = 88.72000 %
 50 learn_rate:0.006000000000000
 51 epoch = 15/100, batch_num = 782, loss = 0.216702, time = 21.709
 52 train_total = 50000, Accuracy = 93.65800 %,  test_total= 10000, Accuracy = 88.77000 %
 53 learn_rate:0.006000000000000
 54 epoch = 16/100, batch_num = 782, loss = 0.203758, time = 21.665
 55 train_total = 50000, Accuracy = 93.11800 %,  test_total= 10000, Accuracy = 88.33000 %
 56 learn_rate:0.006000000000000
 57 epoch = 17/100, batch_num = 782, loss = 0.200266, time = 21.782
 58 train_total = 50000, Accuracy = 94.38600 %,  test_total= 10000, Accuracy = 89.17000 %
 59 learn_rate:0.006000000000000
 60 epoch = 18/100, batch_num = 782, loss = 0.190930, time = 22.121
 61 train_total = 50000, Accuracy = 94.36000 %,  test_total= 10000, Accuracy = 89.52000 %
 62 learn_rate:0.006000000000000
 63 epoch = 19/100, batch_num = 782, loss = 0.181329, time = 22.707
 64 train_total = 50000, Accuracy = 94.04400 %,  test_total= 10000, Accuracy = 88.61000 %
 65 learn_rate:0.006000000000000
 66 epoch = 20/100, batch_num = 782, loss = 0.173605, time = 22.876
 67 train_total = 50000, Accuracy = 93.30000 %,  test_total= 10000, Accuracy = 88.11000 %
 68 learn_rate:0.003600000000000
 69 epoch = 21/100, batch_num = 782, loss = 0.126447, time = 22.123
 70 train_total = 50000, Accuracy = 97.11200 %,  test_total= 10000, Accuracy = 91.22000 %
 71 learn_rate:0.003600000000000
 72 epoch = 22/100, batch_num = 782, loss = 0.107373, time = 21.784
 73 train_total = 50000, Accuracy = 96.83000 %,  test_total= 10000, Accuracy = 90.35000 %
 74 learn_rate:0.003600000000000
 75 epoch = 23/100, batch_num = 782, loss = 0.104210, time = 22.198
 76 train_total = 50000, Accuracy = 96.15800 %,  test_total= 10000, Accuracy = 89.79000 %
 77 learn_rate:0.003600000000000
 78 epoch = 24/100, batch_num = 782, loss = 0.103576, time = 21.430
 79 train_total = 50000, Accuracy = 97.16000 %,  test_total= 10000, Accuracy = 90.71000 %
 80 learn_rate:0.003600000000000
 81 epoch = 25/100, batch_num = 782, loss = 0.096196, time = 21.878
 82 train_total = 50000, Accuracy = 97.36600 %,  test_total= 10000, Accuracy = 90.61000 %
 83 learn_rate:0.003600000000000
 84 epoch = 26/100, batch_num = 782, loss = 0.095333, time = 21.986
 85 train_total = 50000, Accuracy = 97.67800 %,  test_total= 10000, Accuracy = 90.73000 %
 86 learn_rate:0.003600000000000
 87 epoch = 27/100, batch_num = 782, loss = 0.092612, time = 21.593
 88 train_total = 50000, Accuracy = 97.88400 %,  test_total= 10000, Accuracy = 90.89000 %
 89 learn_rate:0.003600000000000
 90 epoch = 28/100, batch_num = 782, loss = 0.087495, time = 21.586
 91 train_total = 50000, Accuracy = 97.71600 %,  test_total= 10000, Accuracy = 90.87000 %
 92 learn_rate:0.003600000000000
 93 epoch = 29/100, batch_num = 782, loss = 0.082360, time = 21.487
 94 train_total = 50000, Accuracy = 97.39000 %,  test_total= 10000, Accuracy = 90.49000 %
 95 learn_rate:0.003600000000000
 96 epoch = 30/100, batch_num = 782, loss = 0.080648, time = 22.697
 97 train_total = 50000, Accuracy = 97.88200 %,  test_total= 10000, Accuracy = 90.88000 %
 98 learn_rate:0.002160000000000
 99 epoch = 31/100, batch_num = 782, loss = 0.051497, time = 21.724
100 train_total = 50000, Accuracy = 98.98000 %,  test_total= 10000, Accuracy = 91.76000 %
101 learn_rate:0.002160000000000
102 epoch = 32/100, batch_num = 782, loss = 0.043576, time = 21.598
103 train_total = 50000, Accuracy = 99.15200 %,  test_total= 10000, Accuracy = 91.91000 %
104 learn_rate:0.002160000000000
105 epoch = 33/100, batch_num = 782, loss = 0.040170, time = 22.077
106 train_total = 50000, Accuracy = 99.11400 %,  test_total= 10000, Accuracy = 91.71000 %
107 learn_rate:0.002160000000000
