复化积分的C++实现
分享一下2020年11月11日数值分析实验的解答:
复化梯形公式(Composite Trapezoidal Quadrature)
区间[a,b]划分为n等分,分点为$x_k=a+kh, h=\frac{b-a}{n}, k=0,1,2,\dots,n$。对于每个子区间$[x_k, x_{k+1}]$利用公式
$I=\int_{a}^{b}f(x)dx = \sum_{k=0}^{n-1}\int_{x+k}^{x_{k+1}}f(x)dx=\frac{h}{2}\sum_{k=0}^{n-1}[f(x_k)+f(x_{k+1})]+R_n(f)$
复化梯形公式也就是其中的主要部分$T_n=\frac{h}{2}\sum_{k=0}^{n-1}[f(x_k)+f(x_{k+1})]=\frac{h}{2}[f(a)+2\sum_{k=1}^{n-1}f(x_k)+f(b)]$
知道这个代码就很容易了
double compositeTrapedoizalQuasdrature(double x[], double y[], int len) { double a = x[0]; double b = x[len - 1]; double result = function(a) + function(b); double h = (b - a) / (len - 1); for (int i = 1; i < len-1;i++) { result += 2 * function(x[i]); printf("i=%d\n", i); } result *= h * 0.5; return result; }
Composite Simpson Quadrature(复化辛普森公式)
区间[a,b]划分为n等分,分点为$x_k=a+kh, h=\frac{b-a}{n}, k=0,1,2,\dots,n$。对于每个子区间$[x_k, x_{k+1}]$利用公式
$S=\frac{b-a}{6}f(x)dx=\sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}f(x)dz=\frac{h}{6}\sum_{k=0}^{n-1}[f(x_k)+4f(x_{x+\frac{1}{2}})+f(x_{x+1})]+R_n(f)$
复化辛普森公式也就是$S_n=\frac{h}{6}\sum_{k=0}^{n-1}[f(x_k)+4f(x_{k+\frac{1}{2}})+f(x_{k+1})]$
$=\frac{h}{6}[f(a)+4\sum_{k=0}^{n-1}f(x+\frac{1}{2})+2\sum_{k=1}^{n-1}f(x)+f(b)]$
double compositeSimpsonQuasdrature(double x[], double y[], int len) { double a = x[0]; double b = x[len - 1]; double result = function(a) + function(b); double h = (b - a) / (len - 1); double xk; for (int k = 0; k < len - 1; k++) { xk = x[k] + h * 0.5; result += 4 * function(xk); } for (int i = 1; i < len - 1; i++) { result += 2 * function(x[i]); } result *= h; result /= 6; return result; }