题解 P2257 【YY的GCD】

神犇 YY 虐完数论后给傻× kAc 出了一题

给定 \(N, M\)\(1 \leq x \leq N\)\(1 \leq y \leq M\)\(\gcd(x, y)\) 为质数的 \((x, y)\) 有多少对。

前置知识

\[\begin{aligned} &\sum_{p\in prim}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=p] \\ =& \sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[\gcd(i,j)=1]\\ =& \sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\varepsilon(\gcd(i,j)=1)\\ =& \sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\varepsilon(\gcd(i,j))\\ =& \sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor} \sum_{d\mid \gcd(i,j)} \mu(d)\\ =&\sum_{p\in prim}\sum_{p\mid d} \mu(d)\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}[d\mid i]\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[d\mid j]\\ =&\sum_{p\in prim}\sum_{p\mid d} \mu(d) \lfloor \frac{n}{kd} \rfloor\lfloor \frac{m}{kd} \rfloor\\ \end{aligned} \]

设:

\[f(p)=\sum\limits_{p\mid d} \mu(d) \]

则原式化为:

\[\begin{aligned} =&\sum_{p\in prim} f(p)\times \lfloor \frac{n}{kd} \rfloor\lfloor \frac{m}{kd} \rfloor\\\end{aligned} \]

我们先去预处理 \(f\) 函数

for(int i=1;i<=cnt;i++)
	for(int j=1;j*prim[i]<N;j++)
		f[j*prim[i]]+=mu[j];

就是这里的 \(f\) 数组。

之后我们就可以求解了。

我们可以使用数论分块来写这题。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &FF){
	T RR=1;FF=0;char CH=getchar();
	for(;!isdigit(CH);CH=getchar())if(CH=='-')RR=-1;
	for(;isdigit(CH);CH=getchar())FF=(FF<<1)+(FF<<3)+(CH^48);
	FF*=RR;
}
const int N=1e7+10;
int prim[N],mu[N],sum[N],cnt,k,T,f[N];
bool vis[N];
void init(){
	mu[1]=1;
	for(register int i=2;i<N;i++){
		if(!vis[i]){
			mu[i]=-1;
			prim[++cnt]=i;
		}
		for(register int j=1;j<=cnt&&i*prim[j]<N;j++){
			vis[i*prim[j]]=1;
			if(i%prim[j]==0)break;
			mu[i*prim[j]]=-mu[i];
		}
	}
	for(int i=1;i<=cnt;i++)
		for(int j=1;j*prim[i]<N;j++)
			f[j*prim[i]]+=mu[j];
	for(register int i=1;i<N;i++)sum[i]=sum[i-1]+f[i];
}//莫比乌斯反演的板子
ll calc(int a,int b){
	ll ans=0;
	for(register int l=1,r;l<=min(a,b);l=r+1){
		r=min(a/(a/l),b/(b/l));
		ans+=(1ll*a/l)*(1ll*b/l)*(sum[r]-sum[l-1]);
	}
	return ans;
}
int main(){
	init();
	for(read(T);T--;){
		int x,y;
		read(x);read(y);
		printf("%lld\n",calc(x,y));
	}
	return 0;
}
posted @ 2020-10-17 10:10  zhaohaikun  阅读(94)  评论(0编辑  收藏  举报