题解 P2522 【[HAOI2011]Problem b】

对于给出的 \(n\) 个询问,每次求有多少个数对 \((x,y)\),满足 \(a \le x \le b\)\(c \le y \le d\),且 \(\gcd(x,y) = k\)\(\gcd(x,y)\) 函数为 \(x\)\(y\) 的最大公约数。

前置知识

\[\sum\limits_{i=a}^{b} \sum\limits_{j=c}^{d} [\gcd(i,j)=k] \]

函数 \(f(x,y)\) 为:

\[\sum\limits_{i=1}^{x} \sum\limits_{j=1}^{y} [\gcd(i,j)=k] \]

那么,运用容斥原理,原式就 \(= f(b,d) - f(a,d) - f(b,c) + f(a,c)\)

所以现在问题就转换为了求 \(f\) 函数。

\[\begin{aligned} &\sum\limits_{i=1}^{x} \sum\limits_{j=1}^{y} [\gcd(i,j)=k] \\ =& \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[\gcd(i,j)=1]\\ =& \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\varepsilon(\gcd(i,j))\\ =& \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{d \mid \gcd(i,j) }\mu(d)\\ =& \sum_{d=1 }\mu(d)\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}[d \mid i]\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[d \mid j]\\ =&\sum_{d=1}\mu(d)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor \end{aligned} \]

我们可以使用数论分块进行求解

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &FF){
	T RR=1;FF=0;char CH=getchar();
	for(;!isdigit(CH);CH=getchar())if(CH=='-')RR=-1;
	for(;isdigit(CH);CH=getchar())FF=(FF<<1)+(FF<<3)+(CH^48);
	FF*=RR;
}
const int N=50010;
int prim[N],mu[N],sum[N],cnt,k,T;
bool vis[N];
void init(){
	mu[1]=1;
	for(register int i=2;i<N;i++){
		if(!vis[i]){
			mu[i]=-1;
			prim[++cnt]=i;
		}
		for(register int j=1;j<=cnt&&i*prim[j]<N;j++){
			vis[i*prim[j]]=1;
			if(i%prim[j]==0)break;
			mu[i*prim[j]]=-mu[i];
		}
	}
	for(register int i=1;i<N;i++)sum[i]=sum[i-1]+mu[i];
}//莫比乌斯反演的板子
ll calc(int a,int b){
	ll ans=0;
	for(register int l=1,r;l<=min(a,b);l=r+1){
		r=min(a/(a/l),b/(b/l));
		ans+=(1ll*a/l)*(1ll*b/l)*(sum[r]-sum[l-1]);
	}
	return ans;
}
int main(){
	init();
	for(read(T);T--;){
		int a,b,c,d;
		read(a);read(b);read(c);read(d);read(k);
		a--;c--;a/=k;b/=k;c/=k;d/=k;
		printf("%lld\n",calc(b,d)-calc(b,c)-calc(a,d)+calc(a,c));
	}
	return 0;
}
posted @ 2020-10-17 10:08  zhaohaikun  阅读(73)  评论(0编辑  收藏  举报