自定义数据类型 复数的Java实现

**复数**

数据:实部 虚部

  ComplexNum类,私有(private)变量,用getter和setter访问与修改,用toString函数转为字符串

  有参构造函数,传入实部和虚部创建复数ComplexNumber对象。

  无参构造函数,创建复数0+0i,通过调用有参构造函数创建。

 

成员函数:模长,共轭,开方,加减乘除

类函数:加减乘除

  成员函数需要通过ComplexNumber对象来调用,表示得到某个复数的模长、共轭、开方值,或者这个复数对象加上另一个复数得到的值,没有返回值,是对自身的修改。

  类函数由static关键字修饰,则可以直接调用,或者在另一个类中通过ComplexNumber类名就可以调用,表示两个复数相加的值,返回值就是ComplexNumber对象,表示运算结果。

  (类函数又叫静态函数,不能调用类中的其他成员变量和函数,只能调用类变量和类函数)

  (成员函数可以调用类中的其他函数,也可以调用类函数)

 

代码:

package complexNumber;

public class ComplexNumber {

    // 成员变量
    private double realPart;
    private double imaginaryPart;
    
    public ComplexNumber() {
        // TODO Auto-generated constructor stub
        this(0,0);
    }
    
    public ComplexNumber(double real, double imaginary) {
        this.realPart = real;
        this.imaginaryPart = imaginary;
    }
    
    public void add(ComplexNumber number) {
        this.realPart += number.realPart;
        this.imaginaryPart += number.imaginaryPart;
    }
    
    public static ComplexNumber add(ComplexNumber number1, ComplexNumber number2) {
        double real = number1.realPart + number2.realPart;
        double imag = number1.imaginaryPart + number2.imaginaryPart;
        return new ComplexNumber(real, imag);
    }
    
    public void subtract(ComplexNumber number) {
        this.realPart -= number.realPart;
        this.imaginaryPart -= number.imaginaryPart;
    }
    
    public static ComplexNumber subtract(ComplexNumber number1, ComplexNumber number2) {
        double real = number1.realPart - number2.realPart;
        double imag = number1.imaginaryPart - number2.imaginaryPart;
        return new ComplexNumber(real, imag);
    }
    
    // (a+bi)*(c+di) = (ac-bd) + (bc+ad)i
    public void multiply(ComplexNumber number) {
        this.realPart = this.realPart * number.realPart - this.imaginaryPart * number.imaginaryPart;
        this.imaginaryPart = this.imaginaryPart * number.realPart + this.realPart * number.imaginaryPart;
    }
    
    public static ComplexNumber multiply(ComplexNumber number1, ComplexNumber number2) {
        double real = number1.realPart * number2.realPart - number1.imaginaryPart * number2.imaginaryPart;
        double imag = number1.imaginaryPart * number2.realPart - number1.realPart * number2.imaginaryPart;
        return new ComplexNumber(real, imag);
    }
    
    public void divide(ComplexNumber number) {
        // 分母
        double denominator = number.magnitude();
        
        this.realPart = this.realPart * number.realPart + this.imaginaryPart * number.imaginaryPart;
        this.realPart /= denominator;
        
        this.imaginaryPart = (this.imaginaryPart * number.realPart - this.realPart * number.imaginaryPart);
        this.imaginaryPart /= denominator;
    }
    
    public static ComplexNumber divide(ComplexNumber number1, ComplexNumber number2) {
        
        double denominator = number2.magnitude();
        
        double real = number1.realPart * number2.realPart + number1.imaginaryPart * number2.imaginaryPart;
        
        double imag = (number1.imaginaryPart * number2.realPart - number1.realPart * number2.imaginaryPart);
        return new ComplexNumber(real / denominator, imag / denominator);
    }
    
    public double magnitude() {
        return Math.sqrt(this.realPart*this.realPart + this.imaginaryPart*this.imaginaryPart);
    }
    
    public ComplexNumber conjugate() {
        return new ComplexNumber(this.realPart, - this.imaginaryPart);
    }
    
    public double getRealPart() {
        return realPart;
    }

    public void setRealPart(double realPart) {
        this.realPart = realPart;
    }


    public double getImaginaryPart() {
        return imaginaryPart;
    }


    public void setImaginaryPart(double imaginaryPart) {
        this.imaginaryPart = imaginaryPart;
    }

    @Override
    public String toString() {
        if(this.imaginaryPart < 0)
            return "ComplexNumber " + realPart + "i" + imaginaryPart;
        return "ComplexNumber " + realPart + "i + " + imaginaryPart;
    }
  // 主函数,测试一下这个类
public static void main(String[] args) { ComplexNumber num1 = new ComplexNumber(3, 4); ComplexNumber num2 = new ComplexNumber(5, 12); System.out.println("num1 : " + num1.toString()); System.out.println("num1的模长为:"+num1.magnitude()); System.out.println("num1的共轭为:"+num1.conjugate()); ComplexNumber num3 = ComplexNumber.add(num1, num2); System.out.println("num3 = num1 + num2 = " + num3.toString()); num1.add(num2); System.out.println("num1 <- num1 + num2 = " + num1.toString()); ComplexNumber num4 = ComplexNumber.subtract(num1, num2); System.out.println("num4 = num1 - num2 = " + num4.toString()); System.out.println("num2 : " + num2.toString()); System.out.println("num2的模长为:"+num2.magnitude()); System.out.println("num2的共轭为:"+num2.conjugate()); } }

 

运行结果:

num1 : ComplexNumber 3.0i + 4.0
num1的模长为:5.0
num1的共轭为:ComplexNumber 3.0i-4.0
num3 = num1 + num2 = ComplexNumber 8.0i + 16.0
num1 <- num1 + num2 = ComplexNumber 8.0i + 16.0
num4 = num1 - num2 = ComplexNumber 3.0i + 4.0
num2 : ComplexNumber 5.0i + 12.0
num2的模长为:13.0
num2的共轭为:ComplexNumber 5.0i-12.0

 

posted @ 2021-01-11 00:42  倦鸟已归时  阅读(258)  评论(0编辑  收藏  举报