有事没事领个红包

tensorflow中使用Batch Normalization

在深度学习中为了提高训练速度,经常会使用一些正正则化方法,如L2、dropout,后来Sergey Ioffe 等人提出Batch Normalization方法,可以防止数据分布的变化,影响神经网络需要重新学习分布带来的影响,会降低学习速率,训练时间等问题。提出使用batch normalization方法,使输入数据分布规律保持一致。实验证明可以提升训练速度,提高识别精度。下面讲解一下在Tensorflow中如何使用Batch Normalization

有关Batch Normalization详细内容请查看论文:

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

 

关键函数

tf.layers.batch_normalization、tf.contrib.layers.batch_norm

这两个函数用法一致,以 tf.layers.batch_normalization 为例进行讲解

layer1_conv = tf.layers.batch_normalization(layer1_conv,axis=0,training=in_training)

其中 axis 参数表示沿着哪个轴进行正则化,一般而言Tensor是[batch, width_x, width_y, channel],如果是[width_x, width_y, channel,batch]则axis应该设为3

 

1 在训练阶段

训练的时候需要注意两点,(1)输入参数training=True,(2)计算loss时,要添加以下代码(即添加update_ops到最后的train_op中)。这样才能计算μ和σ的滑动平均(测试时会用到)

 update_op = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
  with tf.control_dependencies(update_op):
    train_op = optimizer.minimize(loss)

 

2 在测试阶段

测试时需要注意一点,输入参数training=False,

 

posted @   crazyCodeLove  阅读(2982)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示