POJ2677 Tour(DP+双调欧几里得旅行商问题)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3929 | Accepted: 1761 |
Description
Write a program that, given a set of n points in the plane, computes the shortest closed tour that connects the points according to John's strategy.
Input
Output
Sample Input
3 1 1 2 3 3 1 4 1 1 2 3 3 1 4 2
Sample Output
6.47 7.89
参考博客:http://www.cnblogs.com/-sunshine/archive/2012/07/23/2605251.html
J.L. Bentley 建议通过只考虑双调旅程(bitonic tour)来简化问题,这种旅程即为从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点。下图(b)显示了同样的7个点的最短双调路线。在这种情况下,多项式的算法是可能的。事实上,存在确定的最优双调路线的O(n*n)时间的算法。
图a 图b
注:在一个单位栅格上显示的平面上的七个点。 a)最短闭合路线,长度大约是24.89。这个路线不是双调的。b)相同点的集合上的最短双调闭合路线。长度大约是25.58。
这是一个算导上的思考题15-1。
首先将给出的点排序,关键字x,重新编号,从左至右1,2,3,…,n。
定义p[i][j],表示结点i到结点j之间的距离。
定义d[i][j],表示从i连到1,再从1连到j,(注意,i>j,且并没有相连。)
对于任意一个点i来说,有两种连接方法,一种是如图(a)所示,i与i-1相连,另一种呢是如图(b),i与i-1不相连。
根据双调旅程,我们知道结点n一定与n相连,那么,如果我们求的d[n][n-1],只需将其加上p[n-1][n]就是最短双调闭合路线。
根据上图,很容易写出方程式:
dp[i][j]=dp[i-1][j]+dist[i][i-1]; i这一点是i+1走到的
dp[i][i-1]=min(dp[i][i-1],dp[i-1][j]+dist[j][i]); i这一点是从j走到的,找到j的最小值
自己的理解:刘汝佳书上的思路看懂了,但是老卡,抽空在想想他的思路,这个思路也好理解,在dp[i][j]这个位置,到下一个i+1,有两种情况要么是i走到的,要么是j走到的,如果是i走到的就对应第一个转移方程,如果是j走到的 dp[i][j] == dp[j][i],所以对应第二个方程
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; const int MAX = 10000 + 10; struct points { double x,y; }; points point[MAX]; double d[MAX][MAX]; int cmp(points a, points b) { return (b.x - a.x > 0.00001); } double Min(double a, double b) { if(a - b > 0.00001) return b; else return a; } double dist(int a, int b) { return sqrt( (point[a].x - point[b].x) * (point[a].x - point[b].x) + (point[a].y - point[b].y) * (point[a].y - point[b].y)); } int main() { int n; while(scanf("%d", &n) != EOF) { for(int i = 1; i <= n; i++) scanf("%lf%lf", &point[i].x, &point[i].y); sort(point + 1, point + n + 1, cmp); if(n == 1) { printf("0\n"); continue; } d[1][1] = 0; for(int i = 1; i <= n; i++) d[i][1] = dist(i, 1); for(int i = 2; i < n; i++) { d[i + 1][i] = 10000000.0; for(int j = 1; j < i; j++) { d[i + 1][j] = d[i][j] + dist(i, i + 1); d[i + 1][i] = Min(d[i + 1][i], d[i][j] + dist(j,i + 1)); } } printf("%.2lf\n", d[n][n - 1] + dist(n - 1, n)); } return 0; }