108 epoch = 34/100, batch_num = 782, loss = 0.036510, time = 21.743
109 train_total = 50000, Accuracy = 99.31000 %,  test_total= 10000, Accuracy = 92.03000 %
110 learn_rate:0.002160000000000
111 epoch = 35/100, batch_num = 782, loss = 0.034952, time = 22.898
112 train_total = 50000, Accuracy = 99.19400 %,  test_total= 10000, Accuracy = 91.64000 %
113 learn_rate:0.002160000000000
114 epoch = 36/100, batch_num = 782, loss = 0.034848, time = 22.946
115 train_total = 50000, Accuracy = 99.43800 %,  test_total= 10000, Accuracy = 91.86000 %
116 learn_rate:0.002160000000000
117 epoch = 37/100, batch_num = 782, loss = 0.030716, time = 21.696
118 train_total = 50000, Accuracy = 99.31200 %,  test_total= 10000, Accuracy = 91.65000 %
119 learn_rate:0.002160000000000
120 epoch = 38/100, batch_num = 782, loss = 0.032617, time = 21.502
121 train_total = 50000, Accuracy = 99.26400 %,  test_total= 10000, Accuracy = 91.64000 %
122 learn_rate:0.002160000000000
123 epoch = 39/100, batch_num = 782, loss = 0.031037, time = 21.488
124 train_total = 50000, Accuracy = 99.41200 %,  test_total= 10000, Accuracy = 91.66000 %
125 learn_rate:0.002160000000000
126 epoch = 40/100, batch_num = 782, loss = 0.028539, time = 22.117
127 train_total = 50000, Accuracy = 99.17400 %,  test_total= 10000, Accuracy = 91.58000 %
128 learn_rate:0.001296000000000
129 epoch = 41/100, batch_num = 782, loss = 0.020754, time = 21.825
130 train_total = 50000, Accuracy = 99.74400 %,  test_total= 10000, Accuracy = 92.26000 %
131 learn_rate:0.001296000000000
132 epoch = 42/100, batch_num = 782, loss = 0.016894, time = 21.502
133 train_total = 50000, Accuracy = 99.77600 %,  test_total= 10000, Accuracy = 92.48000 %
134 learn_rate:0.001296000000000
135 epoch = 43/100, batch_num = 782, loss = 0.013981, time = 22.001
136 train_total = 50000, Accuracy = 99.84000 %,  test_total= 10000, Accuracy = 92.43000 %
137 learn_rate:0.001296000000000
138 epoch = 44/100, batch_num = 782, loss = 0.013949, time = 21.460
139 train_total = 50000, Accuracy = 99.85800 %,  test_total= 10000, Accuracy = 92.44000 %
140 learn_rate:0.001296000000000
141 epoch = 45/100, batch_num = 782, loss = 0.013909, time = 21.732
142 train_total = 50000, Accuracy = 99.86600 %,  test_total= 10000, Accuracy = 92.35000 %
143 learn_rate:0.001296000000000
144 epoch = 46/100, batch_num = 782, loss = 0.012369, time = 22.156
145 train_total = 50000, Accuracy = 99.88600 %,  test_total= 10000, Accuracy = 92.59000 %
146 learn_rate:0.001296000000000
147 epoch = 47/100, batch_num = 782, loss = 0.012164, time = 21.712
148 train_total = 50000, Accuracy = 99.83400 %,  test_total= 10000, Accuracy = 92.31000 %
149 learn_rate:0.001296000000000
150 epoch = 48/100, batch_num = 782, loss = 0.012542, time = 22.416
151 train_total = 50000, Accuracy = 99.76000 %,  test_total= 10000, Accuracy = 92.12000 %
152 learn_rate:0.001296000000000
153 epoch = 49/100, batch_num = 782, loss = 0.010346, time = 21.668
154 train_total = 50000, Accuracy = 99.91200 %,  test_total= 10000, Accuracy = 92.58000 %
155 learn_rate:0.001296000000000
156 epoch = 50/100, batch_num = 782, loss = 0.011311, time = 21.650
157 train_total = 50000, Accuracy = 99.90800 %,  test_total= 10000, Accuracy = 92.44000 %
158 learn_rate:0.000777600000000
159 epoch = 51/100, batch_num = 782, loss = 0.008120, time = 21.966
160 train_total = 50000, Accuracy = 99.94400 %,  test_total= 10000, Accuracy = 92.78000 %
161 learn_rate:0.000777600000000
162 epoch = 52/100, batch_num = 782, loss = 0.007178, time = 21.983
163 train_total = 50000, Accuracy = 99.96200 %,  test_total= 10000, Accuracy = 92.68000 %
164 learn_rate:0.000777600000000
165 epoch = 53/100, batch_num = 782, loss = 0.007624, time = 22.092
