理解 Python 中的多线程
1、单线程
import time import urllib2 def get_responses(): urls = [ 'http://www.google.com', 'http://www.amazon.com', 'http://www.ebay.com', 'http://www.alibaba.com', 'http://www.reddit.com' ] start = time.time() for url in urls: print url resp = urllib2.urlopen(url) print resp.getcode() print "Elapsed time: %s" % (time.time()-start) get_responses()
解释:
url顺序的被请求
除非cpu从一个url获得了回应,否则不会去请求下一个url
网络请求会花费较长的时间,所以cpu在等待网络请求的返回时间内一直处于闲置状态。
2、多线程
import urllib2 import time from threading import Thread class GetUrlThread(Thread): def __init__(self, url): self.url = url super(GetUrlThread, self).__init__() def run(self): resp = urllib2.urlopen(self.url) print self.url, resp.getcode() def get_responses(): urls = [ 'http://www.google.com', 'http://www.amazon.com', 'http://www.ebay.com', 'http://www.alibaba.com', 'http://www.reddit.com' ] start = time.time() threads = [] for url in urls: t = GetUrlThread(url) threads.append(t) t.start() for t in threads: t.join() print "Elapsed time: %s" % (time.time()-start) get_responses()
解释:
意识到了程序在执行时间上的提升
我们写了一个多线程程序来减少cpu的等待时间,当我们在等待一个线程内的网络请求返回时,这时cpu可以切换到其他线程去进行其他线程内的网络请求。
我们期望一个线程处理一个url,所以实例化线程类的时候我们传了一个url。
线程运行意味着执行类里的run()方法。
无论如何我们想每个线程必须执行run()。
为每个url创建一个线程并且调用start()方法,这告诉了cpu可以执行线程中的run()方法了。
我们希望所有的线程执行完毕的时候再计算花费的时间,所以调用了join()方法。
join()可以通知主线程等待这个线程结束后,才可以执行下一条指令。
每个线程我们都调用了join()方法,所以我们是在所有线程执行完毕后计算的运行时间。
关于线程:
cpu可能不会在调用start()后马上执行run()方法。
你不能确定run()在不同线程建间的执行顺序。
对于单独的一个线程,可以保证run()方法里的语句是按照顺序执行的。
这就是因为线程内的url会首先被请求,然后打印出返回的结果。
解决资源竞争
from threading import Lock, Thread lock = Lock() some_var = 0 class IncrementThread(Thread): def run(self): #we want to read a global variable #and then increment it global some_var lock.acquire() read_value = some_var print "some_var in %s is %d" % (self.name, read_value) some_var = read_value + 1 print "some_var in %s after increment is %d" % (self.name, some_var) lock.release() def use_increment_thread(): threads = [] for i in range(50): t = IncrementThread() threads.append(t) t.start() for t in threads: t.join() print "After 50 modifications, some_var should have become 50" print "After 50 modifications, some_var is %d" % (some_var,) use_increment_thread()
解释:
Lock 用来防止竞争条件
如果在执行一些操作之前,线程t1获得了锁。其他的线程在t1释放Lock之前,不会执行相同的操作
我们想要确定的是一旦线程t1已经读取了some_var,直到t1完成了修改some_var,其他的线程才可以读取some_var
这样读取和修改some_var成了逻辑上的原子操作
加锁保证操作的原子性
from threading import Thread, Lock import time lock = Lock() class CreateListThread(Thread): def run(self): self.entries = [] for i in range(10): time.sleep(0.01) self.entries.append(i) lock.acquire() print self.entries lock.release() def use_create_list_thread(): for i in range(3): t = CreateListThread() t.start() use_create_list_thread()
证明了一个线程不可以修改其他线程内部的变量(非全局变量)。
Python多线程简易版:线程池 threadpool
import threadpool import time import urllib2 urls = [ 'http://www.google.com', 'http://www.amazon.com', 'http://www.ebay.com', 'http://www.alibaba.com', 'http://www.reddit.com' ] def myRequest(url): resp = urllib2.urlopen(url) print url, resp.getcode() def timeCost(request, n): print "Elapsed time: %s" % (time.time()-start) start = time.time() pool = threadpool.ThreadPool(5) reqs = threadpool.makeRequests(myRequest, urls, timeCost) [ pool.putRequest(req) for req in reqs ] pool.wait()
makeRequests创建了要开启多线程的函数,以及函数相关参数和回调函数,其中回调函数可以不写,default是无,也就是说makeRequests只需要2个参数就可以运行;
注意:threadpool 是非线程安全的。