POJ3259Wormholes(判断是否存在负回路)

Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 38300   Accepted: 14095

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: N, M, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 
T个样例,先输入N,M,W;N表示点的个数,M表示正权的边数,无向的,W表示负权边数,有向,
如果存在负回路则输出yes否则no
 
自己真是够脑残,两个代码找错找了 半天,尽然都是一些手残的原因
 
1:SPFA
若一个点最短路被改进的次数达到n ,则有负权环。可以用spfa算法判断图有无负权环
  1 #include <iostream>
  2 #include <cstring>
  3 #include <algorithm>
  4 #include <cstdio>
  5 #include <vector>
  6 #include <queue>
  7 using namespace std;
  8 const int INF = 100000000;
  9 const int MAX = 1000 + 10;
 10 struct point
 11 {
 12     int e,w;
 13 };
 14 int F,M,N,W;
 15 vector<point> g[MAX];
 16 int updatetimes[MAX],dist[MAX];
 17 /*
 18 int spfa(int v)
 19 {
 20     for( int i = 1; i <= N; ++i)
 21         dist[i] = INF;
 22     dist[v] = 0;
 23     queue<int> que;
 24     que.push(v);
 25     memset(updatetimes ,0,sizeof(updatetimes));
 26     while( !que.empty()) {
 27         int s = que.front();
 28         que.pop();
 29         for( int i = 0;i < g[s].size(); ++i) {
 30             int e = g[s][i].e;
 31             if( dist[e] > dist[s] + g[s][i].w ) {
 32                 dist[e] = dist[s] + g[s][i].w;
 33                 que.push(e);
 34                  ++updatetimes[e];
 35                  if( updatetimes[e] >= N)
 36                      return true;
 37             }
 38         }
 39     }
 40     return false;
 41 }
 42 */
 43 int spfa(int v)
 44 {
 45     for(int i = 1; i <= N; i++)
 46         dist[i] = INF;
 47     dist[v] = 0;
 48     queue<int> que;
 49     que.push(v);
 50     memset(updatetimes,0,sizeof(updatetimes));
 51     while(que.size())
 52     {
 53         int s = que.front();
 54         que.pop();
 55         int len = g[s].size();
 56         for(int i = 0; i < g[s].size(); i++)
 57         {
 58             int e = g[s][i].e;
 59             if(dist[e] > dist[s] + g[s][i].w)
 60             {
 61                 dist[e] = dist[s] + g[s][i].w;
 62                 que.push(e);
 63                 ++updatetimes[e];
 64                 if(updatetimes[e] >= N)
 65                     return true;
 66             }
 67         }
 68     }
 69     return false;
 70 }
 71 
 72 int main()
 73 {
 74     scanf("%d", &F);
 75     while(F--)
 76     {
 77          scanf("%d%d%d", &N,&M,&W);
 78          for(int i = 0; i < MAX; i++)
 79                 g[i].clear();
 80          point edge;
 81          for(int i = 0; i < M; i++)
 82          {
 83              int s,e,w;
 84              scanf("%d%d%d", &s,&e,&w);
 85              edge.e = e;
 86              edge.w = w;
 87              g[s].push_back(edge);
 88              edge.e = s;
 89              g[e].push_back(edge);
 90          }
 91          for(int i = 0; i < W; i++)
 92          {
 93              int s,e,w;
 94              scanf("%d%d%d", &s,&e,&w);
 95              edge.e = e;
 96              edge.w = (-1) * w;
 97              g[s].push_back(edge);
 98          }
 99          if(spfa(1))
100          {
101              printf("YES\n");
102          }
103          else
104          {
105              printf("NO\n");
106          }
107     }
108     return 0;
109 }
View Code

 

2.Ballem-ford

 Bellman-Ford:算法核心就是对每个点更新一下dist[](离原点的距离),怎么更新一个点呢,通过枚举每个边就可以了,所以每次把所有的边枚举一遍,专业术语 叫做<松弛操作>就可以确定一个点的dist,除了原点一共需要N-1个点,所以套个循环

至于判断是否存在负环呢,就在更新完所有dist,然后在枚举一下每个边,看看是否通过在增加一个边能让dist再减少,如果可以的话那就是存在负回路,因为在前面我们已经更新到最短的路径了。

 1 #include <iostream>
 2 #include <cstring>
 3 #include <algorithm>
 4 #include <cstdio>
 5 #include <vector>
 6 using namespace std;
 7 const int INF = 10000000;
 8 struct Edge
 9 {
10     int s,e,w;
11 };
12 vector<Edge> edge;
13 int dist[1000 + 10];
14 int N,W,M;
15 
16 bool Ballem_ford(int v)
17 {
18     for(int i = 1; i <= N; i++)
19     {
20         dist[i] = INF;
21     }
22     dist[v] = 0;
23     int len = edge.size();
24     for(int i = 1; i < N; i++)
25     {
26         for(int j = 0; j < len; j++)
27         {
28             int s = edge[j].s;
29             int e = edge[j].e;
30             if(dist[e] > dist[s] + edge[j].w)   //把j写成了i,真是无语 
31                 dist[e] = dist[s] + edge[j].w;
32         }
33     }
34     for(int i = 0; i < len; i++)
35     {
36         int s = edge[i].s;
37         int e = edge[i].e;
38         if(dist[e] > dist[s] + edge[i].w)
39             return true;
40     }
41     return false;
42 }
43 int main()
44 {
45     int F;
46     scanf("%d", &F);
47     while(F--)
48     {
49         scanf("%d%d%d",&N,&M,&W);
50         edge.clear();
51         Edge point,temp;
52         for(int i = 0; i < M; i++)
53         {
54             scanf("%d%d%d",&point.s,&point.e,&point.w);
55             edge.push_back(point);
56             temp.s = point.e;
57             temp.e = point.s;
58             temp.w = point.w;
59             edge.push_back(temp);
60         }
61         for(int i = 0; i < W; i++)
62         {
63             scanf("%d%d%d", &point.s,&point.e,&point.w);
64             point.w = (-1) * point.w;
65             edge.push_back(point);
66         }
67         if(Ballem_ford(1) == true)
68             printf("YES\n");
69         else
70             printf("NO\n");
71     }
72     return 0;
73 }
View Code

 

 
posted @ 2015-11-25 14:58  zhaop  阅读(190)  评论(0编辑  收藏  举报