166 train_total = 50000, Accuracy = 99.94200 %,  test_total= 10000, Accuracy = 92.46000 %
167 learn_rate:0.000777600000000
168 epoch = 54/100, batch_num = 782, loss = 0.006125, time = 21.804
169 train_total = 50000, Accuracy = 99.94400 %,  test_total= 10000, Accuracy = 92.69000 %
170 learn_rate:0.000777600000000
171 epoch = 55/100, batch_num = 782, loss = 0.006559, time = 21.689
172 train_total = 50000, Accuracy = 99.97600 %,  test_total= 10000, Accuracy = 92.87000 %
173 learn_rate:0.000777600000000
174 epoch = 56/100, batch_num = 782, loss = 0.005900, time = 21.473
175 train_total = 50000, Accuracy = 99.98200 %,  test_total= 10000, Accuracy = 92.92000 %
176 learn_rate:0.000777600000000
177 epoch = 57/100, batch_num = 782, loss = 0.005508, time = 22.094
178 train_total = 50000, Accuracy = 99.97400 %,  test_total= 10000, Accuracy = 92.77000 %
179 learn_rate:0.000777600000000
180 epoch = 58/100, batch_num = 782, loss = 0.006126, time = 21.645
181 train_total = 50000, Accuracy = 99.97600 %,  test_total= 10000, Accuracy = 92.58000 %
182 learn_rate:0.000777600000000
183 epoch = 59/100, batch_num = 782, loss = 0.005585, time = 21.700
184 train_total = 50000, Accuracy = 99.98000 %,  test_total= 10000, Accuracy = 92.92000 %
185 learn_rate:0.000777600000000
186 epoch = 60/100, batch_num = 782, loss = 0.005175, time = 22.570
187 train_total = 50000, Accuracy = 99.98800 %,  test_total= 10000, Accuracy = 92.85000 %
188 learn_rate:0.000466560000000
189 epoch = 61/100, batch_num = 782, loss = 0.004352, time = 21.799
190 train_total = 50000, Accuracy = 99.98800 %,  test_total= 10000, Accuracy = 93.02000 %
191 learn_rate:0.000466560000000
192 epoch = 62/100, batch_num = 782, loss = 0.004305, time = 22.381
193 train_total = 50000, Accuracy = 99.98600 %,  test_total= 10000, Accuracy = 93.17000 %
194 learn_rate:0.000466560000000
195 epoch = 63/100, batch_num = 782, loss = 0.004180, time = 22.000
196 train_total = 50000, Accuracy = 99.99200 %,  test_total= 10000, Accuracy = 92.94000 %
197 learn_rate:0.000466560000000
198 epoch = 64/100, batch_num = 782, loss = 0.004102, time = 21.666
199 train_total = 50000, Accuracy = 99.99000 %,  test_total= 10000, Accuracy = 92.72000 %
200 learn_rate:0.000466560000000
201 epoch = 65/100, batch_num = 782, loss = 0.004598, time = 21.820
202 train_total = 50000, Accuracy = 99.99200 %,  test_total= 10000, Accuracy = 92.98000 %
203 learn_rate:0.000466560000000
204 epoch = 66/100, batch_num = 782, loss = 0.003746, time = 21.805
205 train_total = 50000, Accuracy = 99.99400 %,  test_total= 10000, Accuracy = 92.83000 %
206 learn_rate:0.000466560000000
207 epoch = 67/100, batch_num = 782, loss = 0.004035, time = 21.787
208 train_total = 50000, Accuracy = 99.99200 %,  test_total= 10000, Accuracy = 93.15000 %
209 learn_rate:0.000466560000000
210 epoch = 68/100, batch_num = 782, loss = 0.004126, time = 21.785
211 train_total = 50000, Accuracy = 99.98600 %,  test_total= 10000, Accuracy = 92.78000 %
212 learn_rate:0.000466560000000
213 epoch = 69/100, batch_num = 782, loss = 0.003450, time = 21.634
214 train_total = 50000, Accuracy = 99.99000 %,  test_total= 10000, Accuracy = 93.08000 %
215 learn_rate:0.000466560000000
216 epoch = 70/100, batch_num = 782, loss = 0.003564, time = 21.636
217 train_total = 50000, Accuracy = 99.99000 %,  test_total= 10000, Accuracy = 92.88000 %
218 learn_rate:0.000279936000000
219 epoch = 71/100, batch_num = 782, loss = 0.003281, time = 21.802
220 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 93.08000 %
221 learn_rate:0.000279936000000
222 epoch = 72/100, batch_num = 782, loss = 0.003167, time = 21.694
223 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 93.03000 %
224 learn_rate:0.000279936000000
225 epoch = 73/100, batch_num = 782, loss = 0.003314, time = 22.032
226 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 93.02000 %
227 learn_rate:0.000279936000000
228 epoch = 74/100, batch_num = 782, loss = 0.003216, time = 21.721
229 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 93.01000 %
230 learn_rate:0.000279936000000
231 epoch = 75/100, batch_num = 782, loss = 0.003373, time = 21.596
232 train_total = 50000, Accuracy = 99.99400 %,  test_total= 10000, Accuracy = 93.10000 %
233 learn_rate:0.000279936000000
234 epoch = 76/100, batch_num = 782, loss = 0.003131, time = 22.089
235 train_total = 50000, Accuracy = 99.99200 %,  test_total= 10000, Accuracy = 93.05000 %
236 learn_rate:0.000279936000000
237 epoch = 77/100, batch_num = 782, loss = 0.003092, time = 22.110
238 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 93.01000 %
239 learn_rate:0.000279936000000
240 epoch = 78/100, batch_num = 782, loss = 0.003060, time = 21.796
241 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 93.03000 %
242 learn_rate:0.000279936000000
243 epoch = 79/100, batch_num = 782, loss = 0.002961, time = 21.776
244 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 93.02000 %
245 learn_rate:0.000279936000000
246 epoch = 80/100, batch_num = 782, loss = 0.003169, time = 22.426
247 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 92.89000 %
248 learn_rate:0.000167961600000
249 epoch = 81/100, batch_num = 782, loss = 0.002930, time = 22.116
250 train_total = 50000, Accuracy = 99.99400 %,  test_total= 10000, Accuracy = 92.96000 %
251 learn_rate:0.000167961600000
252 epoch = 82/100, batch_num = 782, loss = 0.003191, time = 22.034
253 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 92.84000 %
254 learn_rate:0.000167961600000
255 epoch = 83/100, batch_num = 782, loss = 0.002860, time = 22.164
256 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 93.16000 %
257 learn_rate:0.000167961600000
258 epoch = 84/100, batch_num = 782, loss = 0.002700, time = 22.663
259 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 92.91000 %
260 learn_rate:0.000167961600000
261 epoch = 85/100, batch_num = 782, loss = 0.002644, time = 22.250
262 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 92.98000 %
263 learn_rate:0.000167961600000
264 epoch = 86/100, batch_num = 782, loss = 0.002656, time = 22.101
265 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 92.98000 %
266 learn_rate:0.000167961600000
267 epoch = 87/100, batch_num = 782, loss = 0.003052, time = 21.886
268 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 92.91000 %
269 learn_rate:0.000167961600000
270 epoch = 88/100, batch_num = 782, loss = 0.002605, time = 22.293
271 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 92.96000 %
272 learn_rate:0.000167961600000
273 epoch = 89/100, batch_num = 782, loss = 0.002603, time = 21.796
274 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 93.23000 %
275 learn_rate:0.000167961600000
276 epoch = 90/100, batch_num = 782, loss = 0.002599, time = 22.199
277 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 93.03000 %
278 learn_rate:0.000100776960000
279 epoch = 91/100, batch_num = 782, loss = 0.002655, time = 23.211
280 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 93.11000 %
281 learn_rate:0.000100776960000
282 epoch = 92/100, batch_num = 782, loss = 0.002482, time = 21.936
283 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 93.25000 %
284 learn_rate:0.000100776960000
285 epoch = 93/100, batch_num = 782, loss = 0.002680, time = 21.564
286 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 92.93000 %
287 learn_rate:0.000100776960000
288 epoch = 94/100, batch_num = 782, loss = 0.002440, time = 21.776
289 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 93.18000 %
290 learn_rate:0.000100776960000
291 epoch = 95/100, batch_num = 782, loss = 0.002384, time = 22.679
292 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 92.95000 %
293 learn_rate:0.000100776960000
294 epoch = 96/100, batch_num = 782, loss = 0.002711, time = 21.659
295 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 93.00000 %
296 learn_rate:0.000100776960000
297 epoch = 97/100, batch_num = 782, loss = 0.002881, time = 23.327
298 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 93.27000 %
299 learn_rate:0.000100776960000
300 epoch = 98/100, batch_num = 782, loss = 0.002583, time = 21.802
301 train_total = 50000, Accuracy = 99.99200 %,  test_total= 10000, Accuracy = 92.83000 %
302 learn_rate:0.000100776960000
303 epoch = 99/100, batch_num = 782, loss = 0.002490, time = 21.867
304 train_total = 50000, Accuracy = 99.99400 %,  test_total= 10000, Accuracy = 93.11000 %
305 learn_rate:0.000100776960000
306 epoch = 100/100, batch_num = 782, loss = 0.002650, time = 22.361
307 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 93.04000 %
View Code

图3-1 Resnet18模型的acc

 图3-2 Resnet18_new模型的acc

Resnet18训练CIFAR10 准确率95%改进,参考:https://blog.csdn.net/immc1979/article/details/128324029

  1 import torch
  2 from torch.utils.data import DataLoader
  3 from torch import nn, optim
  4 from torchvision import datasets, transforms
  5 
  6 from matplotlib import pyplot as plt
  7 
  8 
  9 import time
 10 
 11 from Lenet5 import Lenet5_new
 12 from Resnet18 import ResNet18
 13 
 14 def main():
 15     
 16     print("Load datasets...")
 17     
 18     # transforms.RandomHorizontalFlip(p=0.5)---以0.5的概率对图片做水平横向翻转
 19     # transforms.ToTensor()---shape从(H,W,C)->(C,H,W), 每个像素点从(0-255)映射到(0-1):直接除以255
 20     # transforms.Normalize---先将输入归一化到(0,1),像素点通过"(x-mean)/std",将每个元素分布到(-1,1)
 21     transform_train = transforms.Compose([
 22                         transforms.RandomHorizontalFlip(p=0.5),
 23                         transforms.ToTensor(),
 24                         transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
 25                     ])
 26 
 27     transform_test = transforms.Compose([
 28                         transforms.ToTensor(),
 29                         transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
 30                     ])
 31     
 32     # 内置函数下载数据集
 33     train_dataset = datasets.CIFAR10(root="./data/Cifar10/", train=True, 
 34                                      transform = transform_train,
 35                                      download=True)
 36     test_dataset = datasets.CIFAR10(root = "./data/Cifar10/", 
 37                                     train = False, 
 38                                     transform = transform_test,
 39                                     download=True)
 40     
 41     print(len(train_dataset), len(test_dataset))
 42     
 43     Batch_size = 64
 44     train_loader = DataLoader(train_dataset, batch_size=Batch_size,  shuffle = True)
 45     test_loader = DataLoader(test_dataset, batch_size = Batch_size, shuffle = False)
 46     
 47     # 设置CUDA
 48     device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 49 
 50     # 初始化模型
 51     # 直接更换模型就行,其他无需操作
 52     # model = Lenet5_new().to(device)
 53     model = ResNet18().to(device)
 54     
 55     # 构造损失函数和优化器
 56     criterion = nn.CrossEntropyLoss() # 多分类softmax构造损失
 57     opt = optim.SGD(model.parameters(), lr=0.001, momentum=0.8, weight_decay=0.001)
 58     
 59     # 动态更新学习率 ------每隔step_size : lr = lr * gamma
 60     schedule = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.6, last_epoch=-1)
 61     
 62     # 开始训练
 63     print("Start Train...")
 64 
 65     epochs = 100
 66    
 67     loss_list = []
 68     train_acc_list =[]
 69     test_acc_list = []
 70     epochs_list = []
 71     
 72     for epoch in range(0, epochs):
 73          
 74         start = time.time()
 75         
 76         model.train()
 77         
 78         running_loss = 0.0
 79         batch_num = 0
 80         
 81         for i, (inputs, labels) in enumerate(train_loader):
 82             
 83             inputs, labels = inputs.to(device), labels.to(device)
 84             
 85             # 将数据送入模型训练
 86             outputs = model(inputs)
 87             # 计算损失
 88             loss = criterion(outputs, labels).to(device)
 89             
 90             # 重置梯度
 91             opt.zero_grad()
 92             # 计算梯度,反向传播
 93             loss.backward()
 94             # 根据反向传播的梯度值优化更新参数
 95             opt.step()
 96             
 97             # 100个batch的 loss 之和
 98             running_loss += loss.item()
 99             # loss_list.append(loss.item())
100             batch_num+=1
101             
102             
103         epochs_list.append(epoch)
104             
105         # 每一轮结束输出一下当前的学习率 lr
106         lr_1 = opt.param_groups[0]['lr']
107         print("learn_rate:%.15f" % lr_1)
108         schedule.step()
109         
110         end = time.time()
111         print('epoch = %d/100, batch_num = %d, loss = %.6f, time = %.3f' % (epoch+1, batch_num, running_loss/batch_num, end-start))
112         running_loss=0.0    
113         
114         # 每个epoch训练结束,都进行一次测试验证
115         model.eval()
116         train_correct = 0.0
117         train_total = 0
118 
119         test_correct = 0.0
120         test_total = 0
121         
122          # 训练模式不需要反向传播更新梯度
123         with torch.no_grad():
124             
125             # print("=======================train=======================")
126             for inputs, labels in train_loader:
127                 inputs, labels = inputs.to(device), labels.to(device)
128                 outputs = model(inputs)
129 
130                 pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
131                 train_total += inputs.size(0)
132                 train_correct += torch.eq(pred, labels).sum().item()
133           
134             
135             # print("=======================test=======================")
136             for inputs, labels in test_loader:
137                 inputs, labels = inputs.to(device), labels.to(device)
138                 outputs = model(inputs)
139 
140                 pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
141                 test_total += inputs.size(0)
142                 test_correct += torch.eq(pred, labels).sum().item()
143 
144             print("train_total = %d, Accuracy = %.5f %%,  test_total= %d, Accuracy = %.5f %%" %(train_total, 100 * train_correct / train_total, test_total, 100 * test_correct / test_total))    
145 
146             train_acc_list.append(100 * train_correct / train_total)
147             test_acc_list.append(100 * test_correct / test_total)
148 
149         # print("Accuracy of the network on the 10000 test images:%.5f %%" % (100 * test_correct / test_total))
150         # print("===============================================")
151 
152     fig = plt.figure(figsize=(4, 4))
153     
154     plt.plot(epochs_list, train_acc_list, label='train_acc_list')
155     plt.plot(epochs_list, test_acc_list, label='test_acc_list')
156     plt.legend()
157     plt.title("train_test_acc")
158     plt.savefig('resnet18_cc_epoch_{:04d}.png'.format(epochs))
159     plt.close()
160     
161 if __name__ == "__main__":
162     
163




posted @ 2023-01-10 17:09  赵家小伙儿  阅读(182)  评论(0编辑  收藏  举报